/* Jimp v0.16.0 https://github.com/oliver-moran/jimp Ported for the Web by Phil Seaton MIT License Copyright (c) 2018 Oliver Moran Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ if ((typeof(window)=='undefined' || !window) && (typeof(self)!='undefined')) var window = self; (function(f){if(typeof exports==="object"&&typeof module!=="undefined"){module.exports=f()}else if(typeof define==="function"&&define.amd){define([],f)}else{var g;if(typeof window!=="undefined"){g=window}else if(typeof global!=="undefined"){g=global}else if(typeof self!=="undefined"){g=self}else{g=this}g.jimp = f()}})(function(){var define,module,exports;return (function(){function r(e,n,t){function o(i,f){if(!n[i]){if(!e[i]){var c="function"==typeof require&&require;if(!f&&c)return c(i,!0);if(u)return u(i,!0);var a=new Error("Cannot find module '"+i+"'");throw a.code="MODULE_NOT_FOUND",a}var p=n[i]={exports:{}};e[i][0].call(p.exports,function(r){var n=e[i][1][r];return o(n||r)},p,p.exports,r,e,n,t)}return n[i].exports}for(var u="function"==typeof require&&require,i=0;i= toBase) { numberMap[newlen++] = parseInt(divide / toBase, 10); divide = divide % toBase; } else if (newlen > 0) { numberMap[newlen++] = 0; } } length = newlen; result = this.dstAlphabet.slice(divide, divide + 1).concat(result); } while (newlen !== 0); return result; }; /** * Valid number with source alphabet * * @param {number} number * * @returns {boolean} */ Converter.prototype.isValid = function(number) { var i = 0; for (; i < number.length; ++i) { if (this.srcAlphabet.indexOf(number[i]) === -1) { return false; } } return true; }; module.exports = Converter; },{}],25:[function(require,module,exports){ (function (global){ 'use strict'; var objectAssign = require('object-assign'); // compare and isBuffer taken from https://github.com/feross/buffer/blob/680e9e5e488f22aac27599a57dc844a6315928dd/index.js // original notice: /*! * The buffer module from node.js, for the browser. * * @author Feross Aboukhadijeh * @license MIT */ function compare(a, b) { if (a === b) { return 0; } var x = a.length; var y = b.length; for (var i = 0, len = Math.min(x, y); i < len; ++i) { if (a[i] !== b[i]) { x = a[i]; y = b[i]; break; } } if (x < y) { return -1; } if (y < x) { return 1; } return 0; } function isBuffer(b) { if (global.Buffer && typeof global.Buffer.isBuffer === 'function') { return global.Buffer.isBuffer(b); } return !!(b != null && b._isBuffer); } // based on node assert, original notice: // NB: The URL to the CommonJS spec is kept just for tradition. // node-assert has evolved a lot since then, both in API and behavior. // http://wiki.commonjs.org/wiki/Unit_Testing/1.0 // // THIS IS NOT TESTED NOR LIKELY TO WORK OUTSIDE V8! // // Originally from narwhal.js (http://narwhaljs.org) // Copyright (c) 2009 Thomas Robinson <280north.com> // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the 'Software'), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN // ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. var util = require('util/'); var hasOwn = Object.prototype.hasOwnProperty; var pSlice = Array.prototype.slice; var functionsHaveNames = (function () { return function foo() {}.name === 'foo'; }()); function pToString (obj) { return Object.prototype.toString.call(obj); } function isView(arrbuf) { if (isBuffer(arrbuf)) { return false; } if (typeof global.ArrayBuffer !== 'function') { return false; } if (typeof ArrayBuffer.isView === 'function') { return ArrayBuffer.isView(arrbuf); } if (!arrbuf) { return false; } if (arrbuf instanceof DataView) { return true; } if (arrbuf.buffer && arrbuf.buffer instanceof ArrayBuffer) { return true; } return false; } // 1. The assert module provides functions that throw // AssertionError's when particular conditions are not met. The // assert module must conform to the following interface. var assert = module.exports = ok; // 2. The AssertionError is defined in assert. // new assert.AssertionError({ message: message, // actual: actual, // expected: expected }) var regex = /\s*function\s+([^\(\s]*)\s*/; // based on https://github.com/ljharb/function.prototype.name/blob/adeeeec8bfcc6068b187d7d9fb3d5bb1d3a30899/implementation.js function getName(func) { if (!util.isFunction(func)) { return; } if (functionsHaveNames) { return func.name; } var str = func.toString(); var match = str.match(regex); return match && match[1]; } assert.AssertionError = function AssertionError(options) { this.name = 'AssertionError'; this.actual = options.actual; this.expected = options.expected; this.operator = options.operator; if (options.message) { this.message = options.message; this.generatedMessage = false; } else { this.message = getMessage(this); this.generatedMessage = true; } var stackStartFunction = options.stackStartFunction || fail; if (Error.captureStackTrace) { Error.captureStackTrace(this, stackStartFunction); } else { // non v8 browsers so we can have a stacktrace var err = new Error(); if (err.stack) { var out = err.stack; // try to strip useless frames var fn_name = getName(stackStartFunction); var idx = out.indexOf('\n' + fn_name); if (idx >= 0) { // once we have located the function frame // we need to strip out everything before it (and its line) var next_line = out.indexOf('\n', idx + 1); out = out.substring(next_line + 1); } this.stack = out; } } }; // assert.AssertionError instanceof Error util.inherits(assert.AssertionError, Error); function truncate(s, n) { if (typeof s === 'string') { return s.length < n ? s : s.slice(0, n); } else { return s; } } function inspect(something) { if (functionsHaveNames || !util.isFunction(something)) { return util.inspect(something); } var rawname = getName(something); var name = rawname ? ': ' + rawname : ''; return '[Function' + name + ']'; } function getMessage(self) { return truncate(inspect(self.actual), 128) + ' ' + self.operator + ' ' + truncate(inspect(self.expected), 128); } // At present only the three keys mentioned above are used and // understood by the spec. Implementations or sub modules can pass // other keys to the AssertionError's constructor - they will be // ignored. // 3. All of the following functions must throw an AssertionError // when a corresponding condition is not met, with a message that // may be undefined if not provided. All assertion methods provide // both the actual and expected values to the assertion error for // display purposes. function fail(actual, expected, message, operator, stackStartFunction) { throw new assert.AssertionError({ message: message, actual: actual, expected: expected, operator: operator, stackStartFunction: stackStartFunction }); } // EXTENSION! allows for well behaved errors defined elsewhere. assert.fail = fail; // 4. Pure assertion tests whether a value is truthy, as determined // by !!guard. // assert.ok(guard, message_opt); // This statement is equivalent to assert.equal(true, !!guard, // message_opt);. To test strictly for the value true, use // assert.strictEqual(true, guard, message_opt);. function ok(value, message) { if (!value) fail(value, true, message, '==', assert.ok); } assert.ok = ok; // 5. The equality assertion tests shallow, coercive equality with // ==. // assert.equal(actual, expected, message_opt); assert.equal = function equal(actual, expected, message) { if (actual != expected) fail(actual, expected, message, '==', assert.equal); }; // 6. The non-equality assertion tests for whether two objects are not equal // with != assert.notEqual(actual, expected, message_opt); assert.notEqual = function notEqual(actual, expected, message) { if (actual == expected) { fail(actual, expected, message, '!=', assert.notEqual); } }; // 7. The equivalence assertion tests a deep equality relation. // assert.deepEqual(actual, expected, message_opt); assert.deepEqual = function deepEqual(actual, expected, message) { if (!_deepEqual(actual, expected, false)) { fail(actual, expected, message, 'deepEqual', assert.deepEqual); } }; assert.deepStrictEqual = function deepStrictEqual(actual, expected, message) { if (!_deepEqual(actual, expected, true)) { fail(actual, expected, message, 'deepStrictEqual', assert.deepStrictEqual); } }; function _deepEqual(actual, expected, strict, memos) { // 7.1. All identical values are equivalent, as determined by ===. if (actual === expected) { return true; } else if (isBuffer(actual) && isBuffer(expected)) { return compare(actual, expected) === 0; // 7.2. If the expected value is a Date object, the actual value is // equivalent if it is also a Date object that refers to the same time. } else if (util.isDate(actual) && util.isDate(expected)) { return actual.getTime() === expected.getTime(); // 7.3 If the expected value is a RegExp object, the actual value is // equivalent if it is also a RegExp object with the same source and // properties (`global`, `multiline`, `lastIndex`, `ignoreCase`). } else if (util.isRegExp(actual) && util.isRegExp(expected)) { return actual.source === expected.source && actual.global === expected.global && actual.multiline === expected.multiline && actual.lastIndex === expected.lastIndex && actual.ignoreCase === expected.ignoreCase; // 7.4. Other pairs that do not both pass typeof value == 'object', // equivalence is determined by ==. } else if ((actual === null || typeof actual !== 'object') && (expected === null || typeof expected !== 'object')) { return strict ? actual === expected : actual == expected; // If both values are instances of typed arrays, wrap their underlying // ArrayBuffers in a Buffer each to increase performance // This optimization requires the arrays to have the same type as checked by // Object.prototype.toString (aka pToString). Never perform binary // comparisons for Float*Arrays, though, since e.g. +0 === -0 but their // bit patterns are not identical. } else if (isView(actual) && isView(expected) && pToString(actual) === pToString(expected) && !(actual instanceof Float32Array || actual instanceof Float64Array)) { return compare(new Uint8Array(actual.buffer), new Uint8Array(expected.buffer)) === 0; // 7.5 For all other Object pairs, including Array objects, equivalence is // determined by having the same number of owned properties (as verified // with Object.prototype.hasOwnProperty.call), the same set of keys // (although not necessarily the same order), equivalent values for every // corresponding key, and an identical 'prototype' property. Note: this // accounts for both named and indexed properties on Arrays. } else if (isBuffer(actual) !== isBuffer(expected)) { return false; } else { memos = memos || {actual: [], expected: []}; var actualIndex = memos.actual.indexOf(actual); if (actualIndex !== -1) { if (actualIndex === memos.expected.indexOf(expected)) { return true; } } memos.actual.push(actual); memos.expected.push(expected); return objEquiv(actual, expected, strict, memos); } } function isArguments(object) { return Object.prototype.toString.call(object) == '[object Arguments]'; } function objEquiv(a, b, strict, actualVisitedObjects) { if (a === null || a === undefined || b === null || b === undefined) return false; // if one is a primitive, the other must be same if (util.isPrimitive(a) || util.isPrimitive(b)) return a === b; if (strict && Object.getPrototypeOf(a) !== Object.getPrototypeOf(b)) return false; var aIsArgs = isArguments(a); var bIsArgs = isArguments(b); if ((aIsArgs && !bIsArgs) || (!aIsArgs && bIsArgs)) return false; if (aIsArgs) { a = pSlice.call(a); b = pSlice.call(b); return _deepEqual(a, b, strict); } var ka = objectKeys(a); var kb = objectKeys(b); var key, i; // having the same number of owned properties (keys incorporates // hasOwnProperty) if (ka.length !== kb.length) return false; //the same set of keys (although not necessarily the same order), ka.sort(); kb.sort(); //~~~cheap key test for (i = ka.length - 1; i >= 0; i--) { if (ka[i] !== kb[i]) return false; } //equivalent values for every corresponding key, and //~~~possibly expensive deep test for (i = ka.length - 1; i >= 0; i--) { key = ka[i]; if (!_deepEqual(a[key], b[key], strict, actualVisitedObjects)) return false; } return true; } // 8. The non-equivalence assertion tests for any deep inequality. // assert.notDeepEqual(actual, expected, message_opt); assert.notDeepEqual = function notDeepEqual(actual, expected, message) { if (_deepEqual(actual, expected, false)) { fail(actual, expected, message, 'notDeepEqual', assert.notDeepEqual); } }; assert.notDeepStrictEqual = notDeepStrictEqual; function notDeepStrictEqual(actual, expected, message) { if (_deepEqual(actual, expected, true)) { fail(actual, expected, message, 'notDeepStrictEqual', notDeepStrictEqual); } } // 9. The strict equality assertion tests strict equality, as determined by ===. // assert.strictEqual(actual, expected, message_opt); assert.strictEqual = function strictEqual(actual, expected, message) { if (actual !== expected) { fail(actual, expected, message, '===', assert.strictEqual); } }; // 10. The strict non-equality assertion tests for strict inequality, as // determined by !==. assert.notStrictEqual(actual, expected, message_opt); assert.notStrictEqual = function notStrictEqual(actual, expected, message) { if (actual === expected) { fail(actual, expected, message, '!==', assert.notStrictEqual); } }; function expectedException(actual, expected) { if (!actual || !expected) { return false; } if (Object.prototype.toString.call(expected) == '[object RegExp]') { return expected.test(actual); } try { if (actual instanceof expected) { return true; } } catch (e) { // Ignore. The instanceof check doesn't work for arrow functions. } if (Error.isPrototypeOf(expected)) { return false; } return expected.call({}, actual) === true; } function _tryBlock(block) { var error; try { block(); } catch (e) { error = e; } return error; } function _throws(shouldThrow, block, expected, message) { var actual; if (typeof block !== 'function') { throw new TypeError('"block" argument must be a function'); } if (typeof expected === 'string') { message = expected; expected = null; } actual = _tryBlock(block); message = (expected && expected.name ? ' (' + expected.name + ').' : '.') + (message ? ' ' + message : '.'); if (shouldThrow && !actual) { fail(actual, expected, 'Missing expected exception' + message); } var userProvidedMessage = typeof message === 'string'; var isUnwantedException = !shouldThrow && util.isError(actual); var isUnexpectedException = !shouldThrow && actual && !expected; if ((isUnwantedException && userProvidedMessage && expectedException(actual, expected)) || isUnexpectedException) { fail(actual, expected, 'Got unwanted exception' + message); } if ((shouldThrow && actual && expected && !expectedException(actual, expected)) || (!shouldThrow && actual)) { throw actual; } } // 11. Expected to throw an error: // assert.throws(block, Error_opt, message_opt); assert.throws = function(block, /*optional*/error, /*optional*/message) { _throws(true, block, error, message); }; // EXTENSION! This is annoying to write outside this module. assert.doesNotThrow = function(block, /*optional*/error, /*optional*/message) { _throws(false, block, error, message); }; assert.ifError = function(err) { if (err) throw err; }; // Expose a strict only variant of assert function strict(value, message) { if (!value) fail(value, true, message, '==', strict); } assert.strict = objectAssign(strict, assert, { equal: assert.strictEqual, deepEqual: assert.deepStrictEqual, notEqual: assert.notStrictEqual, notDeepEqual: assert.notDeepStrictEqual }); assert.strict.strict = assert.strict; var objectKeys = Object.keys || function (obj) { var keys = []; for (var key in obj) { if (hasOwn.call(obj, key)) keys.push(key); } return keys; }; }).call(this,typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {}) },{"object-assign":84,"util/":28}],26:[function(require,module,exports){ if (typeof Object.create === 'function') { // implementation from standard node.js 'util' module module.exports = function inherits(ctor, superCtor) { ctor.super_ = superCtor ctor.prototype = Object.create(superCtor.prototype, { constructor: { value: ctor, enumerable: false, writable: true, configurable: true } }); }; } else { // old school shim for old browsers module.exports = function inherits(ctor, superCtor) { ctor.super_ = superCtor var TempCtor = function () {} TempCtor.prototype = superCtor.prototype ctor.prototype = new TempCtor() ctor.prototype.constructor = ctor } } },{}],27:[function(require,module,exports){ module.exports = function isBuffer(arg) { return arg && typeof arg === 'object' && typeof arg.copy === 'function' && typeof arg.fill === 'function' && typeof arg.readUInt8 === 'function'; } },{}],28:[function(require,module,exports){ (function (process,global){ // Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. var formatRegExp = /%[sdj%]/g; exports.format = function(f) { if (!isString(f)) { var objects = []; for (var i = 0; i < arguments.length; i++) { objects.push(inspect(arguments[i])); } return objects.join(' '); } var i = 1; var args = arguments; var len = args.length; var str = String(f).replace(formatRegExp, function(x) { if (x === '%%') return '%'; if (i >= len) return x; switch (x) { case '%s': return String(args[i++]); case '%d': return Number(args[i++]); case '%j': try { return JSON.stringify(args[i++]); } catch (_) { return '[Circular]'; } default: return x; } }); for (var x = args[i]; i < len; x = args[++i]) { if (isNull(x) || !isObject(x)) { str += ' ' + x; } else { str += ' ' + inspect(x); } } return str; }; // Mark that a method should not be used. // Returns a modified function which warns once by default. // If --no-deprecation is set, then it is a no-op. exports.deprecate = function(fn, msg) { // Allow for deprecating things in the process of starting up. if (isUndefined(global.process)) { return function() { return exports.deprecate(fn, msg).apply(this, arguments); }; } if (process.noDeprecation === true) { return fn; } var warned = false; function deprecated() { if (!warned) { if (process.throwDeprecation) { throw new Error(msg); } else if (process.traceDeprecation) { console.trace(msg); } else { console.error(msg); } warned = true; } return fn.apply(this, arguments); } return deprecated; }; var debugs = {}; var debugEnviron; exports.debuglog = function(set) { if (isUndefined(debugEnviron)) debugEnviron = process.env.NODE_DEBUG || ''; set = set.toUpperCase(); if (!debugs[set]) { if (new RegExp('\\b' + set + '\\b', 'i').test(debugEnviron)) { var pid = process.pid; debugs[set] = function() { var msg = exports.format.apply(exports, arguments); console.error('%s %d: %s', set, pid, msg); }; } else { debugs[set] = function() {}; } } return debugs[set]; }; /** * Echos the value of a value. Trys to print the value out * in the best way possible given the different types. * * @param {Object} obj The object to print out. * @param {Object} opts Optional options object that alters the output. */ /* legacy: obj, showHidden, depth, colors*/ function inspect(obj, opts) { // default options var ctx = { seen: [], stylize: stylizeNoColor }; // legacy... if (arguments.length >= 3) ctx.depth = arguments[2]; if (arguments.length >= 4) ctx.colors = arguments[3]; if (isBoolean(opts)) { // legacy... ctx.showHidden = opts; } else if (opts) { // got an "options" object exports._extend(ctx, opts); } // set default options if (isUndefined(ctx.showHidden)) ctx.showHidden = false; if (isUndefined(ctx.depth)) ctx.depth = 2; if (isUndefined(ctx.colors)) ctx.colors = false; if (isUndefined(ctx.customInspect)) ctx.customInspect = true; if (ctx.colors) ctx.stylize = stylizeWithColor; return formatValue(ctx, obj, ctx.depth); } exports.inspect = inspect; // http://en.wikipedia.org/wiki/ANSI_escape_code#graphics inspect.colors = { 'bold' : [1, 22], 'italic' : [3, 23], 'underline' : [4, 24], 'inverse' : [7, 27], 'white' : [37, 39], 'grey' : [90, 39], 'black' : [30, 39], 'blue' : [34, 39], 'cyan' : [36, 39], 'green' : [32, 39], 'magenta' : [35, 39], 'red' : [31, 39], 'yellow' : [33, 39] }; // Don't use 'blue' not visible on cmd.exe inspect.styles = { 'special': 'cyan', 'number': 'yellow', 'boolean': 'yellow', 'undefined': 'grey', 'null': 'bold', 'string': 'green', 'date': 'magenta', // "name": intentionally not styling 'regexp': 'red' }; function stylizeWithColor(str, styleType) { var style = inspect.styles[styleType]; if (style) { return '\u001b[' + inspect.colors[style][0] + 'm' + str + '\u001b[' + inspect.colors[style][1] + 'm'; } else { return str; } } function stylizeNoColor(str, styleType) { return str; } function arrayToHash(array) { var hash = {}; array.forEach(function(val, idx) { hash[val] = true; }); return hash; } function formatValue(ctx, value, recurseTimes) { // Provide a hook for user-specified inspect functions. // Check that value is an object with an inspect function on it if (ctx.customInspect && value && isFunction(value.inspect) && // Filter out the util module, it's inspect function is special value.inspect !== exports.inspect && // Also filter out any prototype objects using the circular check. !(value.constructor && value.constructor.prototype === value)) { var ret = value.inspect(recurseTimes, ctx); if (!isString(ret)) { ret = formatValue(ctx, ret, recurseTimes); } return ret; } // Primitive types cannot have properties var primitive = formatPrimitive(ctx, value); if (primitive) { return primitive; } // Look up the keys of the object. var keys = Object.keys(value); var visibleKeys = arrayToHash(keys); if (ctx.showHidden) { keys = Object.getOwnPropertyNames(value); } // IE doesn't make error fields non-enumerable // http://msdn.microsoft.com/en-us/library/ie/dww52sbt(v=vs.94).aspx if (isError(value) && (keys.indexOf('message') >= 0 || keys.indexOf('description') >= 0)) { return formatError(value); } // Some type of object without properties can be shortcutted. if (keys.length === 0) { if (isFunction(value)) { var name = value.name ? ': ' + value.name : ''; return ctx.stylize('[Function' + name + ']', 'special'); } if (isRegExp(value)) { return ctx.stylize(RegExp.prototype.toString.call(value), 'regexp'); } if (isDate(value)) { return ctx.stylize(Date.prototype.toString.call(value), 'date'); } if (isError(value)) { return formatError(value); } } var base = '', array = false, braces = ['{', '}']; // Make Array say that they are Array if (isArray(value)) { array = true; braces = ['[', ']']; } // Make functions say that they are functions if (isFunction(value)) { var n = value.name ? ': ' + value.name : ''; base = ' [Function' + n + ']'; } // Make RegExps say that they are RegExps if (isRegExp(value)) { base = ' ' + RegExp.prototype.toString.call(value); } // Make dates with properties first say the date if (isDate(value)) { base = ' ' + Date.prototype.toUTCString.call(value); } // Make error with message first say the error if (isError(value)) { base = ' ' + formatError(value); } if (keys.length === 0 && (!array || value.length == 0)) { return braces[0] + base + braces[1]; } if (recurseTimes < 0) { if (isRegExp(value)) { return ctx.stylize(RegExp.prototype.toString.call(value), 'regexp'); } else { return ctx.stylize('[Object]', 'special'); } } ctx.seen.push(value); var output; if (array) { output = formatArray(ctx, value, recurseTimes, visibleKeys, keys); } else { output = keys.map(function(key) { return formatProperty(ctx, value, recurseTimes, visibleKeys, key, array); }); } ctx.seen.pop(); return reduceToSingleString(output, base, braces); } function formatPrimitive(ctx, value) { if (isUndefined(value)) return ctx.stylize('undefined', 'undefined'); if (isString(value)) { var simple = '\'' + JSON.stringify(value).replace(/^"|"$/g, '') .replace(/'/g, "\\'") .replace(/\\"/g, '"') + '\''; return ctx.stylize(simple, 'string'); } if (isNumber(value)) return ctx.stylize('' + value, 'number'); if (isBoolean(value)) return ctx.stylize('' + value, 'boolean'); // For some reason typeof null is "object", so special case here. if (isNull(value)) return ctx.stylize('null', 'null'); } function formatError(value) { return '[' + Error.prototype.toString.call(value) + ']'; } function formatArray(ctx, value, recurseTimes, visibleKeys, keys) { var output = []; for (var i = 0, l = value.length; i < l; ++i) { if (hasOwnProperty(value, String(i))) { output.push(formatProperty(ctx, value, recurseTimes, visibleKeys, String(i), true)); } else { output.push(''); } } keys.forEach(function(key) { if (!key.match(/^\d+$/)) { output.push(formatProperty(ctx, value, recurseTimes, visibleKeys, key, true)); } }); return output; } function formatProperty(ctx, value, recurseTimes, visibleKeys, key, array) { var name, str, desc; desc = Object.getOwnPropertyDescriptor(value, key) || { value: value[key] }; if (desc.get) { if (desc.set) { str = ctx.stylize('[Getter/Setter]', 'special'); } else { str = ctx.stylize('[Getter]', 'special'); } } else { if (desc.set) { str = ctx.stylize('[Setter]', 'special'); } } if (!hasOwnProperty(visibleKeys, key)) { name = '[' + key + ']'; } if (!str) { if (ctx.seen.indexOf(desc.value) < 0) { if (isNull(recurseTimes)) { str = formatValue(ctx, desc.value, null); } else { str = formatValue(ctx, desc.value, recurseTimes - 1); } if (str.indexOf('\n') > -1) { if (array) { str = str.split('\n').map(function(line) { return ' ' + line; }).join('\n').substr(2); } else { str = '\n' + str.split('\n').map(function(line) { return ' ' + line; }).join('\n'); } } } else { str = ctx.stylize('[Circular]', 'special'); } } if (isUndefined(name)) { if (array && key.match(/^\d+$/)) { return str; } name = JSON.stringify('' + key); if (name.match(/^"([a-zA-Z_][a-zA-Z_0-9]*)"$/)) { name = name.substr(1, name.length - 2); name = ctx.stylize(name, 'name'); } else { name = name.replace(/'/g, "\\'") .replace(/\\"/g, '"') .replace(/(^"|"$)/g, "'"); name = ctx.stylize(name, 'string'); } } return name + ': ' + str; } function reduceToSingleString(output, base, braces) { var numLinesEst = 0; var length = output.reduce(function(prev, cur) { numLinesEst++; if (cur.indexOf('\n') >= 0) numLinesEst++; return prev + cur.replace(/\u001b\[\d\d?m/g, '').length + 1; }, 0); if (length > 60) { return braces[0] + (base === '' ? '' : base + '\n ') + ' ' + output.join(',\n ') + ' ' + braces[1]; } return braces[0] + base + ' ' + output.join(', ') + ' ' + braces[1]; } // NOTE: These type checking functions intentionally don't use `instanceof` // because it is fragile and can be easily faked with `Object.create()`. function isArray(ar) { return Array.isArray(ar); } exports.isArray = isArray; function isBoolean(arg) { return typeof arg === 'boolean'; } exports.isBoolean = isBoolean; function isNull(arg) { return arg === null; } exports.isNull = isNull; function isNullOrUndefined(arg) { return arg == null; } exports.isNullOrUndefined = isNullOrUndefined; function isNumber(arg) { return typeof arg === 'number'; } exports.isNumber = isNumber; function isString(arg) { return typeof arg === 'string'; } exports.isString = isString; function isSymbol(arg) { return typeof arg === 'symbol'; } exports.isSymbol = isSymbol; function isUndefined(arg) { return arg === void 0; } exports.isUndefined = isUndefined; function isRegExp(re) { return isObject(re) && objectToString(re) === '[object RegExp]'; } exports.isRegExp = isRegExp; function isObject(arg) { return typeof arg === 'object' && arg !== null; } exports.isObject = isObject; function isDate(d) { return isObject(d) && objectToString(d) === '[object Date]'; } exports.isDate = isDate; function isError(e) { return isObject(e) && (objectToString(e) === '[object Error]' || e instanceof Error); } exports.isError = isError; function isFunction(arg) { return typeof arg === 'function'; } exports.isFunction = isFunction; function isPrimitive(arg) { return arg === null || typeof arg === 'boolean' || typeof arg === 'number' || typeof arg === 'string' || typeof arg === 'symbol' || // ES6 symbol typeof arg === 'undefined'; } exports.isPrimitive = isPrimitive; exports.isBuffer = require('./support/isBuffer'); function objectToString(o) { return Object.prototype.toString.call(o); } function pad(n) { return n < 10 ? '0' + n.toString(10) : n.toString(10); } var months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']; // 26 Feb 16:19:34 function timestamp() { var d = new Date(); var time = [pad(d.getHours()), pad(d.getMinutes()), pad(d.getSeconds())].join(':'); return [d.getDate(), months[d.getMonth()], time].join(' '); } // log is just a thin wrapper to console.log that prepends a timestamp exports.log = function() { console.log('%s - %s', timestamp(), exports.format.apply(exports, arguments)); }; /** * Inherit the prototype methods from one constructor into another. * * The Function.prototype.inherits from lang.js rewritten as a standalone * function (not on Function.prototype). NOTE: If this file is to be loaded * during bootstrapping this function needs to be rewritten using some native * functions as prototype setup using normal JavaScript does not work as * expected during bootstrapping (see mirror.js in r114903). * * @param {function} ctor Constructor function which needs to inherit the * prototype. * @param {function} superCtor Constructor function to inherit prototype from. */ exports.inherits = require('inherits'); exports._extend = function(origin, add) { // Don't do anything if add isn't an object if (!add || !isObject(add)) return origin; var keys = Object.keys(add); var i = keys.length; while (i--) { origin[keys[i]] = add[keys[i]]; } return origin; }; function hasOwnProperty(obj, prop) { return Object.prototype.hasOwnProperty.call(obj, prop); } }).call(this,require('_process'),typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {}) },{"./support/isBuffer":27,"_process":133,"inherits":26}],29:[function(require,module,exports){ 'use strict' exports.byteLength = byteLength exports.toByteArray = toByteArray exports.fromByteArray = fromByteArray var lookup = [] var revLookup = [] var Arr = typeof Uint8Array !== 'undefined' ? Uint8Array : Array var code = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' for (var i = 0, len = code.length; i < len; ++i) { lookup[i] = code[i] revLookup[code.charCodeAt(i)] = i } // Support decoding URL-safe base64 strings, as Node.js does. // See: https://en.wikipedia.org/wiki/Base64#URL_applications revLookup['-'.charCodeAt(0)] = 62 revLookup['_'.charCodeAt(0)] = 63 function getLens (b64) { var len = b64.length if (len % 4 > 0) { throw new Error('Invalid string. Length must be a multiple of 4') } // Trim off extra bytes after placeholder bytes are found // See: https://github.com/beatgammit/base64-js/issues/42 var validLen = b64.indexOf('=') if (validLen === -1) validLen = len var placeHoldersLen = validLen === len ? 0 : 4 - (validLen % 4) return [validLen, placeHoldersLen] } // base64 is 4/3 + up to two characters of the original data function byteLength (b64) { var lens = getLens(b64) var validLen = lens[0] var placeHoldersLen = lens[1] return ((validLen + placeHoldersLen) * 3 / 4) - placeHoldersLen } function _byteLength (b64, validLen, placeHoldersLen) { return ((validLen + placeHoldersLen) * 3 / 4) - placeHoldersLen } function toByteArray (b64) { var tmp var lens = getLens(b64) var validLen = lens[0] var placeHoldersLen = lens[1] var arr = new Arr(_byteLength(b64, validLen, placeHoldersLen)) var curByte = 0 // if there are placeholders, only get up to the last complete 4 chars var len = placeHoldersLen > 0 ? validLen - 4 : validLen var i for (i = 0; i < len; i += 4) { tmp = (revLookup[b64.charCodeAt(i)] << 18) | (revLookup[b64.charCodeAt(i + 1)] << 12) | (revLookup[b64.charCodeAt(i + 2)] << 6) | revLookup[b64.charCodeAt(i + 3)] arr[curByte++] = (tmp >> 16) & 0xFF arr[curByte++] = (tmp >> 8) & 0xFF arr[curByte++] = tmp & 0xFF } if (placeHoldersLen === 2) { tmp = (revLookup[b64.charCodeAt(i)] << 2) | (revLookup[b64.charCodeAt(i + 1)] >> 4) arr[curByte++] = tmp & 0xFF } if (placeHoldersLen === 1) { tmp = (revLookup[b64.charCodeAt(i)] << 10) | (revLookup[b64.charCodeAt(i + 1)] << 4) | (revLookup[b64.charCodeAt(i + 2)] >> 2) arr[curByte++] = (tmp >> 8) & 0xFF arr[curByte++] = tmp & 0xFF } return arr } function tripletToBase64 (num) { return lookup[num >> 18 & 0x3F] + lookup[num >> 12 & 0x3F] + lookup[num >> 6 & 0x3F] + lookup[num & 0x3F] } function encodeChunk (uint8, start, end) { var tmp var output = [] for (var i = start; i < end; i += 3) { tmp = ((uint8[i] << 16) & 0xFF0000) + ((uint8[i + 1] << 8) & 0xFF00) + (uint8[i + 2] & 0xFF) output.push(tripletToBase64(tmp)) } return output.join('') } function fromByteArray (uint8) { var tmp var len = uint8.length var extraBytes = len % 3 // if we have 1 byte left, pad 2 bytes var parts = [] var maxChunkLength = 16383 // must be multiple of 3 // go through the array every three bytes, we'll deal with trailing stuff later for (var i = 0, len2 = len - extraBytes; i < len2; i += maxChunkLength) { parts.push(encodeChunk( uint8, i, (i + maxChunkLength) > len2 ? len2 : (i + maxChunkLength) )) } // pad the end with zeros, but make sure to not forget the extra bytes if (extraBytes === 1) { tmp = uint8[len - 1] parts.push( lookup[tmp >> 2] + lookup[(tmp << 4) & 0x3F] + '==' ) } else if (extraBytes === 2) { tmp = (uint8[len - 2] << 8) + uint8[len - 1] parts.push( lookup[tmp >> 10] + lookup[(tmp >> 4) & 0x3F] + lookup[(tmp << 2) & 0x3F] + '=' ) } return parts.join('') } },{}],30:[function(require,module,exports){ /** * @author shaozilee * * support 1bit 4bit 8bit 24bit decode * encode with 24bit * */ var encode = require('./lib/encoder'), decode = require('./lib/decoder'); module.exports = { encode: encode, decode: decode }; },{"./lib/decoder":31,"./lib/encoder":32}],31:[function(require,module,exports){ (function (Buffer){ /** * @author shaozilee * * Bmp format decoder,support 1bit 4bit 8bit 24bit bmp * */ function BmpDecoder(buffer,is_with_alpha) { this.pos = 0; this.buffer = buffer; this.is_with_alpha = !!is_with_alpha; this.bottom_up = true; this.flag = this.buffer.toString("utf-8", 0, this.pos += 2); if (this.flag != "BM") throw new Error("Invalid BMP File"); this.parseHeader(); this.parseRGBA(); } BmpDecoder.prototype.parseHeader = function() { this.fileSize = this.buffer.readUInt32LE(this.pos); this.pos += 4; this.reserved = this.buffer.readUInt32LE(this.pos); this.pos += 4; this.offset = this.buffer.readUInt32LE(this.pos); this.pos += 4; this.headerSize = this.buffer.readUInt32LE(this.pos); this.pos += 4; this.width = this.buffer.readUInt32LE(this.pos); this.pos += 4; this.height = this.buffer.readInt32LE(this.pos); this.pos += 4; this.planes = this.buffer.readUInt16LE(this.pos); this.pos += 2; this.bitPP = this.buffer.readUInt16LE(this.pos); this.pos += 2; this.compress = this.buffer.readUInt32LE(this.pos); this.pos += 4; this.rawSize = this.buffer.readUInt32LE(this.pos); this.pos += 4; this.hr = this.buffer.readUInt32LE(this.pos); this.pos += 4; this.vr = this.buffer.readUInt32LE(this.pos); this.pos += 4; this.colors = this.buffer.readUInt32LE(this.pos); this.pos += 4; this.importantColors = this.buffer.readUInt32LE(this.pos); this.pos += 4; if(this.bitPP === 16 && this.is_with_alpha){ this.bitPP = 15 } if (this.bitPP < 15) { var len = this.colors === 0 ? 1 << this.bitPP : this.colors; this.palette = new Array(len); for (var i = 0; i < len; i++) { var blue = this.buffer.readUInt8(this.pos++); var green = this.buffer.readUInt8(this.pos++); var red = this.buffer.readUInt8(this.pos++); var quad = this.buffer.readUInt8(this.pos++); this.palette[i] = { red: red, green: green, blue: blue, quad: quad }; } } if(this.height < 0) { this.height *= -1; this.bottom_up = false; } } BmpDecoder.prototype.parseRGBA = function() { var bitn = "bit" + this.bitPP; var len = this.width * this.height * 4; this.data = new Buffer(len); this[bitn](); }; BmpDecoder.prototype.bit1 = function() { var xlen = Math.ceil(this.width / 8); var mode = xlen%4; var y = this.height >= 0 ? this.height - 1 : -this.height for (var y = this.height - 1; y >= 0; y--) { var line = this.bottom_up ? y : this.height - 1 - y for (var x = 0; x < xlen; x++) { var b = this.buffer.readUInt8(this.pos++); var location = line * this.width * 4 + x*8*4; for (var i = 0; i < 8; i++) { if(x*8+i>(7-i))&0x1)]; this.data[location+i*4] = 0; this.data[location+i*4 + 1] = rgb.blue; this.data[location+i*4 + 2] = rgb.green; this.data[location+i*4 + 3] = rgb.red; }else{ break; } } } if (mode != 0){ this.pos+=(4 - mode); } } }; BmpDecoder.prototype.bit4 = function() { //RLE-4 if(this.compress == 2){ this.data.fill(0xff); var location = 0; var lines = this.bottom_up?this.height-1:0; var low_nibble = false;//for all count of pixel while(location>4); } if ((i & 1) && (i+1 < b)){ c = this.buffer.readUInt8(this.pos++); } low_nibble = !low_nibble; } if ((((b+1) >> 1) & 1 ) == 1){ this.pos++ } } }else{//encoded mode for (var i = 0; i < a; i++) { if (low_nibble) { setPixelData.call(this, (b & 0x0f)); } else { setPixelData.call(this, (b & 0xf0)>>4); } low_nibble = !low_nibble; } } } function setPixelData(rgbIndex){ var rgb = this.palette[rgbIndex]; this.data[location] = 0; this.data[location + 1] = rgb.blue; this.data[location + 2] = rgb.green; this.data[location + 3] = rgb.red; location+=4; } }else{ var xlen = Math.ceil(this.width/2); var mode = xlen%4; for (var y = this.height - 1; y >= 0; y--) { var line = this.bottom_up ? y : this.height - 1 - y for (var x = 0; x < xlen; x++) { var b = this.buffer.readUInt8(this.pos++); var location = line * this.width * 4 + x*2*4; var before = b>>4; var after = b&0x0F; var rgb = this.palette[before]; this.data[location] = 0; this.data[location + 1] = rgb.blue; this.data[location + 2] = rgb.green; this.data[location + 3] = rgb.red; if(x*2+1>=this.width)break; rgb = this.palette[after]; this.data[location+4] = 0; this.data[location+4 + 1] = rgb.blue; this.data[location+4 + 2] = rgb.green; this.data[location+4 + 3] = rgb.red; } if (mode != 0){ this.pos+=(4 - mode); } } } }; BmpDecoder.prototype.bit8 = function() { //RLE-8 if(this.compress == 1){ this.data.fill(0xff); var location = 0; var lines = this.bottom_up?this.height-1:0; while(location= 0; y--) { var line = this.bottom_up ? y : this.height - 1 - y for (var x = 0; x < this.width; x++) { var b = this.buffer.readUInt8(this.pos++); var location = line * this.width * 4 + x * 4; if (b < this.palette.length) { var rgb = this.palette[b]; this.data[location] = 0; this.data[location + 1] = rgb.blue; this.data[location + 2] = rgb.green; this.data[location + 3] = rgb.red; } else { this.data[location] = 0; this.data[location + 1] = 0xFF; this.data[location + 2] = 0xFF; this.data[location + 3] = 0xFF; } } if (mode != 0) { this.pos += (4 - mode); } } } }; BmpDecoder.prototype.bit15 = function() { var dif_w =this.width % 3; var _11111 = parseInt("11111", 2),_1_5 = _11111; for (var y = this.height - 1; y >= 0; y--) { var line = this.bottom_up ? y : this.height - 1 - y for (var x = 0; x < this.width; x++) { var B = this.buffer.readUInt16LE(this.pos); this.pos+=2; var blue = (B & _1_5) / _1_5 * 255 | 0; var green = (B >> 5 & _1_5 ) / _1_5 * 255 | 0; var red = (B >> 10 & _1_5) / _1_5 * 255 | 0; var alpha = (B>>15)?0xFF:0x00; var location = line * this.width * 4 + x * 4; this.data[location] = alpha; this.data[location + 1] = blue; this.data[location + 2] = green; this.data[location + 3] = red; } //skip extra bytes this.pos += dif_w; } }; BmpDecoder.prototype.bit16 = function() { var dif_w =(this.width % 2)*2; //default xrgb555 this.maskRed = 0x7C00; this.maskGreen = 0x3E0; this.maskBlue =0x1F; this.mask0 = 0; if(this.compress == 3){ this.maskRed = this.buffer.readUInt32LE(this.pos); this.pos+=4; this.maskGreen = this.buffer.readUInt32LE(this.pos); this.pos+=4; this.maskBlue = this.buffer.readUInt32LE(this.pos); this.pos+=4; this.mask0 = this.buffer.readUInt32LE(this.pos); this.pos+=4; } var ns=[0,0,0]; for (var i=0;i<16;i++){ if ((this.maskRed>>i)&0x01) ns[0]++; if ((this.maskGreen>>i)&0x01) ns[1]++; if ((this.maskBlue>>i)&0x01) ns[2]++; } ns[1]+=ns[0]; ns[2]+=ns[1]; ns[0]=8-ns[0]; ns[1]-=8; ns[2]-=8; for (var y = this.height - 1; y >= 0; y--) { var line = this.bottom_up ? y : this.height - 1 - y; for (var x = 0; x < this.width; x++) { var B = this.buffer.readUInt16LE(this.pos); this.pos+=2; var blue = (B&this.maskBlue)<>ns[1]; var red = (B&this.maskRed)>>ns[2]; var location = line * this.width * 4 + x * 4; this.data[location] = 0; this.data[location + 1] = blue; this.data[location + 2] = green; this.data[location + 3] = red; } //skip extra bytes this.pos += dif_w; } }; BmpDecoder.prototype.bit24 = function() { for (var y = this.height - 1; y >= 0; y--) { var line = this.bottom_up ? y : this.height - 1 - y for (var x = 0; x < this.width; x++) { //Little Endian rgb var blue = this.buffer.readUInt8(this.pos++); var green = this.buffer.readUInt8(this.pos++); var red = this.buffer.readUInt8(this.pos++); var location = line * this.width * 4 + x * 4; this.data[location] = 0; this.data[location + 1] = blue; this.data[location + 2] = green; this.data[location + 3] = red; } //skip extra bytes this.pos += (this.width % 4); } }; /** * add 32bit decode func * @author soubok */ BmpDecoder.prototype.bit32 = function() { //BI_BITFIELDS if(this.compress == 3){ this.maskRed = this.buffer.readUInt32LE(this.pos); this.pos+=4; this.maskGreen = this.buffer.readUInt32LE(this.pos); this.pos+=4; this.maskBlue = this.buffer.readUInt32LE(this.pos); this.pos+=4; this.mask0 = this.buffer.readUInt32LE(this.pos); this.pos+=4; for (var y = this.height - 1; y >= 0; y--) { var line = this.bottom_up ? y : this.height - 1 - y; for (var x = 0; x < this.width; x++) { //Little Endian rgba var alpha = this.buffer.readUInt8(this.pos++); var blue = this.buffer.readUInt8(this.pos++); var green = this.buffer.readUInt8(this.pos++); var red = this.buffer.readUInt8(this.pos++); var location = line * this.width * 4 + x * 4; this.data[location] = alpha; this.data[location + 1] = blue; this.data[location + 2] = green; this.data[location + 3] = red; } } }else{ for (var y = this.height - 1; y >= 0; y--) { var line = this.bottom_up ? y : this.height - 1 - y; for (var x = 0; x < this.width; x++) { //Little Endian argb var blue = this.buffer.readUInt8(this.pos++); var green = this.buffer.readUInt8(this.pos++); var red = this.buffer.readUInt8(this.pos++); var alpha = this.buffer.readUInt8(this.pos++); var location = line * this.width * 4 + x * 4; this.data[location] = alpha; this.data[location + 1] = blue; this.data[location + 2] = green; this.data[location + 3] = red; } } } }; BmpDecoder.prototype.getData = function() { return this.data; }; module.exports = function(bmpData) { var decoder = new BmpDecoder(bmpData); return decoder; }; }).call(this,require("buffer").Buffer) },{"buffer":48}],32:[function(require,module,exports){ (function (Buffer){ /** * @author shaozilee * * BMP format encoder,encode 24bit BMP * Not support quality compression * */ function BmpEncoder(imgData){ this.buffer = imgData.data; this.width = imgData.width; this.height = imgData.height; this.extraBytes = this.width%4; this.rgbSize = this.height*(3*this.width+this.extraBytes); this.headerInfoSize = 40; this.data = []; /******************header***********************/ this.flag = "BM"; this.reserved = 0; this.offset = 54; this.fileSize = this.rgbSize+this.offset; this.planes = 1; this.bitPP = 24; this.compress = 0; this.hr = 0; this.vr = 0; this.colors = 0; this.importantColors = 0; } BmpEncoder.prototype.encode = function() { var tempBuffer = new Buffer(this.offset+this.rgbSize); this.pos = 0; tempBuffer.write(this.flag,this.pos,2);this.pos+=2; tempBuffer.writeUInt32LE(this.fileSize,this.pos);this.pos+=4; tempBuffer.writeUInt32LE(this.reserved,this.pos);this.pos+=4; tempBuffer.writeUInt32LE(this.offset,this.pos);this.pos+=4; tempBuffer.writeUInt32LE(this.headerInfoSize,this.pos);this.pos+=4; tempBuffer.writeUInt32LE(this.width,this.pos);this.pos+=4; tempBuffer.writeInt32LE(-this.height,this.pos);this.pos+=4; tempBuffer.writeUInt16LE(this.planes,this.pos);this.pos+=2; tempBuffer.writeUInt16LE(this.bitPP,this.pos);this.pos+=2; tempBuffer.writeUInt32LE(this.compress,this.pos);this.pos+=4; tempBuffer.writeUInt32LE(this.rgbSize,this.pos);this.pos+=4; tempBuffer.writeUInt32LE(this.hr,this.pos);this.pos+=4; tempBuffer.writeUInt32LE(this.vr,this.pos);this.pos+=4; tempBuffer.writeUInt32LE(this.colors,this.pos);this.pos+=4; tempBuffer.writeUInt32LE(this.importantColors,this.pos);this.pos+=4; var i=0; var rowBytes = 3*this.width+this.extraBytes; for (var y = 0; y 0){ var fillOffset = this.pos+y*rowBytes+this.width*3; tempBuffer.fill(0,fillOffset,fillOffset+this.extraBytes); } } return tempBuffer; }; module.exports = function(imgData, quality) { if (typeof quality === 'undefined') quality = 100; var encoder = new BmpEncoder(imgData); var data = encoder.encode(); return { data: data, width: imgData.width, height: imgData.height }; }; }).call(this,require("buffer").Buffer) },{"buffer":48}],33:[function(require,module,exports){ },{}],34:[function(require,module,exports){ (function (process,Buffer){ 'use strict'; /* eslint camelcase: "off" */ var assert = require('assert'); var Zstream = require('pako/lib/zlib/zstream'); var zlib_deflate = require('pako/lib/zlib/deflate.js'); var zlib_inflate = require('pako/lib/zlib/inflate.js'); var constants = require('pako/lib/zlib/constants'); for (var key in constants) { exports[key] = constants[key]; } // zlib modes exports.NONE = 0; exports.DEFLATE = 1; exports.INFLATE = 2; exports.GZIP = 3; exports.GUNZIP = 4; exports.DEFLATERAW = 5; exports.INFLATERAW = 6; exports.UNZIP = 7; var GZIP_HEADER_ID1 = 0x1f; var GZIP_HEADER_ID2 = 0x8b; /** * Emulate Node's zlib C++ layer for use by the JS layer in index.js */ function Zlib(mode) { if (typeof mode !== 'number' || mode < exports.DEFLATE || mode > exports.UNZIP) { throw new TypeError('Bad argument'); } this.dictionary = null; this.err = 0; this.flush = 0; this.init_done = false; this.level = 0; this.memLevel = 0; this.mode = mode; this.strategy = 0; this.windowBits = 0; this.write_in_progress = false; this.pending_close = false; this.gzip_id_bytes_read = 0; } Zlib.prototype.close = function () { if (this.write_in_progress) { this.pending_close = true; return; } this.pending_close = false; assert(this.init_done, 'close before init'); assert(this.mode <= exports.UNZIP); if (this.mode === exports.DEFLATE || this.mode === exports.GZIP || this.mode === exports.DEFLATERAW) { zlib_deflate.deflateEnd(this.strm); } else if (this.mode === exports.INFLATE || this.mode === exports.GUNZIP || this.mode === exports.INFLATERAW || this.mode === exports.UNZIP) { zlib_inflate.inflateEnd(this.strm); } this.mode = exports.NONE; this.dictionary = null; }; Zlib.prototype.write = function (flush, input, in_off, in_len, out, out_off, out_len) { return this._write(true, flush, input, in_off, in_len, out, out_off, out_len); }; Zlib.prototype.writeSync = function (flush, input, in_off, in_len, out, out_off, out_len) { return this._write(false, flush, input, in_off, in_len, out, out_off, out_len); }; Zlib.prototype._write = function (async, flush, input, in_off, in_len, out, out_off, out_len) { assert.equal(arguments.length, 8); assert(this.init_done, 'write before init'); assert(this.mode !== exports.NONE, 'already finalized'); assert.equal(false, this.write_in_progress, 'write already in progress'); assert.equal(false, this.pending_close, 'close is pending'); this.write_in_progress = true; assert.equal(false, flush === undefined, 'must provide flush value'); this.write_in_progress = true; if (flush !== exports.Z_NO_FLUSH && flush !== exports.Z_PARTIAL_FLUSH && flush !== exports.Z_SYNC_FLUSH && flush !== exports.Z_FULL_FLUSH && flush !== exports.Z_FINISH && flush !== exports.Z_BLOCK) { throw new Error('Invalid flush value'); } if (input == null) { input = Buffer.alloc(0); in_len = 0; in_off = 0; } this.strm.avail_in = in_len; this.strm.input = input; this.strm.next_in = in_off; this.strm.avail_out = out_len; this.strm.output = out; this.strm.next_out = out_off; this.flush = flush; if (!async) { // sync version this._process(); if (this._checkError()) { return this._afterSync(); } return; } // async version var self = this; process.nextTick(function () { self._process(); self._after(); }); return this; }; Zlib.prototype._afterSync = function () { var avail_out = this.strm.avail_out; var avail_in = this.strm.avail_in; this.write_in_progress = false; return [avail_in, avail_out]; }; Zlib.prototype._process = function () { var next_expected_header_byte = null; // If the avail_out is left at 0, then it means that it ran out // of room. If there was avail_out left over, then it means // that all of the input was consumed. switch (this.mode) { case exports.DEFLATE: case exports.GZIP: case exports.DEFLATERAW: this.err = zlib_deflate.deflate(this.strm, this.flush); break; case exports.UNZIP: if (this.strm.avail_in > 0) { next_expected_header_byte = this.strm.next_in; } switch (this.gzip_id_bytes_read) { case 0: if (next_expected_header_byte === null) { break; } if (this.strm.input[next_expected_header_byte] === GZIP_HEADER_ID1) { this.gzip_id_bytes_read = 1; next_expected_header_byte++; if (this.strm.avail_in === 1) { // The only available byte was already read. break; } } else { this.mode = exports.INFLATE; break; } // fallthrough case 1: if (next_expected_header_byte === null) { break; } if (this.strm.input[next_expected_header_byte] === GZIP_HEADER_ID2) { this.gzip_id_bytes_read = 2; this.mode = exports.GUNZIP; } else { // There is no actual difference between INFLATE and INFLATERAW // (after initialization). this.mode = exports.INFLATE; } break; default: throw new Error('invalid number of gzip magic number bytes read'); } // fallthrough case exports.INFLATE: case exports.GUNZIP: case exports.INFLATERAW: this.err = zlib_inflate.inflate(this.strm, this.flush // If data was encoded with dictionary );if (this.err === exports.Z_NEED_DICT && this.dictionary) { // Load it this.err = zlib_inflate.inflateSetDictionary(this.strm, this.dictionary); if (this.err === exports.Z_OK) { // And try to decode again this.err = zlib_inflate.inflate(this.strm, this.flush); } else if (this.err === exports.Z_DATA_ERROR) { // Both inflateSetDictionary() and inflate() return Z_DATA_ERROR. // Make it possible for After() to tell a bad dictionary from bad // input. this.err = exports.Z_NEED_DICT; } } while (this.strm.avail_in > 0 && this.mode === exports.GUNZIP && this.err === exports.Z_STREAM_END && this.strm.next_in[0] !== 0x00) { // Bytes remain in input buffer. Perhaps this is another compressed // member in the same archive, or just trailing garbage. // Trailing zero bytes are okay, though, since they are frequently // used for padding. this.reset(); this.err = zlib_inflate.inflate(this.strm, this.flush); } break; default: throw new Error('Unknown mode ' + this.mode); } }; Zlib.prototype._checkError = function () { // Acceptable error states depend on the type of zlib stream. switch (this.err) { case exports.Z_OK: case exports.Z_BUF_ERROR: if (this.strm.avail_out !== 0 && this.flush === exports.Z_FINISH) { this._error('unexpected end of file'); return false; } break; case exports.Z_STREAM_END: // normal statuses, not fatal break; case exports.Z_NEED_DICT: if (this.dictionary == null) { this._error('Missing dictionary'); } else { this._error('Bad dictionary'); } return false; default: // something else. this._error('Zlib error'); return false; } return true; }; Zlib.prototype._after = function () { if (!this._checkError()) { return; } var avail_out = this.strm.avail_out; var avail_in = this.strm.avail_in; this.write_in_progress = false; // call the write() cb this.callback(avail_in, avail_out); if (this.pending_close) { this.close(); } }; Zlib.prototype._error = function (message) { if (this.strm.msg) { message = this.strm.msg; } this.onerror(message, this.err // no hope of rescue. );this.write_in_progress = false; if (this.pending_close) { this.close(); } }; Zlib.prototype.init = function (windowBits, level, memLevel, strategy, dictionary) { assert(arguments.length === 4 || arguments.length === 5, 'init(windowBits, level, memLevel, strategy, [dictionary])'); assert(windowBits >= 8 && windowBits <= 15, 'invalid windowBits'); assert(level >= -1 && level <= 9, 'invalid compression level'); assert(memLevel >= 1 && memLevel <= 9, 'invalid memlevel'); assert(strategy === exports.Z_FILTERED || strategy === exports.Z_HUFFMAN_ONLY || strategy === exports.Z_RLE || strategy === exports.Z_FIXED || strategy === exports.Z_DEFAULT_STRATEGY, 'invalid strategy'); this._init(level, windowBits, memLevel, strategy, dictionary); this._setDictionary(); }; Zlib.prototype.params = function () { throw new Error('deflateParams Not supported'); }; Zlib.prototype.reset = function () { this._reset(); this._setDictionary(); }; Zlib.prototype._init = function (level, windowBits, memLevel, strategy, dictionary) { this.level = level; this.windowBits = windowBits; this.memLevel = memLevel; this.strategy = strategy; this.flush = exports.Z_NO_FLUSH; this.err = exports.Z_OK; if (this.mode === exports.GZIP || this.mode === exports.GUNZIP) { this.windowBits += 16; } if (this.mode === exports.UNZIP) { this.windowBits += 32; } if (this.mode === exports.DEFLATERAW || this.mode === exports.INFLATERAW) { this.windowBits = -1 * this.windowBits; } this.strm = new Zstream(); switch (this.mode) { case exports.DEFLATE: case exports.GZIP: case exports.DEFLATERAW: this.err = zlib_deflate.deflateInit2(this.strm, this.level, exports.Z_DEFLATED, this.windowBits, this.memLevel, this.strategy); break; case exports.INFLATE: case exports.GUNZIP: case exports.INFLATERAW: case exports.UNZIP: this.err = zlib_inflate.inflateInit2(this.strm, this.windowBits); break; default: throw new Error('Unknown mode ' + this.mode); } if (this.err !== exports.Z_OK) { this._error('Init error'); } this.dictionary = dictionary; this.write_in_progress = false; this.init_done = true; }; Zlib.prototype._setDictionary = function () { if (this.dictionary == null) { return; } this.err = exports.Z_OK; switch (this.mode) { case exports.DEFLATE: case exports.DEFLATERAW: this.err = zlib_deflate.deflateSetDictionary(this.strm, this.dictionary); break; default: break; } if (this.err !== exports.Z_OK) { this._error('Failed to set dictionary'); } }; Zlib.prototype._reset = function () { this.err = exports.Z_OK; switch (this.mode) { case exports.DEFLATE: case exports.DEFLATERAW: case exports.GZIP: this.err = zlib_deflate.deflateReset(this.strm); break; case exports.INFLATE: case exports.INFLATERAW: case exports.GUNZIP: this.err = zlib_inflate.inflateReset(this.strm); break; default: break; } if (this.err !== exports.Z_OK) { this._error('Failed to reset stream'); } }; exports.Zlib = Zlib; }).call(this,require('_process'),require("buffer").Buffer) },{"_process":133,"assert":25,"buffer":48,"pako/lib/zlib/constants":38,"pako/lib/zlib/deflate.js":40,"pako/lib/zlib/inflate.js":42,"pako/lib/zlib/zstream":46}],35:[function(require,module,exports){ (function (process){ 'use strict'; var Buffer = require('buffer').Buffer; var Transform = require('stream').Transform; var binding = require('./binding'); var util = require('util'); var assert = require('assert').ok; var kMaxLength = require('buffer').kMaxLength; var kRangeErrorMessage = 'Cannot create final Buffer. It would be larger ' + 'than 0x' + kMaxLength.toString(16) + ' bytes'; // zlib doesn't provide these, so kludge them in following the same // const naming scheme zlib uses. binding.Z_MIN_WINDOWBITS = 8; binding.Z_MAX_WINDOWBITS = 15; binding.Z_DEFAULT_WINDOWBITS = 15; // fewer than 64 bytes per chunk is stupid. // technically it could work with as few as 8, but even 64 bytes // is absurdly low. Usually a MB or more is best. binding.Z_MIN_CHUNK = 64; binding.Z_MAX_CHUNK = Infinity; binding.Z_DEFAULT_CHUNK = 16 * 1024; binding.Z_MIN_MEMLEVEL = 1; binding.Z_MAX_MEMLEVEL = 9; binding.Z_DEFAULT_MEMLEVEL = 8; binding.Z_MIN_LEVEL = -1; binding.Z_MAX_LEVEL = 9; binding.Z_DEFAULT_LEVEL = binding.Z_DEFAULT_COMPRESSION; // expose all the zlib constants var bkeys = Object.keys(binding); for (var bk = 0; bk < bkeys.length; bk++) { var bkey = bkeys[bk]; if (bkey.match(/^Z/)) { Object.defineProperty(exports, bkey, { enumerable: true, value: binding[bkey], writable: false }); } } // translation table for return codes. var codes = { Z_OK: binding.Z_OK, Z_STREAM_END: binding.Z_STREAM_END, Z_NEED_DICT: binding.Z_NEED_DICT, Z_ERRNO: binding.Z_ERRNO, Z_STREAM_ERROR: binding.Z_STREAM_ERROR, Z_DATA_ERROR: binding.Z_DATA_ERROR, Z_MEM_ERROR: binding.Z_MEM_ERROR, Z_BUF_ERROR: binding.Z_BUF_ERROR, Z_VERSION_ERROR: binding.Z_VERSION_ERROR }; var ckeys = Object.keys(codes); for (var ck = 0; ck < ckeys.length; ck++) { var ckey = ckeys[ck]; codes[codes[ckey]] = ckey; } Object.defineProperty(exports, 'codes', { enumerable: true, value: Object.freeze(codes), writable: false }); exports.Deflate = Deflate; exports.Inflate = Inflate; exports.Gzip = Gzip; exports.Gunzip = Gunzip; exports.DeflateRaw = DeflateRaw; exports.InflateRaw = InflateRaw; exports.Unzip = Unzip; exports.createDeflate = function (o) { return new Deflate(o); }; exports.createInflate = function (o) { return new Inflate(o); }; exports.createDeflateRaw = function (o) { return new DeflateRaw(o); }; exports.createInflateRaw = function (o) { return new InflateRaw(o); }; exports.createGzip = function (o) { return new Gzip(o); }; exports.createGunzip = function (o) { return new Gunzip(o); }; exports.createUnzip = function (o) { return new Unzip(o); }; // Convenience methods. // compress/decompress a string or buffer in one step. exports.deflate = function (buffer, opts, callback) { if (typeof opts === 'function') { callback = opts; opts = {}; } return zlibBuffer(new Deflate(opts), buffer, callback); }; exports.deflateSync = function (buffer, opts) { return zlibBufferSync(new Deflate(opts), buffer); }; exports.gzip = function (buffer, opts, callback) { if (typeof opts === 'function') { callback = opts; opts = {}; } return zlibBuffer(new Gzip(opts), buffer, callback); }; exports.gzipSync = function (buffer, opts) { return zlibBufferSync(new Gzip(opts), buffer); }; exports.deflateRaw = function (buffer, opts, callback) { if (typeof opts === 'function') { callback = opts; opts = {}; } return zlibBuffer(new DeflateRaw(opts), buffer, callback); }; exports.deflateRawSync = function (buffer, opts) { return zlibBufferSync(new DeflateRaw(opts), buffer); }; exports.unzip = function (buffer, opts, callback) { if (typeof opts === 'function') { callback = opts; opts = {}; } return zlibBuffer(new Unzip(opts), buffer, callback); }; exports.unzipSync = function (buffer, opts) { return zlibBufferSync(new Unzip(opts), buffer); }; exports.inflate = function (buffer, opts, callback) { if (typeof opts === 'function') { callback = opts; opts = {}; } return zlibBuffer(new Inflate(opts), buffer, callback); }; exports.inflateSync = function (buffer, opts) { return zlibBufferSync(new Inflate(opts), buffer); }; exports.gunzip = function (buffer, opts, callback) { if (typeof opts === 'function') { callback = opts; opts = {}; } return zlibBuffer(new Gunzip(opts), buffer, callback); }; exports.gunzipSync = function (buffer, opts) { return zlibBufferSync(new Gunzip(opts), buffer); }; exports.inflateRaw = function (buffer, opts, callback) { if (typeof opts === 'function') { callback = opts; opts = {}; } return zlibBuffer(new InflateRaw(opts), buffer, callback); }; exports.inflateRawSync = function (buffer, opts) { return zlibBufferSync(new InflateRaw(opts), buffer); }; function zlibBuffer(engine, buffer, callback) { var buffers = []; var nread = 0; engine.on('error', onError); engine.on('end', onEnd); engine.end(buffer); flow(); function flow() { var chunk; while (null !== (chunk = engine.read())) { buffers.push(chunk); nread += chunk.length; } engine.once('readable', flow); } function onError(err) { engine.removeListener('end', onEnd); engine.removeListener('readable', flow); callback(err); } function onEnd() { var buf; var err = null; if (nread >= kMaxLength) { err = new RangeError(kRangeErrorMessage); } else { buf = Buffer.concat(buffers, nread); } buffers = []; engine.close(); callback(err, buf); } } function zlibBufferSync(engine, buffer) { if (typeof buffer === 'string') buffer = Buffer.from(buffer); if (!Buffer.isBuffer(buffer)) throw new TypeError('Not a string or buffer'); var flushFlag = engine._finishFlushFlag; return engine._processChunk(buffer, flushFlag); } // generic zlib // minimal 2-byte header function Deflate(opts) { if (!(this instanceof Deflate)) return new Deflate(opts); Zlib.call(this, opts, binding.DEFLATE); } function Inflate(opts) { if (!(this instanceof Inflate)) return new Inflate(opts); Zlib.call(this, opts, binding.INFLATE); } // gzip - bigger header, same deflate compression function Gzip(opts) { if (!(this instanceof Gzip)) return new Gzip(opts); Zlib.call(this, opts, binding.GZIP); } function Gunzip(opts) { if (!(this instanceof Gunzip)) return new Gunzip(opts); Zlib.call(this, opts, binding.GUNZIP); } // raw - no header function DeflateRaw(opts) { if (!(this instanceof DeflateRaw)) return new DeflateRaw(opts); Zlib.call(this, opts, binding.DEFLATERAW); } function InflateRaw(opts) { if (!(this instanceof InflateRaw)) return new InflateRaw(opts); Zlib.call(this, opts, binding.INFLATERAW); } // auto-detect header. function Unzip(opts) { if (!(this instanceof Unzip)) return new Unzip(opts); Zlib.call(this, opts, binding.UNZIP); } function isValidFlushFlag(flag) { return flag === binding.Z_NO_FLUSH || flag === binding.Z_PARTIAL_FLUSH || flag === binding.Z_SYNC_FLUSH || flag === binding.Z_FULL_FLUSH || flag === binding.Z_FINISH || flag === binding.Z_BLOCK; } // the Zlib class they all inherit from // This thing manages the queue of requests, and returns // true or false if there is anything in the queue when // you call the .write() method. function Zlib(opts, mode) { var _this = this; this._opts = opts = opts || {}; this._chunkSize = opts.chunkSize || exports.Z_DEFAULT_CHUNK; Transform.call(this, opts); if (opts.flush && !isValidFlushFlag(opts.flush)) { throw new Error('Invalid flush flag: ' + opts.flush); } if (opts.finishFlush && !isValidFlushFlag(opts.finishFlush)) { throw new Error('Invalid flush flag: ' + opts.finishFlush); } this._flushFlag = opts.flush || binding.Z_NO_FLUSH; this._finishFlushFlag = typeof opts.finishFlush !== 'undefined' ? opts.finishFlush : binding.Z_FINISH; if (opts.chunkSize) { if (opts.chunkSize < exports.Z_MIN_CHUNK || opts.chunkSize > exports.Z_MAX_CHUNK) { throw new Error('Invalid chunk size: ' + opts.chunkSize); } } if (opts.windowBits) { if (opts.windowBits < exports.Z_MIN_WINDOWBITS || opts.windowBits > exports.Z_MAX_WINDOWBITS) { throw new Error('Invalid windowBits: ' + opts.windowBits); } } if (opts.level) { if (opts.level < exports.Z_MIN_LEVEL || opts.level > exports.Z_MAX_LEVEL) { throw new Error('Invalid compression level: ' + opts.level); } } if (opts.memLevel) { if (opts.memLevel < exports.Z_MIN_MEMLEVEL || opts.memLevel > exports.Z_MAX_MEMLEVEL) { throw new Error('Invalid memLevel: ' + opts.memLevel); } } if (opts.strategy) { if (opts.strategy != exports.Z_FILTERED && opts.strategy != exports.Z_HUFFMAN_ONLY && opts.strategy != exports.Z_RLE && opts.strategy != exports.Z_FIXED && opts.strategy != exports.Z_DEFAULT_STRATEGY) { throw new Error('Invalid strategy: ' + opts.strategy); } } if (opts.dictionary) { if (!Buffer.isBuffer(opts.dictionary)) { throw new Error('Invalid dictionary: it should be a Buffer instance'); } } this._handle = new binding.Zlib(mode); var self = this; this._hadError = false; this._handle.onerror = function (message, errno) { // there is no way to cleanly recover. // continuing only obscures problems. _close(self); self._hadError = true; var error = new Error(message); error.errno = errno; error.code = exports.codes[errno]; self.emit('error', error); }; var level = exports.Z_DEFAULT_COMPRESSION; if (typeof opts.level === 'number') level = opts.level; var strategy = exports.Z_DEFAULT_STRATEGY; if (typeof opts.strategy === 'number') strategy = opts.strategy; this._handle.init(opts.windowBits || exports.Z_DEFAULT_WINDOWBITS, level, opts.memLevel || exports.Z_DEFAULT_MEMLEVEL, strategy, opts.dictionary); this._buffer = Buffer.allocUnsafe(this._chunkSize); this._offset = 0; this._level = level; this._strategy = strategy; this.once('end', this.close); Object.defineProperty(this, '_closed', { get: function () { return !_this._handle; }, configurable: true, enumerable: true }); } util.inherits(Zlib, Transform); Zlib.prototype.params = function (level, strategy, callback) { if (level < exports.Z_MIN_LEVEL || level > exports.Z_MAX_LEVEL) { throw new RangeError('Invalid compression level: ' + level); } if (strategy != exports.Z_FILTERED && strategy != exports.Z_HUFFMAN_ONLY && strategy != exports.Z_RLE && strategy != exports.Z_FIXED && strategy != exports.Z_DEFAULT_STRATEGY) { throw new TypeError('Invalid strategy: ' + strategy); } if (this._level !== level || this._strategy !== strategy) { var self = this; this.flush(binding.Z_SYNC_FLUSH, function () { assert(self._handle, 'zlib binding closed'); self._handle.params(level, strategy); if (!self._hadError) { self._level = level; self._strategy = strategy; if (callback) callback(); } }); } else { process.nextTick(callback); } }; Zlib.prototype.reset = function () { assert(this._handle, 'zlib binding closed'); return this._handle.reset(); }; // This is the _flush function called by the transform class, // internally, when the last chunk has been written. Zlib.prototype._flush = function (callback) { this._transform(Buffer.alloc(0), '', callback); }; Zlib.prototype.flush = function (kind, callback) { var _this2 = this; var ws = this._writableState; if (typeof kind === 'function' || kind === undefined && !callback) { callback = kind; kind = binding.Z_FULL_FLUSH; } if (ws.ended) { if (callback) process.nextTick(callback); } else if (ws.ending) { if (callback) this.once('end', callback); } else if (ws.needDrain) { if (callback) { this.once('drain', function () { return _this2.flush(kind, callback); }); } } else { this._flushFlag = kind; this.write(Buffer.alloc(0), '', callback); } }; Zlib.prototype.close = function (callback) { _close(this, callback); process.nextTick(emitCloseNT, this); }; function _close(engine, callback) { if (callback) process.nextTick(callback); // Caller may invoke .close after a zlib error (which will null _handle). if (!engine._handle) return; engine._handle.close(); engine._handle = null; } function emitCloseNT(self) { self.emit('close'); } Zlib.prototype._transform = function (chunk, encoding, cb) { var flushFlag; var ws = this._writableState; var ending = ws.ending || ws.ended; var last = ending && (!chunk || ws.length === chunk.length); if (chunk !== null && !Buffer.isBuffer(chunk)) return cb(new Error('invalid input')); if (!this._handle) return cb(new Error('zlib binding closed')); // If it's the last chunk, or a final flush, we use the Z_FINISH flush flag // (or whatever flag was provided using opts.finishFlush). // If it's explicitly flushing at some other time, then we use // Z_FULL_FLUSH. Otherwise, use Z_NO_FLUSH for maximum compression // goodness. if (last) flushFlag = this._finishFlushFlag;else { flushFlag = this._flushFlag; // once we've flushed the last of the queue, stop flushing and // go back to the normal behavior. if (chunk.length >= ws.length) { this._flushFlag = this._opts.flush || binding.Z_NO_FLUSH; } } this._processChunk(chunk, flushFlag, cb); }; Zlib.prototype._processChunk = function (chunk, flushFlag, cb) { var availInBefore = chunk && chunk.length; var availOutBefore = this._chunkSize - this._offset; var inOff = 0; var self = this; var async = typeof cb === 'function'; if (!async) { var buffers = []; var nread = 0; var error; this.on('error', function (er) { error = er; }); assert(this._handle, 'zlib binding closed'); do { var res = this._handle.writeSync(flushFlag, chunk, // in inOff, // in_off availInBefore, // in_len this._buffer, // out this._offset, //out_off availOutBefore); // out_len } while (!this._hadError && callback(res[0], res[1])); if (this._hadError) { throw error; } if (nread >= kMaxLength) { _close(this); throw new RangeError(kRangeErrorMessage); } var buf = Buffer.concat(buffers, nread); _close(this); return buf; } assert(this._handle, 'zlib binding closed'); var req = this._handle.write(flushFlag, chunk, // in inOff, // in_off availInBefore, // in_len this._buffer, // out this._offset, //out_off availOutBefore); // out_len req.buffer = chunk; req.callback = callback; function callback(availInAfter, availOutAfter) { // When the callback is used in an async write, the callback's // context is the `req` object that was created. The req object // is === this._handle, and that's why it's important to null // out the values after they are done being used. `this._handle` // can stay in memory longer than the callback and buffer are needed. if (this) { this.buffer = null; this.callback = null; } if (self._hadError) return; var have = availOutBefore - availOutAfter; assert(have >= 0, 'have should not go down'); if (have > 0) { var out = self._buffer.slice(self._offset, self._offset + have); self._offset += have; // serve some output to the consumer. if (async) { self.push(out); } else { buffers.push(out); nread += out.length; } } // exhausted the output buffer, or used all the input create a new one. if (availOutAfter === 0 || self._offset >= self._chunkSize) { availOutBefore = self._chunkSize; self._offset = 0; self._buffer = Buffer.allocUnsafe(self._chunkSize); } if (availOutAfter === 0) { // Not actually done. Need to reprocess. // Also, update the availInBefore to the availInAfter value, // so that if we have to hit it a third (fourth, etc.) time, // it'll have the correct byte counts. inOff += availInBefore - availInAfter; availInBefore = availInAfter; if (!async) return true; var newReq = self._handle.write(flushFlag, chunk, inOff, availInBefore, self._buffer, self._offset, self._chunkSize); newReq.callback = callback; // this same function newReq.buffer = chunk; return; } if (!async) return false; // finished with the chunk. cb(); } }; util.inherits(Deflate, Zlib); util.inherits(Inflate, Zlib); util.inherits(Gzip, Zlib); util.inherits(Gunzip, Zlib); util.inherits(DeflateRaw, Zlib); util.inherits(InflateRaw, Zlib); util.inherits(Unzip, Zlib); }).call(this,require('_process')) },{"./binding":34,"_process":133,"assert":25,"buffer":48,"stream":155,"util":186}],36:[function(require,module,exports){ 'use strict'; var TYPED_OK = (typeof Uint8Array !== 'undefined') && (typeof Uint16Array !== 'undefined') && (typeof Int32Array !== 'undefined'); function _has(obj, key) { return Object.prototype.hasOwnProperty.call(obj, key); } exports.assign = function (obj /*from1, from2, from3, ...*/) { var sources = Array.prototype.slice.call(arguments, 1); while (sources.length) { var source = sources.shift(); if (!source) { continue; } if (typeof source !== 'object') { throw new TypeError(source + 'must be non-object'); } for (var p in source) { if (_has(source, p)) { obj[p] = source[p]; } } } return obj; }; // reduce buffer size, avoiding mem copy exports.shrinkBuf = function (buf, size) { if (buf.length === size) { return buf; } if (buf.subarray) { return buf.subarray(0, size); } buf.length = size; return buf; }; var fnTyped = { arraySet: function (dest, src, src_offs, len, dest_offs) { if (src.subarray && dest.subarray) { dest.set(src.subarray(src_offs, src_offs + len), dest_offs); return; } // Fallback to ordinary array for (var i = 0; i < len; i++) { dest[dest_offs + i] = src[src_offs + i]; } }, // Join array of chunks to single array. flattenChunks: function (chunks) { var i, l, len, pos, chunk, result; // calculate data length len = 0; for (i = 0, l = chunks.length; i < l; i++) { len += chunks[i].length; } // join chunks result = new Uint8Array(len); pos = 0; for (i = 0, l = chunks.length; i < l; i++) { chunk = chunks[i]; result.set(chunk, pos); pos += chunk.length; } return result; } }; var fnUntyped = { arraySet: function (dest, src, src_offs, len, dest_offs) { for (var i = 0; i < len; i++) { dest[dest_offs + i] = src[src_offs + i]; } }, // Join array of chunks to single array. flattenChunks: function (chunks) { return [].concat.apply([], chunks); } }; // Enable/Disable typed arrays use, for testing // exports.setTyped = function (on) { if (on) { exports.Buf8 = Uint8Array; exports.Buf16 = Uint16Array; exports.Buf32 = Int32Array; exports.assign(exports, fnTyped); } else { exports.Buf8 = Array; exports.Buf16 = Array; exports.Buf32 = Array; exports.assign(exports, fnUntyped); } }; exports.setTyped(TYPED_OK); },{}],37:[function(require,module,exports){ 'use strict'; // Note: adler32 takes 12% for level 0 and 2% for level 6. // It isn't worth it to make additional optimizations as in original. // Small size is preferable. // (C) 1995-2013 Jean-loup Gailly and Mark Adler // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. function adler32(adler, buf, len, pos) { var s1 = (adler & 0xffff) |0, s2 = ((adler >>> 16) & 0xffff) |0, n = 0; while (len !== 0) { // Set limit ~ twice less than 5552, to keep // s2 in 31-bits, because we force signed ints. // in other case %= will fail. n = len > 2000 ? 2000 : len; len -= n; do { s1 = (s1 + buf[pos++]) |0; s2 = (s2 + s1) |0; } while (--n); s1 %= 65521; s2 %= 65521; } return (s1 | (s2 << 16)) |0; } module.exports = adler32; },{}],38:[function(require,module,exports){ 'use strict'; // (C) 1995-2013 Jean-loup Gailly and Mark Adler // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. module.exports = { /* Allowed flush values; see deflate() and inflate() below for details */ Z_NO_FLUSH: 0, Z_PARTIAL_FLUSH: 1, Z_SYNC_FLUSH: 2, Z_FULL_FLUSH: 3, Z_FINISH: 4, Z_BLOCK: 5, Z_TREES: 6, /* Return codes for the compression/decompression functions. Negative values * are errors, positive values are used for special but normal events. */ Z_OK: 0, Z_STREAM_END: 1, Z_NEED_DICT: 2, Z_ERRNO: -1, Z_STREAM_ERROR: -2, Z_DATA_ERROR: -3, //Z_MEM_ERROR: -4, Z_BUF_ERROR: -5, //Z_VERSION_ERROR: -6, /* compression levels */ Z_NO_COMPRESSION: 0, Z_BEST_SPEED: 1, Z_BEST_COMPRESSION: 9, Z_DEFAULT_COMPRESSION: -1, Z_FILTERED: 1, Z_HUFFMAN_ONLY: 2, Z_RLE: 3, Z_FIXED: 4, Z_DEFAULT_STRATEGY: 0, /* Possible values of the data_type field (though see inflate()) */ Z_BINARY: 0, Z_TEXT: 1, //Z_ASCII: 1, // = Z_TEXT (deprecated) Z_UNKNOWN: 2, /* The deflate compression method */ Z_DEFLATED: 8 //Z_NULL: null // Use -1 or null inline, depending on var type }; },{}],39:[function(require,module,exports){ 'use strict'; // Note: we can't get significant speed boost here. // So write code to minimize size - no pregenerated tables // and array tools dependencies. // (C) 1995-2013 Jean-loup Gailly and Mark Adler // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // Use ordinary array, since untyped makes no boost here function makeTable() { var c, table = []; for (var n = 0; n < 256; n++) { c = n; for (var k = 0; k < 8; k++) { c = ((c & 1) ? (0xEDB88320 ^ (c >>> 1)) : (c >>> 1)); } table[n] = c; } return table; } // Create table on load. Just 255 signed longs. Not a problem. var crcTable = makeTable(); function crc32(crc, buf, len, pos) { var t = crcTable, end = pos + len; crc ^= -1; for (var i = pos; i < end; i++) { crc = (crc >>> 8) ^ t[(crc ^ buf[i]) & 0xFF]; } return (crc ^ (-1)); // >>> 0; } module.exports = crc32; },{}],40:[function(require,module,exports){ 'use strict'; // (C) 1995-2013 Jean-loup Gailly and Mark Adler // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. var utils = require('../utils/common'); var trees = require('./trees'); var adler32 = require('./adler32'); var crc32 = require('./crc32'); var msg = require('./messages'); /* Public constants ==========================================================*/ /* ===========================================================================*/ /* Allowed flush values; see deflate() and inflate() below for details */ var Z_NO_FLUSH = 0; var Z_PARTIAL_FLUSH = 1; //var Z_SYNC_FLUSH = 2; var Z_FULL_FLUSH = 3; var Z_FINISH = 4; var Z_BLOCK = 5; //var Z_TREES = 6; /* Return codes for the compression/decompression functions. Negative values * are errors, positive values are used for special but normal events. */ var Z_OK = 0; var Z_STREAM_END = 1; //var Z_NEED_DICT = 2; //var Z_ERRNO = -1; var Z_STREAM_ERROR = -2; var Z_DATA_ERROR = -3; //var Z_MEM_ERROR = -4; var Z_BUF_ERROR = -5; //var Z_VERSION_ERROR = -6; /* compression levels */ //var Z_NO_COMPRESSION = 0; //var Z_BEST_SPEED = 1; //var Z_BEST_COMPRESSION = 9; var Z_DEFAULT_COMPRESSION = -1; var Z_FILTERED = 1; var Z_HUFFMAN_ONLY = 2; var Z_RLE = 3; var Z_FIXED = 4; var Z_DEFAULT_STRATEGY = 0; /* Possible values of the data_type field (though see inflate()) */ //var Z_BINARY = 0; //var Z_TEXT = 1; //var Z_ASCII = 1; // = Z_TEXT var Z_UNKNOWN = 2; /* The deflate compression method */ var Z_DEFLATED = 8; /*============================================================================*/ var MAX_MEM_LEVEL = 9; /* Maximum value for memLevel in deflateInit2 */ var MAX_WBITS = 15; /* 32K LZ77 window */ var DEF_MEM_LEVEL = 8; var LENGTH_CODES = 29; /* number of length codes, not counting the special END_BLOCK code */ var LITERALS = 256; /* number of literal bytes 0..255 */ var L_CODES = LITERALS + 1 + LENGTH_CODES; /* number of Literal or Length codes, including the END_BLOCK code */ var D_CODES = 30; /* number of distance codes */ var BL_CODES = 19; /* number of codes used to transfer the bit lengths */ var HEAP_SIZE = 2 * L_CODES + 1; /* maximum heap size */ var MAX_BITS = 15; /* All codes must not exceed MAX_BITS bits */ var MIN_MATCH = 3; var MAX_MATCH = 258; var MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1); var PRESET_DICT = 0x20; var INIT_STATE = 42; var EXTRA_STATE = 69; var NAME_STATE = 73; var COMMENT_STATE = 91; var HCRC_STATE = 103; var BUSY_STATE = 113; var FINISH_STATE = 666; var BS_NEED_MORE = 1; /* block not completed, need more input or more output */ var BS_BLOCK_DONE = 2; /* block flush performed */ var BS_FINISH_STARTED = 3; /* finish started, need only more output at next deflate */ var BS_FINISH_DONE = 4; /* finish done, accept no more input or output */ var OS_CODE = 0x03; // Unix :) . Don't detect, use this default. function err(strm, errorCode) { strm.msg = msg[errorCode]; return errorCode; } function rank(f) { return ((f) << 1) - ((f) > 4 ? 9 : 0); } function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } } /* ========================================================================= * Flush as much pending output as possible. All deflate() output goes * through this function so some applications may wish to modify it * to avoid allocating a large strm->output buffer and copying into it. * (See also read_buf()). */ function flush_pending(strm) { var s = strm.state; //_tr_flush_bits(s); var len = s.pending; if (len > strm.avail_out) { len = strm.avail_out; } if (len === 0) { return; } utils.arraySet(strm.output, s.pending_buf, s.pending_out, len, strm.next_out); strm.next_out += len; s.pending_out += len; strm.total_out += len; strm.avail_out -= len; s.pending -= len; if (s.pending === 0) { s.pending_out = 0; } } function flush_block_only(s, last) { trees._tr_flush_block(s, (s.block_start >= 0 ? s.block_start : -1), s.strstart - s.block_start, last); s.block_start = s.strstart; flush_pending(s.strm); } function put_byte(s, b) { s.pending_buf[s.pending++] = b; } /* ========================================================================= * Put a short in the pending buffer. The 16-bit value is put in MSB order. * IN assertion: the stream state is correct and there is enough room in * pending_buf. */ function putShortMSB(s, b) { // put_byte(s, (Byte)(b >> 8)); // put_byte(s, (Byte)(b & 0xff)); s.pending_buf[s.pending++] = (b >>> 8) & 0xff; s.pending_buf[s.pending++] = b & 0xff; } /* =========================================================================== * Read a new buffer from the current input stream, update the adler32 * and total number of bytes read. All deflate() input goes through * this function so some applications may wish to modify it to avoid * allocating a large strm->input buffer and copying from it. * (See also flush_pending()). */ function read_buf(strm, buf, start, size) { var len = strm.avail_in; if (len > size) { len = size; } if (len === 0) { return 0; } strm.avail_in -= len; // zmemcpy(buf, strm->next_in, len); utils.arraySet(buf, strm.input, strm.next_in, len, start); if (strm.state.wrap === 1) { strm.adler = adler32(strm.adler, buf, len, start); } else if (strm.state.wrap === 2) { strm.adler = crc32(strm.adler, buf, len, start); } strm.next_in += len; strm.total_in += len; return len; } /* =========================================================================== * Set match_start to the longest match starting at the given string and * return its length. Matches shorter or equal to prev_length are discarded, * in which case the result is equal to prev_length and match_start is * garbage. * IN assertions: cur_match is the head of the hash chain for the current * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 * OUT assertion: the match length is not greater than s->lookahead. */ function longest_match(s, cur_match) { var chain_length = s.max_chain_length; /* max hash chain length */ var scan = s.strstart; /* current string */ var match; /* matched string */ var len; /* length of current match */ var best_len = s.prev_length; /* best match length so far */ var nice_match = s.nice_match; /* stop if match long enough */ var limit = (s.strstart > (s.w_size - MIN_LOOKAHEAD)) ? s.strstart - (s.w_size - MIN_LOOKAHEAD) : 0/*NIL*/; var _win = s.window; // shortcut var wmask = s.w_mask; var prev = s.prev; /* Stop when cur_match becomes <= limit. To simplify the code, * we prevent matches with the string of window index 0. */ var strend = s.strstart + MAX_MATCH; var scan_end1 = _win[scan + best_len - 1]; var scan_end = _win[scan + best_len]; /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. * It is easy to get rid of this optimization if necessary. */ // Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); /* Do not waste too much time if we already have a good match: */ if (s.prev_length >= s.good_match) { chain_length >>= 2; } /* Do not look for matches beyond the end of the input. This is necessary * to make deflate deterministic. */ if (nice_match > s.lookahead) { nice_match = s.lookahead; } // Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); do { // Assert(cur_match < s->strstart, "no future"); match = cur_match; /* Skip to next match if the match length cannot increase * or if the match length is less than 2. Note that the checks below * for insufficient lookahead only occur occasionally for performance * reasons. Therefore uninitialized memory will be accessed, and * conditional jumps will be made that depend on those values. * However the length of the match is limited to the lookahead, so * the output of deflate is not affected by the uninitialized values. */ if (_win[match + best_len] !== scan_end || _win[match + best_len - 1] !== scan_end1 || _win[match] !== _win[scan] || _win[++match] !== _win[scan + 1]) { continue; } /* The check at best_len-1 can be removed because it will be made * again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2; match++; // Assert(*scan == *match, "match[2]?"); /* We check for insufficient lookahead only every 8th comparison; * the 256th check will be made at strstart+258. */ do { /*jshint noempty:false*/ } while (_win[++scan] === _win[++match] && _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && scan < strend); // Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); len = MAX_MATCH - (strend - scan); scan = strend - MAX_MATCH; if (len > best_len) { s.match_start = cur_match; best_len = len; if (len >= nice_match) { break; } scan_end1 = _win[scan + best_len - 1]; scan_end = _win[scan + best_len]; } } while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length !== 0); if (best_len <= s.lookahead) { return best_len; } return s.lookahead; } /* =========================================================================== * Fill the window when the lookahead becomes insufficient. * Updates strstart and lookahead. * * IN assertion: lookahead < MIN_LOOKAHEAD * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD * At least one byte has been read, or avail_in == 0; reads are * performed for at least two bytes (required for the zip translate_eol * option -- not supported here). */ function fill_window(s) { var _w_size = s.w_size; var p, n, m, more, str; //Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); do { more = s.window_size - s.lookahead - s.strstart; // JS ints have 32 bit, block below not needed /* Deal with !@#$% 64K limit: */ //if (sizeof(int) <= 2) { // if (more == 0 && s->strstart == 0 && s->lookahead == 0) { // more = wsize; // // } else if (more == (unsigned)(-1)) { // /* Very unlikely, but possible on 16 bit machine if // * strstart == 0 && lookahead == 1 (input done a byte at time) // */ // more--; // } //} /* If the window is almost full and there is insufficient lookahead, * move the upper half to the lower one to make room in the upper half. */ if (s.strstart >= _w_size + (_w_size - MIN_LOOKAHEAD)) { utils.arraySet(s.window, s.window, _w_size, _w_size, 0); s.match_start -= _w_size; s.strstart -= _w_size; /* we now have strstart >= MAX_DIST */ s.block_start -= _w_size; /* Slide the hash table (could be avoided with 32 bit values at the expense of memory usage). We slide even when level == 0 to keep the hash table consistent if we switch back to level > 0 later. (Using level 0 permanently is not an optimal usage of zlib, so we don't care about this pathological case.) */ n = s.hash_size; p = n; do { m = s.head[--p]; s.head[p] = (m >= _w_size ? m - _w_size : 0); } while (--n); n = _w_size; p = n; do { m = s.prev[--p]; s.prev[p] = (m >= _w_size ? m - _w_size : 0); /* If n is not on any hash chain, prev[n] is garbage but * its value will never be used. */ } while (--n); more += _w_size; } if (s.strm.avail_in === 0) { break; } /* If there was no sliding: * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && * more == window_size - lookahead - strstart * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) * => more >= window_size - 2*WSIZE + 2 * In the BIG_MEM or MMAP case (not yet supported), * window_size == input_size + MIN_LOOKAHEAD && * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. * Otherwise, window_size == 2*WSIZE so more >= 2. * If there was sliding, more >= WSIZE. So in all cases, more >= 2. */ //Assert(more >= 2, "more < 2"); n = read_buf(s.strm, s.window, s.strstart + s.lookahead, more); s.lookahead += n; /* Initialize the hash value now that we have some input: */ if (s.lookahead + s.insert >= MIN_MATCH) { str = s.strstart - s.insert; s.ins_h = s.window[str]; /* UPDATE_HASH(s, s->ins_h, s->window[str + 1]); */ s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + 1]) & s.hash_mask; //#if MIN_MATCH != 3 // Call update_hash() MIN_MATCH-3 more times //#endif while (s.insert) { /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */ s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask; s.prev[str & s.w_mask] = s.head[s.ins_h]; s.head[s.ins_h] = str; str++; s.insert--; if (s.lookahead + s.insert < MIN_MATCH) { break; } } } /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, * but this is not important since only literal bytes will be emitted. */ } while (s.lookahead < MIN_LOOKAHEAD && s.strm.avail_in !== 0); /* If the WIN_INIT bytes after the end of the current data have never been * written, then zero those bytes in order to avoid memory check reports of * the use of uninitialized (or uninitialised as Julian writes) bytes by * the longest match routines. Update the high water mark for the next * time through here. WIN_INIT is set to MAX_MATCH since the longest match * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. */ // if (s.high_water < s.window_size) { // var curr = s.strstart + s.lookahead; // var init = 0; // // if (s.high_water < curr) { // /* Previous high water mark below current data -- zero WIN_INIT // * bytes or up to end of window, whichever is less. // */ // init = s.window_size - curr; // if (init > WIN_INIT) // init = WIN_INIT; // zmemzero(s->window + curr, (unsigned)init); // s->high_water = curr + init; // } // else if (s->high_water < (ulg)curr + WIN_INIT) { // /* High water mark at or above current data, but below current data // * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up // * to end of window, whichever is less. // */ // init = (ulg)curr + WIN_INIT - s->high_water; // if (init > s->window_size - s->high_water) // init = s->window_size - s->high_water; // zmemzero(s->window + s->high_water, (unsigned)init); // s->high_water += init; // } // } // // Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, // "not enough room for search"); } /* =========================================================================== * Copy without compression as much as possible from the input stream, return * the current block state. * This function does not insert new strings in the dictionary since * uncompressible data is probably not useful. This function is used * only for the level=0 compression option. * NOTE: this function should be optimized to avoid extra copying from * window to pending_buf. */ function deflate_stored(s, flush) { /* Stored blocks are limited to 0xffff bytes, pending_buf is limited * to pending_buf_size, and each stored block has a 5 byte header: */ var max_block_size = 0xffff; if (max_block_size > s.pending_buf_size - 5) { max_block_size = s.pending_buf_size - 5; } /* Copy as much as possible from input to output: */ for (;;) { /* Fill the window as much as possible: */ if (s.lookahead <= 1) { //Assert(s->strstart < s->w_size+MAX_DIST(s) || // s->block_start >= (long)s->w_size, "slide too late"); // if (!(s.strstart < s.w_size + (s.w_size - MIN_LOOKAHEAD) || // s.block_start >= s.w_size)) { // throw new Error("slide too late"); // } fill_window(s); if (s.lookahead === 0 && flush === Z_NO_FLUSH) { return BS_NEED_MORE; } if (s.lookahead === 0) { break; } /* flush the current block */ } //Assert(s->block_start >= 0L, "block gone"); // if (s.block_start < 0) throw new Error("block gone"); s.strstart += s.lookahead; s.lookahead = 0; /* Emit a stored block if pending_buf will be full: */ var max_start = s.block_start + max_block_size; if (s.strstart === 0 || s.strstart >= max_start) { /* strstart == 0 is possible when wraparound on 16-bit machine */ s.lookahead = s.strstart - max_start; s.strstart = max_start; /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } /* Flush if we may have to slide, otherwise block_start may become * negative and the data will be gone: */ if (s.strstart - s.block_start >= (s.w_size - MIN_LOOKAHEAD)) { /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } } s.insert = 0; if (flush === Z_FINISH) { /*** FLUSH_BLOCK(s, 1); ***/ flush_block_only(s, true); if (s.strm.avail_out === 0) { return BS_FINISH_STARTED; } /***/ return BS_FINISH_DONE; } if (s.strstart > s.block_start) { /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } return BS_NEED_MORE; } /* =========================================================================== * Compress as much as possible from the input stream, return the current * block state. * This function does not perform lazy evaluation of matches and inserts * new strings in the dictionary only for unmatched strings or for short * matches. It is used only for the fast compression options. */ function deflate_fast(s, flush) { var hash_head; /* head of the hash chain */ var bflush; /* set if current block must be flushed */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s.lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) { return BS_NEED_MORE; } if (s.lookahead === 0) { break; /* flush the current block */ } } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ hash_head = 0/*NIL*/; if (s.lookahead >= MIN_MATCH) { /*** INSERT_STRING(s, s.strstart, hash_head); ***/ s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; s.head[s.ins_h] = s.strstart; /***/ } /* Find the longest match, discarding those <= prev_length. * At this point we have always match_length < MIN_MATCH */ if (hash_head !== 0/*NIL*/ && ((s.strstart - hash_head) <= (s.w_size - MIN_LOOKAHEAD))) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ s.match_length = longest_match(s, hash_head); /* longest_match() sets match_start */ } if (s.match_length >= MIN_MATCH) { // check_match(s, s.strstart, s.match_start, s.match_length); // for debug only /*** _tr_tally_dist(s, s.strstart - s.match_start, s.match_length - MIN_MATCH, bflush); ***/ bflush = trees._tr_tally(s, s.strstart - s.match_start, s.match_length - MIN_MATCH); s.lookahead -= s.match_length; /* Insert new strings in the hash table only if the match length * is not too large. This saves time but degrades compression. */ if (s.match_length <= s.max_lazy_match/*max_insert_length*/ && s.lookahead >= MIN_MATCH) { s.match_length--; /* string at strstart already in table */ do { s.strstart++; /*** INSERT_STRING(s, s.strstart, hash_head); ***/ s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; s.head[s.ins_h] = s.strstart; /***/ /* strstart never exceeds WSIZE-MAX_MATCH, so there are * always MIN_MATCH bytes ahead. */ } while (--s.match_length !== 0); s.strstart++; } else { s.strstart += s.match_length; s.match_length = 0; s.ins_h = s.window[s.strstart]; /* UPDATE_HASH(s, s.ins_h, s.window[s.strstart+1]); */ s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + 1]) & s.hash_mask; //#if MIN_MATCH != 3 // Call UPDATE_HASH() MIN_MATCH-3 more times //#endif /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not * matter since it will be recomputed at next deflate call. */ } } else { /* No match, output a literal byte */ //Tracevv((stderr,"%c", s.window[s.strstart])); /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ bflush = trees._tr_tally(s, 0, s.window[s.strstart]); s.lookahead--; s.strstart++; } if (bflush) { /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } } s.insert = ((s.strstart < (MIN_MATCH - 1)) ? s.strstart : MIN_MATCH - 1); if (flush === Z_FINISH) { /*** FLUSH_BLOCK(s, 1); ***/ flush_block_only(s, true); if (s.strm.avail_out === 0) { return BS_FINISH_STARTED; } /***/ return BS_FINISH_DONE; } if (s.last_lit) { /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } return BS_BLOCK_DONE; } /* =========================================================================== * Same as above, but achieves better compression. We use a lazy * evaluation for matches: a match is finally adopted only if there is * no better match at the next window position. */ function deflate_slow(s, flush) { var hash_head; /* head of hash chain */ var bflush; /* set if current block must be flushed */ var max_insert; /* Process the input block. */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s.lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) { return BS_NEED_MORE; } if (s.lookahead === 0) { break; } /* flush the current block */ } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ hash_head = 0/*NIL*/; if (s.lookahead >= MIN_MATCH) { /*** INSERT_STRING(s, s.strstart, hash_head); ***/ s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; s.head[s.ins_h] = s.strstart; /***/ } /* Find the longest match, discarding those <= prev_length. */ s.prev_length = s.match_length; s.prev_match = s.match_start; s.match_length = MIN_MATCH - 1; if (hash_head !== 0/*NIL*/ && s.prev_length < s.max_lazy_match && s.strstart - hash_head <= (s.w_size - MIN_LOOKAHEAD)/*MAX_DIST(s)*/) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ s.match_length = longest_match(s, hash_head); /* longest_match() sets match_start */ if (s.match_length <= 5 && (s.strategy === Z_FILTERED || (s.match_length === MIN_MATCH && s.strstart - s.match_start > 4096/*TOO_FAR*/))) { /* If prev_match is also MIN_MATCH, match_start is garbage * but we will ignore the current match anyway. */ s.match_length = MIN_MATCH - 1; } } /* If there was a match at the previous step and the current * match is not better, output the previous match: */ if (s.prev_length >= MIN_MATCH && s.match_length <= s.prev_length) { max_insert = s.strstart + s.lookahead - MIN_MATCH; /* Do not insert strings in hash table beyond this. */ //check_match(s, s.strstart-1, s.prev_match, s.prev_length); /***_tr_tally_dist(s, s.strstart - 1 - s.prev_match, s.prev_length - MIN_MATCH, bflush);***/ bflush = trees._tr_tally(s, s.strstart - 1 - s.prev_match, s.prev_length - MIN_MATCH); /* Insert in hash table all strings up to the end of the match. * strstart-1 and strstart are already inserted. If there is not * enough lookahead, the last two strings are not inserted in * the hash table. */ s.lookahead -= s.prev_length - 1; s.prev_length -= 2; do { if (++s.strstart <= max_insert) { /*** INSERT_STRING(s, s.strstart, hash_head); ***/ s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; s.head[s.ins_h] = s.strstart; /***/ } } while (--s.prev_length !== 0); s.match_available = 0; s.match_length = MIN_MATCH - 1; s.strstart++; if (bflush) { /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } } else if (s.match_available) { /* If there was no match at the previous position, output a * single literal. If there was a match but the current match * is longer, truncate the previous match to a single literal. */ //Tracevv((stderr,"%c", s->window[s->strstart-1])); /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/ bflush = trees._tr_tally(s, 0, s.window[s.strstart - 1]); if (bflush) { /*** FLUSH_BLOCK_ONLY(s, 0) ***/ flush_block_only(s, false); /***/ } s.strstart++; s.lookahead--; if (s.strm.avail_out === 0) { return BS_NEED_MORE; } } else { /* There is no previous match to compare with, wait for * the next step to decide. */ s.match_available = 1; s.strstart++; s.lookahead--; } } //Assert (flush != Z_NO_FLUSH, "no flush?"); if (s.match_available) { //Tracevv((stderr,"%c", s->window[s->strstart-1])); /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/ bflush = trees._tr_tally(s, 0, s.window[s.strstart - 1]); s.match_available = 0; } s.insert = s.strstart < MIN_MATCH - 1 ? s.strstart : MIN_MATCH - 1; if (flush === Z_FINISH) { /*** FLUSH_BLOCK(s, 1); ***/ flush_block_only(s, true); if (s.strm.avail_out === 0) { return BS_FINISH_STARTED; } /***/ return BS_FINISH_DONE; } if (s.last_lit) { /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } return BS_BLOCK_DONE; } /* =========================================================================== * For Z_RLE, simply look for runs of bytes, generate matches only of distance * one. Do not maintain a hash table. (It will be regenerated if this run of * deflate switches away from Z_RLE.) */ function deflate_rle(s, flush) { var bflush; /* set if current block must be flushed */ var prev; /* byte at distance one to match */ var scan, strend; /* scan goes up to strend for length of run */ var _win = s.window; for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the longest run, plus one for the unrolled loop. */ if (s.lookahead <= MAX_MATCH) { fill_window(s); if (s.lookahead <= MAX_MATCH && flush === Z_NO_FLUSH) { return BS_NEED_MORE; } if (s.lookahead === 0) { break; } /* flush the current block */ } /* See how many times the previous byte repeats */ s.match_length = 0; if (s.lookahead >= MIN_MATCH && s.strstart > 0) { scan = s.strstart - 1; prev = _win[scan]; if (prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan]) { strend = s.strstart + MAX_MATCH; do { /*jshint noempty:false*/ } while (prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan] && scan < strend); s.match_length = MAX_MATCH - (strend - scan); if (s.match_length > s.lookahead) { s.match_length = s.lookahead; } } //Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); } /* Emit match if have run of MIN_MATCH or longer, else emit literal */ if (s.match_length >= MIN_MATCH) { //check_match(s, s.strstart, s.strstart - 1, s.match_length); /*** _tr_tally_dist(s, 1, s.match_length - MIN_MATCH, bflush); ***/ bflush = trees._tr_tally(s, 1, s.match_length - MIN_MATCH); s.lookahead -= s.match_length; s.strstart += s.match_length; s.match_length = 0; } else { /* No match, output a literal byte */ //Tracevv((stderr,"%c", s->window[s->strstart])); /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ bflush = trees._tr_tally(s, 0, s.window[s.strstart]); s.lookahead--; s.strstart++; } if (bflush) { /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } } s.insert = 0; if (flush === Z_FINISH) { /*** FLUSH_BLOCK(s, 1); ***/ flush_block_only(s, true); if (s.strm.avail_out === 0) { return BS_FINISH_STARTED; } /***/ return BS_FINISH_DONE; } if (s.last_lit) { /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } return BS_BLOCK_DONE; } /* =========================================================================== * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. * (It will be regenerated if this run of deflate switches away from Huffman.) */ function deflate_huff(s, flush) { var bflush; /* set if current block must be flushed */ for (;;) { /* Make sure that we have a literal to write. */ if (s.lookahead === 0) { fill_window(s); if (s.lookahead === 0) { if (flush === Z_NO_FLUSH) { return BS_NEED_MORE; } break; /* flush the current block */ } } /* Output a literal byte */ s.match_length = 0; //Tracevv((stderr,"%c", s->window[s->strstart])); /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ bflush = trees._tr_tally(s, 0, s.window[s.strstart]); s.lookahead--; s.strstart++; if (bflush) { /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } } s.insert = 0; if (flush === Z_FINISH) { /*** FLUSH_BLOCK(s, 1); ***/ flush_block_only(s, true); if (s.strm.avail_out === 0) { return BS_FINISH_STARTED; } /***/ return BS_FINISH_DONE; } if (s.last_lit) { /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } return BS_BLOCK_DONE; } /* Values for max_lazy_match, good_match and max_chain_length, depending on * the desired pack level (0..9). The values given below have been tuned to * exclude worst case performance for pathological files. Better values may be * found for specific files. */ function Config(good_length, max_lazy, nice_length, max_chain, func) { this.good_length = good_length; this.max_lazy = max_lazy; this.nice_length = nice_length; this.max_chain = max_chain; this.func = func; } var configuration_table; configuration_table = [ /* good lazy nice chain */ new Config(0, 0, 0, 0, deflate_stored), /* 0 store only */ new Config(4, 4, 8, 4, deflate_fast), /* 1 max speed, no lazy matches */ new Config(4, 5, 16, 8, deflate_fast), /* 2 */ new Config(4, 6, 32, 32, deflate_fast), /* 3 */ new Config(4, 4, 16, 16, deflate_slow), /* 4 lazy matches */ new Config(8, 16, 32, 32, deflate_slow), /* 5 */ new Config(8, 16, 128, 128, deflate_slow), /* 6 */ new Config(8, 32, 128, 256, deflate_slow), /* 7 */ new Config(32, 128, 258, 1024, deflate_slow), /* 8 */ new Config(32, 258, 258, 4096, deflate_slow) /* 9 max compression */ ]; /* =========================================================================== * Initialize the "longest match" routines for a new zlib stream */ function lm_init(s) { s.window_size = 2 * s.w_size; /*** CLEAR_HASH(s); ***/ zero(s.head); // Fill with NIL (= 0); /* Set the default configuration parameters: */ s.max_lazy_match = configuration_table[s.level].max_lazy; s.good_match = configuration_table[s.level].good_length; s.nice_match = configuration_table[s.level].nice_length; s.max_chain_length = configuration_table[s.level].max_chain; s.strstart = 0; s.block_start = 0; s.lookahead = 0; s.insert = 0; s.match_length = s.prev_length = MIN_MATCH - 1; s.match_available = 0; s.ins_h = 0; } function DeflateState() { this.strm = null; /* pointer back to this zlib stream */ this.status = 0; /* as the name implies */ this.pending_buf = null; /* output still pending */ this.pending_buf_size = 0; /* size of pending_buf */ this.pending_out = 0; /* next pending byte to output to the stream */ this.pending = 0; /* nb of bytes in the pending buffer */ this.wrap = 0; /* bit 0 true for zlib, bit 1 true for gzip */ this.gzhead = null; /* gzip header information to write */ this.gzindex = 0; /* where in extra, name, or comment */ this.method = Z_DEFLATED; /* can only be DEFLATED */ this.last_flush = -1; /* value of flush param for previous deflate call */ this.w_size = 0; /* LZ77 window size (32K by default) */ this.w_bits = 0; /* log2(w_size) (8..16) */ this.w_mask = 0; /* w_size - 1 */ this.window = null; /* Sliding window. Input bytes are read into the second half of the window, * and move to the first half later to keep a dictionary of at least wSize * bytes. With this organization, matches are limited to a distance of * wSize-MAX_MATCH bytes, but this ensures that IO is always * performed with a length multiple of the block size. */ this.window_size = 0; /* Actual size of window: 2*wSize, except when the user input buffer * is directly used as sliding window. */ this.prev = null; /* Link to older string with same hash index. To limit the size of this * array to 64K, this link is maintained only for the last 32K strings. * An index in this array is thus a window index modulo 32K. */ this.head = null; /* Heads of the hash chains or NIL. */ this.ins_h = 0; /* hash index of string to be inserted */ this.hash_size = 0; /* number of elements in hash table */ this.hash_bits = 0; /* log2(hash_size) */ this.hash_mask = 0; /* hash_size-1 */ this.hash_shift = 0; /* Number of bits by which ins_h must be shifted at each input * step. It must be such that after MIN_MATCH steps, the oldest * byte no longer takes part in the hash key, that is: * hash_shift * MIN_MATCH >= hash_bits */ this.block_start = 0; /* Window position at the beginning of the current output block. Gets * negative when the window is moved backwards. */ this.match_length = 0; /* length of best match */ this.prev_match = 0; /* previous match */ this.match_available = 0; /* set if previous match exists */ this.strstart = 0; /* start of string to insert */ this.match_start = 0; /* start of matching string */ this.lookahead = 0; /* number of valid bytes ahead in window */ this.prev_length = 0; /* Length of the best match at previous step. Matches not greater than this * are discarded. This is used in the lazy match evaluation. */ this.max_chain_length = 0; /* To speed up deflation, hash chains are never searched beyond this * length. A higher limit improves compression ratio but degrades the * speed. */ this.max_lazy_match = 0; /* Attempt to find a better match only when the current match is strictly * smaller than this value. This mechanism is used only for compression * levels >= 4. */ // That's alias to max_lazy_match, don't use directly //this.max_insert_length = 0; /* Insert new strings in the hash table only if the match length is not * greater than this length. This saves time but degrades compression. * max_insert_length is used only for compression levels <= 3. */ this.level = 0; /* compression level (1..9) */ this.strategy = 0; /* favor or force Huffman coding*/ this.good_match = 0; /* Use a faster search when the previous match is longer than this */ this.nice_match = 0; /* Stop searching when current match exceeds this */ /* used by trees.c: */ /* Didn't use ct_data typedef below to suppress compiler warning */ // struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */ // struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ // struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */ // Use flat array of DOUBLE size, with interleaved fata, // because JS does not support effective this.dyn_ltree = new utils.Buf16(HEAP_SIZE * 2); this.dyn_dtree = new utils.Buf16((2 * D_CODES + 1) * 2); this.bl_tree = new utils.Buf16((2 * BL_CODES + 1) * 2); zero(this.dyn_ltree); zero(this.dyn_dtree); zero(this.bl_tree); this.l_desc = null; /* desc. for literal tree */ this.d_desc = null; /* desc. for distance tree */ this.bl_desc = null; /* desc. for bit length tree */ //ush bl_count[MAX_BITS+1]; this.bl_count = new utils.Buf16(MAX_BITS + 1); /* number of codes at each bit length for an optimal tree */ //int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ this.heap = new utils.Buf16(2 * L_CODES + 1); /* heap used to build the Huffman trees */ zero(this.heap); this.heap_len = 0; /* number of elements in the heap */ this.heap_max = 0; /* element of largest frequency */ /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. * The same heap array is used to build all trees. */ this.depth = new utils.Buf16(2 * L_CODES + 1); //uch depth[2*L_CODES+1]; zero(this.depth); /* Depth of each subtree used as tie breaker for trees of equal frequency */ this.l_buf = 0; /* buffer index for literals or lengths */ this.lit_bufsize = 0; /* Size of match buffer for literals/lengths. There are 4 reasons for * limiting lit_bufsize to 64K: * - frequencies can be kept in 16 bit counters * - if compression is not successful for the first block, all input * data is still in the window so we can still emit a stored block even * when input comes from standard input. (This can also be done for * all blocks if lit_bufsize is not greater than 32K.) * - if compression is not successful for a file smaller than 64K, we can * even emit a stored file instead of a stored block (saving 5 bytes). * This is applicable only for zip (not gzip or zlib). * - creating new Huffman trees less frequently may not provide fast * adaptation to changes in the input data statistics. (Take for * example a binary file with poorly compressible code followed by * a highly compressible string table.) Smaller buffer sizes give * fast adaptation but have of course the overhead of transmitting * trees more frequently. * - I can't count above 4 */ this.last_lit = 0; /* running index in l_buf */ this.d_buf = 0; /* Buffer index for distances. To simplify the code, d_buf and l_buf have * the same number of elements. To use different lengths, an extra flag * array would be necessary. */ this.opt_len = 0; /* bit length of current block with optimal trees */ this.static_len = 0; /* bit length of current block with static trees */ this.matches = 0; /* number of string matches in current block */ this.insert = 0; /* bytes at end of window left to insert */ this.bi_buf = 0; /* Output buffer. bits are inserted starting at the bottom (least * significant bits). */ this.bi_valid = 0; /* Number of valid bits in bi_buf. All bits above the last valid bit * are always zero. */ // Used for window memory init. We safely ignore it for JS. That makes // sense only for pointers and memory check tools. //this.high_water = 0; /* High water mark offset in window for initialized bytes -- bytes above * this are set to zero in order to avoid memory check warnings when * longest match routines access bytes past the input. This is then * updated to the new high water mark. */ } function deflateResetKeep(strm) { var s; if (!strm || !strm.state) { return err(strm, Z_STREAM_ERROR); } strm.total_in = strm.total_out = 0; strm.data_type = Z_UNKNOWN; s = strm.state; s.pending = 0; s.pending_out = 0; if (s.wrap < 0) { s.wrap = -s.wrap; /* was made negative by deflate(..., Z_FINISH); */ } s.status = (s.wrap ? INIT_STATE : BUSY_STATE); strm.adler = (s.wrap === 2) ? 0 // crc32(0, Z_NULL, 0) : 1; // adler32(0, Z_NULL, 0) s.last_flush = Z_NO_FLUSH; trees._tr_init(s); return Z_OK; } function deflateReset(strm) { var ret = deflateResetKeep(strm); if (ret === Z_OK) { lm_init(strm.state); } return ret; } function deflateSetHeader(strm, head) { if (!strm || !strm.state) { return Z_STREAM_ERROR; } if (strm.state.wrap !== 2) { return Z_STREAM_ERROR; } strm.state.gzhead = head; return Z_OK; } function deflateInit2(strm, level, method, windowBits, memLevel, strategy) { if (!strm) { // === Z_NULL return Z_STREAM_ERROR; } var wrap = 1; if (level === Z_DEFAULT_COMPRESSION) { level = 6; } if (windowBits < 0) { /* suppress zlib wrapper */ wrap = 0; windowBits = -windowBits; } else if (windowBits > 15) { wrap = 2; /* write gzip wrapper instead */ windowBits -= 16; } if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method !== Z_DEFLATED || windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { return err(strm, Z_STREAM_ERROR); } if (windowBits === 8) { windowBits = 9; } /* until 256-byte window bug fixed */ var s = new DeflateState(); strm.state = s; s.strm = strm; s.wrap = wrap; s.gzhead = null; s.w_bits = windowBits; s.w_size = 1 << s.w_bits; s.w_mask = s.w_size - 1; s.hash_bits = memLevel + 7; s.hash_size = 1 << s.hash_bits; s.hash_mask = s.hash_size - 1; s.hash_shift = ~~((s.hash_bits + MIN_MATCH - 1) / MIN_MATCH); s.window = new utils.Buf8(s.w_size * 2); s.head = new utils.Buf16(s.hash_size); s.prev = new utils.Buf16(s.w_size); // Don't need mem init magic for JS. //s.high_water = 0; /* nothing written to s->window yet */ s.lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ s.pending_buf_size = s.lit_bufsize * 4; //overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); //s->pending_buf = (uchf *) overlay; s.pending_buf = new utils.Buf8(s.pending_buf_size); // It is offset from `s.pending_buf` (size is `s.lit_bufsize * 2`) //s->d_buf = overlay + s->lit_bufsize/sizeof(ush); s.d_buf = 1 * s.lit_bufsize; //s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; s.l_buf = (1 + 2) * s.lit_bufsize; s.level = level; s.strategy = strategy; s.method = method; return deflateReset(strm); } function deflateInit(strm, level) { return deflateInit2(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY); } function deflate(strm, flush) { var old_flush, s; var beg, val; // for gzip header write only if (!strm || !strm.state || flush > Z_BLOCK || flush < 0) { return strm ? err(strm, Z_STREAM_ERROR) : Z_STREAM_ERROR; } s = strm.state; if (!strm.output || (!strm.input && strm.avail_in !== 0) || (s.status === FINISH_STATE && flush !== Z_FINISH)) { return err(strm, (strm.avail_out === 0) ? Z_BUF_ERROR : Z_STREAM_ERROR); } s.strm = strm; /* just in case */ old_flush = s.last_flush; s.last_flush = flush; /* Write the header */ if (s.status === INIT_STATE) { if (s.wrap === 2) { // GZIP header strm.adler = 0; //crc32(0L, Z_NULL, 0); put_byte(s, 31); put_byte(s, 139); put_byte(s, 8); if (!s.gzhead) { // s->gzhead == Z_NULL put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, s.level === 9 ? 2 : (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ? 4 : 0)); put_byte(s, OS_CODE); s.status = BUSY_STATE; } else { put_byte(s, (s.gzhead.text ? 1 : 0) + (s.gzhead.hcrc ? 2 : 0) + (!s.gzhead.extra ? 0 : 4) + (!s.gzhead.name ? 0 : 8) + (!s.gzhead.comment ? 0 : 16) ); put_byte(s, s.gzhead.time & 0xff); put_byte(s, (s.gzhead.time >> 8) & 0xff); put_byte(s, (s.gzhead.time >> 16) & 0xff); put_byte(s, (s.gzhead.time >> 24) & 0xff); put_byte(s, s.level === 9 ? 2 : (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ? 4 : 0)); put_byte(s, s.gzhead.os & 0xff); if (s.gzhead.extra && s.gzhead.extra.length) { put_byte(s, s.gzhead.extra.length & 0xff); put_byte(s, (s.gzhead.extra.length >> 8) & 0xff); } if (s.gzhead.hcrc) { strm.adler = crc32(strm.adler, s.pending_buf, s.pending, 0); } s.gzindex = 0; s.status = EXTRA_STATE; } } else // DEFLATE header { var header = (Z_DEFLATED + ((s.w_bits - 8) << 4)) << 8; var level_flags = -1; if (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2) { level_flags = 0; } else if (s.level < 6) { level_flags = 1; } else if (s.level === 6) { level_flags = 2; } else { level_flags = 3; } header |= (level_flags << 6); if (s.strstart !== 0) { header |= PRESET_DICT; } header += 31 - (header % 31); s.status = BUSY_STATE; putShortMSB(s, header); /* Save the adler32 of the preset dictionary: */ if (s.strstart !== 0) { putShortMSB(s, strm.adler >>> 16); putShortMSB(s, strm.adler & 0xffff); } strm.adler = 1; // adler32(0L, Z_NULL, 0); } } //#ifdef GZIP if (s.status === EXTRA_STATE) { if (s.gzhead.extra/* != Z_NULL*/) { beg = s.pending; /* start of bytes to update crc */ while (s.gzindex < (s.gzhead.extra.length & 0xffff)) { if (s.pending === s.pending_buf_size) { if (s.gzhead.hcrc && s.pending > beg) { strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); } flush_pending(strm); beg = s.pending; if (s.pending === s.pending_buf_size) { break; } } put_byte(s, s.gzhead.extra[s.gzindex] & 0xff); s.gzindex++; } if (s.gzhead.hcrc && s.pending > beg) { strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); } if (s.gzindex === s.gzhead.extra.length) { s.gzindex = 0; s.status = NAME_STATE; } } else { s.status = NAME_STATE; } } if (s.status === NAME_STATE) { if (s.gzhead.name/* != Z_NULL*/) { beg = s.pending; /* start of bytes to update crc */ //int val; do { if (s.pending === s.pending_buf_size) { if (s.gzhead.hcrc && s.pending > beg) { strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); } flush_pending(strm); beg = s.pending; if (s.pending === s.pending_buf_size) { val = 1; break; } } // JS specific: little magic to add zero terminator to end of string if (s.gzindex < s.gzhead.name.length) { val = s.gzhead.name.charCodeAt(s.gzindex++) & 0xff; } else { val = 0; } put_byte(s, val); } while (val !== 0); if (s.gzhead.hcrc && s.pending > beg) { strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); } if (val === 0) { s.gzindex = 0; s.status = COMMENT_STATE; } } else { s.status = COMMENT_STATE; } } if (s.status === COMMENT_STATE) { if (s.gzhead.comment/* != Z_NULL*/) { beg = s.pending; /* start of bytes to update crc */ //int val; do { if (s.pending === s.pending_buf_size) { if (s.gzhead.hcrc && s.pending > beg) { strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); } flush_pending(strm); beg = s.pending; if (s.pending === s.pending_buf_size) { val = 1; break; } } // JS specific: little magic to add zero terminator to end of string if (s.gzindex < s.gzhead.comment.length) { val = s.gzhead.comment.charCodeAt(s.gzindex++) & 0xff; } else { val = 0; } put_byte(s, val); } while (val !== 0); if (s.gzhead.hcrc && s.pending > beg) { strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); } if (val === 0) { s.status = HCRC_STATE; } } else { s.status = HCRC_STATE; } } if (s.status === HCRC_STATE) { if (s.gzhead.hcrc) { if (s.pending + 2 > s.pending_buf_size) { flush_pending(strm); } if (s.pending + 2 <= s.pending_buf_size) { put_byte(s, strm.adler & 0xff); put_byte(s, (strm.adler >> 8) & 0xff); strm.adler = 0; //crc32(0L, Z_NULL, 0); s.status = BUSY_STATE; } } else { s.status = BUSY_STATE; } } //#endif /* Flush as much pending output as possible */ if (s.pending !== 0) { flush_pending(strm); if (strm.avail_out === 0) { /* Since avail_out is 0, deflate will be called again with * more output space, but possibly with both pending and * avail_in equal to zero. There won't be anything to do, * but this is not an error situation so make sure we * return OK instead of BUF_ERROR at next call of deflate: */ s.last_flush = -1; return Z_OK; } /* Make sure there is something to do and avoid duplicate consecutive * flushes. For repeated and useless calls with Z_FINISH, we keep * returning Z_STREAM_END instead of Z_BUF_ERROR. */ } else if (strm.avail_in === 0 && rank(flush) <= rank(old_flush) && flush !== Z_FINISH) { return err(strm, Z_BUF_ERROR); } /* User must not provide more input after the first FINISH: */ if (s.status === FINISH_STATE && strm.avail_in !== 0) { return err(strm, Z_BUF_ERROR); } /* Start a new block or continue the current one. */ if (strm.avail_in !== 0 || s.lookahead !== 0 || (flush !== Z_NO_FLUSH && s.status !== FINISH_STATE)) { var bstate = (s.strategy === Z_HUFFMAN_ONLY) ? deflate_huff(s, flush) : (s.strategy === Z_RLE ? deflate_rle(s, flush) : configuration_table[s.level].func(s, flush)); if (bstate === BS_FINISH_STARTED || bstate === BS_FINISH_DONE) { s.status = FINISH_STATE; } if (bstate === BS_NEED_MORE || bstate === BS_FINISH_STARTED) { if (strm.avail_out === 0) { s.last_flush = -1; /* avoid BUF_ERROR next call, see above */ } return Z_OK; /* If flush != Z_NO_FLUSH && avail_out == 0, the next call * of deflate should use the same flush parameter to make sure * that the flush is complete. So we don't have to output an * empty block here, this will be done at next call. This also * ensures that for a very small output buffer, we emit at most * one empty block. */ } if (bstate === BS_BLOCK_DONE) { if (flush === Z_PARTIAL_FLUSH) { trees._tr_align(s); } else if (flush !== Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ trees._tr_stored_block(s, 0, 0, false); /* For a full flush, this empty block will be recognized * as a special marker by inflate_sync(). */ if (flush === Z_FULL_FLUSH) { /*** CLEAR_HASH(s); ***/ /* forget history */ zero(s.head); // Fill with NIL (= 0); if (s.lookahead === 0) { s.strstart = 0; s.block_start = 0; s.insert = 0; } } } flush_pending(strm); if (strm.avail_out === 0) { s.last_flush = -1; /* avoid BUF_ERROR at next call, see above */ return Z_OK; } } } //Assert(strm->avail_out > 0, "bug2"); //if (strm.avail_out <= 0) { throw new Error("bug2");} if (flush !== Z_FINISH) { return Z_OK; } if (s.wrap <= 0) { return Z_STREAM_END; } /* Write the trailer */ if (s.wrap === 2) { put_byte(s, strm.adler & 0xff); put_byte(s, (strm.adler >> 8) & 0xff); put_byte(s, (strm.adler >> 16) & 0xff); put_byte(s, (strm.adler >> 24) & 0xff); put_byte(s, strm.total_in & 0xff); put_byte(s, (strm.total_in >> 8) & 0xff); put_byte(s, (strm.total_in >> 16) & 0xff); put_byte(s, (strm.total_in >> 24) & 0xff); } else { putShortMSB(s, strm.adler >>> 16); putShortMSB(s, strm.adler & 0xffff); } flush_pending(strm); /* If avail_out is zero, the application will call deflate again * to flush the rest. */ if (s.wrap > 0) { s.wrap = -s.wrap; } /* write the trailer only once! */ return s.pending !== 0 ? Z_OK : Z_STREAM_END; } function deflateEnd(strm) { var status; if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) { return Z_STREAM_ERROR; } status = strm.state.status; if (status !== INIT_STATE && status !== EXTRA_STATE && status !== NAME_STATE && status !== COMMENT_STATE && status !== HCRC_STATE && status !== BUSY_STATE && status !== FINISH_STATE ) { return err(strm, Z_STREAM_ERROR); } strm.state = null; return status === BUSY_STATE ? err(strm, Z_DATA_ERROR) : Z_OK; } /* ========================================================================= * Initializes the compression dictionary from the given byte * sequence without producing any compressed output. */ function deflateSetDictionary(strm, dictionary) { var dictLength = dictionary.length; var s; var str, n; var wrap; var avail; var next; var input; var tmpDict; if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) { return Z_STREAM_ERROR; } s = strm.state; wrap = s.wrap; if (wrap === 2 || (wrap === 1 && s.status !== INIT_STATE) || s.lookahead) { return Z_STREAM_ERROR; } /* when using zlib wrappers, compute Adler-32 for provided dictionary */ if (wrap === 1) { /* adler32(strm->adler, dictionary, dictLength); */ strm.adler = adler32(strm.adler, dictionary, dictLength, 0); } s.wrap = 0; /* avoid computing Adler-32 in read_buf */ /* if dictionary would fill window, just replace the history */ if (dictLength >= s.w_size) { if (wrap === 0) { /* already empty otherwise */ /*** CLEAR_HASH(s); ***/ zero(s.head); // Fill with NIL (= 0); s.strstart = 0; s.block_start = 0; s.insert = 0; } /* use the tail */ // dictionary = dictionary.slice(dictLength - s.w_size); tmpDict = new utils.Buf8(s.w_size); utils.arraySet(tmpDict, dictionary, dictLength - s.w_size, s.w_size, 0); dictionary = tmpDict; dictLength = s.w_size; } /* insert dictionary into window and hash */ avail = strm.avail_in; next = strm.next_in; input = strm.input; strm.avail_in = dictLength; strm.next_in = 0; strm.input = dictionary; fill_window(s); while (s.lookahead >= MIN_MATCH) { str = s.strstart; n = s.lookahead - (MIN_MATCH - 1); do { /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */ s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask; s.prev[str & s.w_mask] = s.head[s.ins_h]; s.head[s.ins_h] = str; str++; } while (--n); s.strstart = str; s.lookahead = MIN_MATCH - 1; fill_window(s); } s.strstart += s.lookahead; s.block_start = s.strstart; s.insert = s.lookahead; s.lookahead = 0; s.match_length = s.prev_length = MIN_MATCH - 1; s.match_available = 0; strm.next_in = next; strm.input = input; strm.avail_in = avail; s.wrap = wrap; return Z_OK; } exports.deflateInit = deflateInit; exports.deflateInit2 = deflateInit2; exports.deflateReset = deflateReset; exports.deflateResetKeep = deflateResetKeep; exports.deflateSetHeader = deflateSetHeader; exports.deflate = deflate; exports.deflateEnd = deflateEnd; exports.deflateSetDictionary = deflateSetDictionary; exports.deflateInfo = 'pako deflate (from Nodeca project)'; /* Not implemented exports.deflateBound = deflateBound; exports.deflateCopy = deflateCopy; exports.deflateParams = deflateParams; exports.deflatePending = deflatePending; exports.deflatePrime = deflatePrime; exports.deflateTune = deflateTune; */ },{"../utils/common":36,"./adler32":37,"./crc32":39,"./messages":44,"./trees":45}],41:[function(require,module,exports){ 'use strict'; // (C) 1995-2013 Jean-loup Gailly and Mark Adler // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // See state defs from inflate.js var BAD = 30; /* got a data error -- remain here until reset */ var TYPE = 12; /* i: waiting for type bits, including last-flag bit */ /* Decode literal, length, and distance codes and write out the resulting literal and match bytes until either not enough input or output is available, an end-of-block is encountered, or a data error is encountered. When large enough input and output buffers are supplied to inflate(), for example, a 16K input buffer and a 64K output buffer, more than 95% of the inflate execution time is spent in this routine. Entry assumptions: state.mode === LEN strm.avail_in >= 6 strm.avail_out >= 258 start >= strm.avail_out state.bits < 8 On return, state.mode is one of: LEN -- ran out of enough output space or enough available input TYPE -- reached end of block code, inflate() to interpret next block BAD -- error in block data Notes: - The maximum input bits used by a length/distance pair is 15 bits for the length code, 5 bits for the length extra, 15 bits for the distance code, and 13 bits for the distance extra. This totals 48 bits, or six bytes. Therefore if strm.avail_in >= 6, then there is enough input to avoid checking for available input while decoding. - The maximum bytes that a single length/distance pair can output is 258 bytes, which is the maximum length that can be coded. inflate_fast() requires strm.avail_out >= 258 for each loop to avoid checking for output space. */ module.exports = function inflate_fast(strm, start) { var state; var _in; /* local strm.input */ var last; /* have enough input while in < last */ var _out; /* local strm.output */ var beg; /* inflate()'s initial strm.output */ var end; /* while out < end, enough space available */ //#ifdef INFLATE_STRICT var dmax; /* maximum distance from zlib header */ //#endif var wsize; /* window size or zero if not using window */ var whave; /* valid bytes in the window */ var wnext; /* window write index */ // Use `s_window` instead `window`, avoid conflict with instrumentation tools var s_window; /* allocated sliding window, if wsize != 0 */ var hold; /* local strm.hold */ var bits; /* local strm.bits */ var lcode; /* local strm.lencode */ var dcode; /* local strm.distcode */ var lmask; /* mask for first level of length codes */ var dmask; /* mask for first level of distance codes */ var here; /* retrieved table entry */ var op; /* code bits, operation, extra bits, or */ /* window position, window bytes to copy */ var len; /* match length, unused bytes */ var dist; /* match distance */ var from; /* where to copy match from */ var from_source; var input, output; // JS specific, because we have no pointers /* copy state to local variables */ state = strm.state; //here = state.here; _in = strm.next_in; input = strm.input; last = _in + (strm.avail_in - 5); _out = strm.next_out; output = strm.output; beg = _out - (start - strm.avail_out); end = _out + (strm.avail_out - 257); //#ifdef INFLATE_STRICT dmax = state.dmax; //#endif wsize = state.wsize; whave = state.whave; wnext = state.wnext; s_window = state.window; hold = state.hold; bits = state.bits; lcode = state.lencode; dcode = state.distcode; lmask = (1 << state.lenbits) - 1; dmask = (1 << state.distbits) - 1; /* decode literals and length/distances until end-of-block or not enough input data or output space */ top: do { if (bits < 15) { hold += input[_in++] << bits; bits += 8; hold += input[_in++] << bits; bits += 8; } here = lcode[hold & lmask]; dolen: for (;;) { // Goto emulation op = here >>> 24/*here.bits*/; hold >>>= op; bits -= op; op = (here >>> 16) & 0xff/*here.op*/; if (op === 0) { /* literal */ //Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? // "inflate: literal '%c'\n" : // "inflate: literal 0x%02x\n", here.val)); output[_out++] = here & 0xffff/*here.val*/; } else if (op & 16) { /* length base */ len = here & 0xffff/*here.val*/; op &= 15; /* number of extra bits */ if (op) { if (bits < op) { hold += input[_in++] << bits; bits += 8; } len += hold & ((1 << op) - 1); hold >>>= op; bits -= op; } //Tracevv((stderr, "inflate: length %u\n", len)); if (bits < 15) { hold += input[_in++] << bits; bits += 8; hold += input[_in++] << bits; bits += 8; } here = dcode[hold & dmask]; dodist: for (;;) { // goto emulation op = here >>> 24/*here.bits*/; hold >>>= op; bits -= op; op = (here >>> 16) & 0xff/*here.op*/; if (op & 16) { /* distance base */ dist = here & 0xffff/*here.val*/; op &= 15; /* number of extra bits */ if (bits < op) { hold += input[_in++] << bits; bits += 8; if (bits < op) { hold += input[_in++] << bits; bits += 8; } } dist += hold & ((1 << op) - 1); //#ifdef INFLATE_STRICT if (dist > dmax) { strm.msg = 'invalid distance too far back'; state.mode = BAD; break top; } //#endif hold >>>= op; bits -= op; //Tracevv((stderr, "inflate: distance %u\n", dist)); op = _out - beg; /* max distance in output */ if (dist > op) { /* see if copy from window */ op = dist - op; /* distance back in window */ if (op > whave) { if (state.sane) { strm.msg = 'invalid distance too far back'; state.mode = BAD; break top; } // (!) This block is disabled in zlib defaults, // don't enable it for binary compatibility //#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR // if (len <= op - whave) { // do { // output[_out++] = 0; // } while (--len); // continue top; // } // len -= op - whave; // do { // output[_out++] = 0; // } while (--op > whave); // if (op === 0) { // from = _out - dist; // do { // output[_out++] = output[from++]; // } while (--len); // continue top; // } //#endif } from = 0; // window index from_source = s_window; if (wnext === 0) { /* very common case */ from += wsize - op; if (op < len) { /* some from window */ len -= op; do { output[_out++] = s_window[from++]; } while (--op); from = _out - dist; /* rest from output */ from_source = output; } } else if (wnext < op) { /* wrap around window */ from += wsize + wnext - op; op -= wnext; if (op < len) { /* some from end of window */ len -= op; do { output[_out++] = s_window[from++]; } while (--op); from = 0; if (wnext < len) { /* some from start of window */ op = wnext; len -= op; do { output[_out++] = s_window[from++]; } while (--op); from = _out - dist; /* rest from output */ from_source = output; } } } else { /* contiguous in window */ from += wnext - op; if (op < len) { /* some from window */ len -= op; do { output[_out++] = s_window[from++]; } while (--op); from = _out - dist; /* rest from output */ from_source = output; } } while (len > 2) { output[_out++] = from_source[from++]; output[_out++] = from_source[from++]; output[_out++] = from_source[from++]; len -= 3; } if (len) { output[_out++] = from_source[from++]; if (len > 1) { output[_out++] = from_source[from++]; } } } else { from = _out - dist; /* copy direct from output */ do { /* minimum length is three */ output[_out++] = output[from++]; output[_out++] = output[from++]; output[_out++] = output[from++]; len -= 3; } while (len > 2); if (len) { output[_out++] = output[from++]; if (len > 1) { output[_out++] = output[from++]; } } } } else if ((op & 64) === 0) { /* 2nd level distance code */ here = dcode[(here & 0xffff)/*here.val*/ + (hold & ((1 << op) - 1))]; continue dodist; } else { strm.msg = 'invalid distance code'; state.mode = BAD; break top; } break; // need to emulate goto via "continue" } } else if ((op & 64) === 0) { /* 2nd level length code */ here = lcode[(here & 0xffff)/*here.val*/ + (hold & ((1 << op) - 1))]; continue dolen; } else if (op & 32) { /* end-of-block */ //Tracevv((stderr, "inflate: end of block\n")); state.mode = TYPE; break top; } else { strm.msg = 'invalid literal/length code'; state.mode = BAD; break top; } break; // need to emulate goto via "continue" } } while (_in < last && _out < end); /* return unused bytes (on entry, bits < 8, so in won't go too far back) */ len = bits >> 3; _in -= len; bits -= len << 3; hold &= (1 << bits) - 1; /* update state and return */ strm.next_in = _in; strm.next_out = _out; strm.avail_in = (_in < last ? 5 + (last - _in) : 5 - (_in - last)); strm.avail_out = (_out < end ? 257 + (end - _out) : 257 - (_out - end)); state.hold = hold; state.bits = bits; return; }; },{}],42:[function(require,module,exports){ 'use strict'; // (C) 1995-2013 Jean-loup Gailly and Mark Adler // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. var utils = require('../utils/common'); var adler32 = require('./adler32'); var crc32 = require('./crc32'); var inflate_fast = require('./inffast'); var inflate_table = require('./inftrees'); var CODES = 0; var LENS = 1; var DISTS = 2; /* Public constants ==========================================================*/ /* ===========================================================================*/ /* Allowed flush values; see deflate() and inflate() below for details */ //var Z_NO_FLUSH = 0; //var Z_PARTIAL_FLUSH = 1; //var Z_SYNC_FLUSH = 2; //var Z_FULL_FLUSH = 3; var Z_FINISH = 4; var Z_BLOCK = 5; var Z_TREES = 6; /* Return codes for the compression/decompression functions. Negative values * are errors, positive values are used for special but normal events. */ var Z_OK = 0; var Z_STREAM_END = 1; var Z_NEED_DICT = 2; //var Z_ERRNO = -1; var Z_STREAM_ERROR = -2; var Z_DATA_ERROR = -3; var Z_MEM_ERROR = -4; var Z_BUF_ERROR = -5; //var Z_VERSION_ERROR = -6; /* The deflate compression method */ var Z_DEFLATED = 8; /* STATES ====================================================================*/ /* ===========================================================================*/ var HEAD = 1; /* i: waiting for magic header */ var FLAGS = 2; /* i: waiting for method and flags (gzip) */ var TIME = 3; /* i: waiting for modification time (gzip) */ var OS = 4; /* i: waiting for extra flags and operating system (gzip) */ var EXLEN = 5; /* i: waiting for extra length (gzip) */ var EXTRA = 6; /* i: waiting for extra bytes (gzip) */ var NAME = 7; /* i: waiting for end of file name (gzip) */ var COMMENT = 8; /* i: waiting for end of comment (gzip) */ var HCRC = 9; /* i: waiting for header crc (gzip) */ var DICTID = 10; /* i: waiting for dictionary check value */ var DICT = 11; /* waiting for inflateSetDictionary() call */ var TYPE = 12; /* i: waiting for type bits, including last-flag bit */ var TYPEDO = 13; /* i: same, but skip check to exit inflate on new block */ var STORED = 14; /* i: waiting for stored size (length and complement) */ var COPY_ = 15; /* i/o: same as COPY below, but only first time in */ var COPY = 16; /* i/o: waiting for input or output to copy stored block */ var TABLE = 17; /* i: waiting for dynamic block table lengths */ var LENLENS = 18; /* i: waiting for code length code lengths */ var CODELENS = 19; /* i: waiting for length/lit and distance code lengths */ var LEN_ = 20; /* i: same as LEN below, but only first time in */ var LEN = 21; /* i: waiting for length/lit/eob code */ var LENEXT = 22; /* i: waiting for length extra bits */ var DIST = 23; /* i: waiting for distance code */ var DISTEXT = 24; /* i: waiting for distance extra bits */ var MATCH = 25; /* o: waiting for output space to copy string */ var LIT = 26; /* o: waiting for output space to write literal */ var CHECK = 27; /* i: waiting for 32-bit check value */ var LENGTH = 28; /* i: waiting for 32-bit length (gzip) */ var DONE = 29; /* finished check, done -- remain here until reset */ var BAD = 30; /* got a data error -- remain here until reset */ var MEM = 31; /* got an inflate() memory error -- remain here until reset */ var SYNC = 32; /* looking for synchronization bytes to restart inflate() */ /* ===========================================================================*/ var ENOUGH_LENS = 852; var ENOUGH_DISTS = 592; //var ENOUGH = (ENOUGH_LENS+ENOUGH_DISTS); var MAX_WBITS = 15; /* 32K LZ77 window */ var DEF_WBITS = MAX_WBITS; function zswap32(q) { return (((q >>> 24) & 0xff) + ((q >>> 8) & 0xff00) + ((q & 0xff00) << 8) + ((q & 0xff) << 24)); } function InflateState() { this.mode = 0; /* current inflate mode */ this.last = false; /* true if processing last block */ this.wrap = 0; /* bit 0 true for zlib, bit 1 true for gzip */ this.havedict = false; /* true if dictionary provided */ this.flags = 0; /* gzip header method and flags (0 if zlib) */ this.dmax = 0; /* zlib header max distance (INFLATE_STRICT) */ this.check = 0; /* protected copy of check value */ this.total = 0; /* protected copy of output count */ // TODO: may be {} this.head = null; /* where to save gzip header information */ /* sliding window */ this.wbits = 0; /* log base 2 of requested window size */ this.wsize = 0; /* window size or zero if not using window */ this.whave = 0; /* valid bytes in the window */ this.wnext = 0; /* window write index */ this.window = null; /* allocated sliding window, if needed */ /* bit accumulator */ this.hold = 0; /* input bit accumulator */ this.bits = 0; /* number of bits in "in" */ /* for string and stored block copying */ this.length = 0; /* literal or length of data to copy */ this.offset = 0; /* distance back to copy string from */ /* for table and code decoding */ this.extra = 0; /* extra bits needed */ /* fixed and dynamic code tables */ this.lencode = null; /* starting table for length/literal codes */ this.distcode = null; /* starting table for distance codes */ this.lenbits = 0; /* index bits for lencode */ this.distbits = 0; /* index bits for distcode */ /* dynamic table building */ this.ncode = 0; /* number of code length code lengths */ this.nlen = 0; /* number of length code lengths */ this.ndist = 0; /* number of distance code lengths */ this.have = 0; /* number of code lengths in lens[] */ this.next = null; /* next available space in codes[] */ this.lens = new utils.Buf16(320); /* temporary storage for code lengths */ this.work = new utils.Buf16(288); /* work area for code table building */ /* because we don't have pointers in js, we use lencode and distcode directly as buffers so we don't need codes */ //this.codes = new utils.Buf32(ENOUGH); /* space for code tables */ this.lendyn = null; /* dynamic table for length/literal codes (JS specific) */ this.distdyn = null; /* dynamic table for distance codes (JS specific) */ this.sane = 0; /* if false, allow invalid distance too far */ this.back = 0; /* bits back of last unprocessed length/lit */ this.was = 0; /* initial length of match */ } function inflateResetKeep(strm) { var state; if (!strm || !strm.state) { return Z_STREAM_ERROR; } state = strm.state; strm.total_in = strm.total_out = state.total = 0; strm.msg = ''; /*Z_NULL*/ if (state.wrap) { /* to support ill-conceived Java test suite */ strm.adler = state.wrap & 1; } state.mode = HEAD; state.last = 0; state.havedict = 0; state.dmax = 32768; state.head = null/*Z_NULL*/; state.hold = 0; state.bits = 0; //state.lencode = state.distcode = state.next = state.codes; state.lencode = state.lendyn = new utils.Buf32(ENOUGH_LENS); state.distcode = state.distdyn = new utils.Buf32(ENOUGH_DISTS); state.sane = 1; state.back = -1; //Tracev((stderr, "inflate: reset\n")); return Z_OK; } function inflateReset(strm) { var state; if (!strm || !strm.state) { return Z_STREAM_ERROR; } state = strm.state; state.wsize = 0; state.whave = 0; state.wnext = 0; return inflateResetKeep(strm); } function inflateReset2(strm, windowBits) { var wrap; var state; /* get the state */ if (!strm || !strm.state) { return Z_STREAM_ERROR; } state = strm.state; /* extract wrap request from windowBits parameter */ if (windowBits < 0) { wrap = 0; windowBits = -windowBits; } else { wrap = (windowBits >> 4) + 1; if (windowBits < 48) { windowBits &= 15; } } /* set number of window bits, free window if different */ if (windowBits && (windowBits < 8 || windowBits > 15)) { return Z_STREAM_ERROR; } if (state.window !== null && state.wbits !== windowBits) { state.window = null; } /* update state and reset the rest of it */ state.wrap = wrap; state.wbits = windowBits; return inflateReset(strm); } function inflateInit2(strm, windowBits) { var ret; var state; if (!strm) { return Z_STREAM_ERROR; } //strm.msg = Z_NULL; /* in case we return an error */ state = new InflateState(); //if (state === Z_NULL) return Z_MEM_ERROR; //Tracev((stderr, "inflate: allocated\n")); strm.state = state; state.window = null/*Z_NULL*/; ret = inflateReset2(strm, windowBits); if (ret !== Z_OK) { strm.state = null/*Z_NULL*/; } return ret; } function inflateInit(strm) { return inflateInit2(strm, DEF_WBITS); } /* Return state with length and distance decoding tables and index sizes set to fixed code decoding. Normally this returns fixed tables from inffixed.h. If BUILDFIXED is defined, then instead this routine builds the tables the first time it's called, and returns those tables the first time and thereafter. This reduces the size of the code by about 2K bytes, in exchange for a little execution time. However, BUILDFIXED should not be used for threaded applications, since the rewriting of the tables and virgin may not be thread-safe. */ var virgin = true; var lenfix, distfix; // We have no pointers in JS, so keep tables separate function fixedtables(state) { /* build fixed huffman tables if first call (may not be thread safe) */ if (virgin) { var sym; lenfix = new utils.Buf32(512); distfix = new utils.Buf32(32); /* literal/length table */ sym = 0; while (sym < 144) { state.lens[sym++] = 8; } while (sym < 256) { state.lens[sym++] = 9; } while (sym < 280) { state.lens[sym++] = 7; } while (sym < 288) { state.lens[sym++] = 8; } inflate_table(LENS, state.lens, 0, 288, lenfix, 0, state.work, { bits: 9 }); /* distance table */ sym = 0; while (sym < 32) { state.lens[sym++] = 5; } inflate_table(DISTS, state.lens, 0, 32, distfix, 0, state.work, { bits: 5 }); /* do this just once */ virgin = false; } state.lencode = lenfix; state.lenbits = 9; state.distcode = distfix; state.distbits = 5; } /* Update the window with the last wsize (normally 32K) bytes written before returning. If window does not exist yet, create it. This is only called when a window is already in use, or when output has been written during this inflate call, but the end of the deflate stream has not been reached yet. It is also called to create a window for dictionary data when a dictionary is loaded. Providing output buffers larger than 32K to inflate() should provide a speed advantage, since only the last 32K of output is copied to the sliding window upon return from inflate(), and since all distances after the first 32K of output will fall in the output data, making match copies simpler and faster. The advantage may be dependent on the size of the processor's data caches. */ function updatewindow(strm, src, end, copy) { var dist; var state = strm.state; /* if it hasn't been done already, allocate space for the window */ if (state.window === null) { state.wsize = 1 << state.wbits; state.wnext = 0; state.whave = 0; state.window = new utils.Buf8(state.wsize); } /* copy state->wsize or less output bytes into the circular window */ if (copy >= state.wsize) { utils.arraySet(state.window, src, end - state.wsize, state.wsize, 0); state.wnext = 0; state.whave = state.wsize; } else { dist = state.wsize - state.wnext; if (dist > copy) { dist = copy; } //zmemcpy(state->window + state->wnext, end - copy, dist); utils.arraySet(state.window, src, end - copy, dist, state.wnext); copy -= dist; if (copy) { //zmemcpy(state->window, end - copy, copy); utils.arraySet(state.window, src, end - copy, copy, 0); state.wnext = copy; state.whave = state.wsize; } else { state.wnext += dist; if (state.wnext === state.wsize) { state.wnext = 0; } if (state.whave < state.wsize) { state.whave += dist; } } } return 0; } function inflate(strm, flush) { var state; var input, output; // input/output buffers var next; /* next input INDEX */ var put; /* next output INDEX */ var have, left; /* available input and output */ var hold; /* bit buffer */ var bits; /* bits in bit buffer */ var _in, _out; /* save starting available input and output */ var copy; /* number of stored or match bytes to copy */ var from; /* where to copy match bytes from */ var from_source; var here = 0; /* current decoding table entry */ var here_bits, here_op, here_val; // paked "here" denormalized (JS specific) //var last; /* parent table entry */ var last_bits, last_op, last_val; // paked "last" denormalized (JS specific) var len; /* length to copy for repeats, bits to drop */ var ret; /* return code */ var hbuf = new utils.Buf8(4); /* buffer for gzip header crc calculation */ var opts; var n; // temporary var for NEED_BITS var order = /* permutation of code lengths */ [ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 ]; if (!strm || !strm.state || !strm.output || (!strm.input && strm.avail_in !== 0)) { return Z_STREAM_ERROR; } state = strm.state; if (state.mode === TYPE) { state.mode = TYPEDO; } /* skip check */ //--- LOAD() --- put = strm.next_out; output = strm.output; left = strm.avail_out; next = strm.next_in; input = strm.input; have = strm.avail_in; hold = state.hold; bits = state.bits; //--- _in = have; _out = left; ret = Z_OK; inf_leave: // goto emulation for (;;) { switch (state.mode) { case HEAD: if (state.wrap === 0) { state.mode = TYPEDO; break; } //=== NEEDBITS(16); while (bits < 16) { if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; } //===// if ((state.wrap & 2) && hold === 0x8b1f) { /* gzip header */ state.check = 0/*crc32(0L, Z_NULL, 0)*/; //=== CRC2(state.check, hold); hbuf[0] = hold & 0xff; hbuf[1] = (hold >>> 8) & 0xff; state.check = crc32(state.check, hbuf, 2, 0); //===// //=== INITBITS(); hold = 0; bits = 0; //===// state.mode = FLAGS; break; } state.flags = 0; /* expect zlib header */ if (state.head) { state.head.done = false; } if (!(state.wrap & 1) || /* check if zlib header allowed */ (((hold & 0xff)/*BITS(8)*/ << 8) + (hold >> 8)) % 31) { strm.msg = 'incorrect header check'; state.mode = BAD; break; } if ((hold & 0x0f)/*BITS(4)*/ !== Z_DEFLATED) { strm.msg = 'unknown compression method'; state.mode = BAD; break; } //--- DROPBITS(4) ---// hold >>>= 4; bits -= 4; //---// len = (hold & 0x0f)/*BITS(4)*/ + 8; if (state.wbits === 0) { state.wbits = len; } else if (len > state.wbits) { strm.msg = 'invalid window size'; state.mode = BAD; break; } state.dmax = 1 << len; //Tracev((stderr, "inflate: zlib header ok\n")); strm.adler = state.check = 1/*adler32(0L, Z_NULL, 0)*/; state.mode = hold & 0x200 ? DICTID : TYPE; //=== INITBITS(); hold = 0; bits = 0; //===// break; case FLAGS: //=== NEEDBITS(16); */ while (bits < 16) { if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; } //===// state.flags = hold; if ((state.flags & 0xff) !== Z_DEFLATED) { strm.msg = 'unknown compression method'; state.mode = BAD; break; } if (state.flags & 0xe000) { strm.msg = 'unknown header flags set'; state.mode = BAD; break; } if (state.head) { state.head.text = ((hold >> 8) & 1); } if (state.flags & 0x0200) { //=== CRC2(state.check, hold); hbuf[0] = hold & 0xff; hbuf[1] = (hold >>> 8) & 0xff; state.check = crc32(state.check, hbuf, 2, 0); //===// } //=== INITBITS(); hold = 0; bits = 0; //===// state.mode = TIME; /* falls through */ case TIME: //=== NEEDBITS(32); */ while (bits < 32) { if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; } //===// if (state.head) { state.head.time = hold; } if (state.flags & 0x0200) { //=== CRC4(state.check, hold) hbuf[0] = hold & 0xff; hbuf[1] = (hold >>> 8) & 0xff; hbuf[2] = (hold >>> 16) & 0xff; hbuf[3] = (hold >>> 24) & 0xff; state.check = crc32(state.check, hbuf, 4, 0); //=== } //=== INITBITS(); hold = 0; bits = 0; //===// state.mode = OS; /* falls through */ case OS: //=== NEEDBITS(16); */ while (bits < 16) { if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; } //===// if (state.head) { state.head.xflags = (hold & 0xff); state.head.os = (hold >> 8); } if (state.flags & 0x0200) { //=== CRC2(state.check, hold); hbuf[0] = hold & 0xff; hbuf[1] = (hold >>> 8) & 0xff; state.check = crc32(state.check, hbuf, 2, 0); //===// } //=== INITBITS(); hold = 0; bits = 0; //===// state.mode = EXLEN; /* falls through */ case EXLEN: if (state.flags & 0x0400) { //=== NEEDBITS(16); */ while (bits < 16) { if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; } //===// state.length = hold; if (state.head) { state.head.extra_len = hold; } if (state.flags & 0x0200) { //=== CRC2(state.check, hold); hbuf[0] = hold & 0xff; hbuf[1] = (hold >>> 8) & 0xff; state.check = crc32(state.check, hbuf, 2, 0); //===// } //=== INITBITS(); hold = 0; bits = 0; //===// } else if (state.head) { state.head.extra = null/*Z_NULL*/; } state.mode = EXTRA; /* falls through */ case EXTRA: if (state.flags & 0x0400) { copy = state.length; if (copy > have) { copy = have; } if (copy) { if (state.head) { len = state.head.extra_len - state.length; if (!state.head.extra) { // Use untyped array for more convenient processing later state.head.extra = new Array(state.head.extra_len); } utils.arraySet( state.head.extra, input, next, // extra field is limited to 65536 bytes // - no need for additional size check copy, /*len + copy > state.head.extra_max - len ? state.head.extra_max : copy,*/ len ); //zmemcpy(state.head.extra + len, next, // len + copy > state.head.extra_max ? // state.head.extra_max - len : copy); } if (state.flags & 0x0200) { state.check = crc32(state.check, input, copy, next); } have -= copy; next += copy; state.length -= copy; } if (state.length) { break inf_leave; } } state.length = 0; state.mode = NAME; /* falls through */ case NAME: if (state.flags & 0x0800) { if (have === 0) { break inf_leave; } copy = 0; do { // TODO: 2 or 1 bytes? len = input[next + copy++]; /* use constant limit because in js we should not preallocate memory */ if (state.head && len && (state.length < 65536 /*state.head.name_max*/)) { state.head.name += String.fromCharCode(len); } } while (len && copy < have); if (state.flags & 0x0200) { state.check = crc32(state.check, input, copy, next); } have -= copy; next += copy; if (len) { break inf_leave; } } else if (state.head) { state.head.name = null; } state.length = 0; state.mode = COMMENT; /* falls through */ case COMMENT: if (state.flags & 0x1000) { if (have === 0) { break inf_leave; } copy = 0; do { len = input[next + copy++]; /* use constant limit because in js we should not preallocate memory */ if (state.head && len && (state.length < 65536 /*state.head.comm_max*/)) { state.head.comment += String.fromCharCode(len); } } while (len && copy < have); if (state.flags & 0x0200) { state.check = crc32(state.check, input, copy, next); } have -= copy; next += copy; if (len) { break inf_leave; } } else if (state.head) { state.head.comment = null; } state.mode = HCRC; /* falls through */ case HCRC: if (state.flags & 0x0200) { //=== NEEDBITS(16); */ while (bits < 16) { if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; } //===// if (hold !== (state.check & 0xffff)) { strm.msg = 'header crc mismatch'; state.mode = BAD; break; } //=== INITBITS(); hold = 0; bits = 0; //===// } if (state.head) { state.head.hcrc = ((state.flags >> 9) & 1); state.head.done = true; } strm.adler = state.check = 0; state.mode = TYPE; break; case DICTID: //=== NEEDBITS(32); */ while (bits < 32) { if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; } //===// strm.adler = state.check = zswap32(hold); //=== INITBITS(); hold = 0; bits = 0; //===// state.mode = DICT; /* falls through */ case DICT: if (state.havedict === 0) { //--- RESTORE() --- strm.next_out = put; strm.avail_out = left; strm.next_in = next; strm.avail_in = have; state.hold = hold; state.bits = bits; //--- return Z_NEED_DICT; } strm.adler = state.check = 1/*adler32(0L, Z_NULL, 0)*/; state.mode = TYPE; /* falls through */ case TYPE: if (flush === Z_BLOCK || flush === Z_TREES) { break inf_leave; } /* falls through */ case TYPEDO: if (state.last) { //--- BYTEBITS() ---// hold >>>= bits & 7; bits -= bits & 7; //---// state.mode = CHECK; break; } //=== NEEDBITS(3); */ while (bits < 3) { if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; } //===// state.last = (hold & 0x01)/*BITS(1)*/; //--- DROPBITS(1) ---// hold >>>= 1; bits -= 1; //---// switch ((hold & 0x03)/*BITS(2)*/) { case 0: /* stored block */ //Tracev((stderr, "inflate: stored block%s\n", // state.last ? " (last)" : "")); state.mode = STORED; break; case 1: /* fixed block */ fixedtables(state); //Tracev((stderr, "inflate: fixed codes block%s\n", // state.last ? " (last)" : "")); state.mode = LEN_; /* decode codes */ if (flush === Z_TREES) { //--- DROPBITS(2) ---// hold >>>= 2; bits -= 2; //---// break inf_leave; } break; case 2: /* dynamic block */ //Tracev((stderr, "inflate: dynamic codes block%s\n", // state.last ? " (last)" : "")); state.mode = TABLE; break; case 3: strm.msg = 'invalid block type'; state.mode = BAD; } //--- DROPBITS(2) ---// hold >>>= 2; bits -= 2; //---// break; case STORED: //--- BYTEBITS() ---// /* go to byte boundary */ hold >>>= bits & 7; bits -= bits & 7; //---// //=== NEEDBITS(32); */ while (bits < 32) { if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; } //===// if ((hold & 0xffff) !== ((hold >>> 16) ^ 0xffff)) { strm.msg = 'invalid stored block lengths'; state.mode = BAD; break; } state.length = hold & 0xffff; //Tracev((stderr, "inflate: stored length %u\n", // state.length)); //=== INITBITS(); hold = 0; bits = 0; //===// state.mode = COPY_; if (flush === Z_TREES) { break inf_leave; } /* falls through */ case COPY_: state.mode = COPY; /* falls through */ case COPY: copy = state.length; if (copy) { if (copy > have) { copy = have; } if (copy > left) { copy = left; } if (copy === 0) { break inf_leave; } //--- zmemcpy(put, next, copy); --- utils.arraySet(output, input, next, copy, put); //---// have -= copy; next += copy; left -= copy; put += copy; state.length -= copy; break; } //Tracev((stderr, "inflate: stored end\n")); state.mode = TYPE; break; case TABLE: //=== NEEDBITS(14); */ while (bits < 14) { if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; } //===// state.nlen = (hold & 0x1f)/*BITS(5)*/ + 257; //--- DROPBITS(5) ---// hold >>>= 5; bits -= 5; //---// state.ndist = (hold & 0x1f)/*BITS(5)*/ + 1; //--- DROPBITS(5) ---// hold >>>= 5; bits -= 5; //---// state.ncode = (hold & 0x0f)/*BITS(4)*/ + 4; //--- DROPBITS(4) ---// hold >>>= 4; bits -= 4; //---// //#ifndef PKZIP_BUG_WORKAROUND if (state.nlen > 286 || state.ndist > 30) { strm.msg = 'too many length or distance symbols'; state.mode = BAD; break; } //#endif //Tracev((stderr, "inflate: table sizes ok\n")); state.have = 0; state.mode = LENLENS; /* falls through */ case LENLENS: while (state.have < state.ncode) { //=== NEEDBITS(3); while (bits < 3) { if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; } //===// state.lens[order[state.have++]] = (hold & 0x07);//BITS(3); //--- DROPBITS(3) ---// hold >>>= 3; bits -= 3; //---// } while (state.have < 19) { state.lens[order[state.have++]] = 0; } // We have separate tables & no pointers. 2 commented lines below not needed. //state.next = state.codes; //state.lencode = state.next; // Switch to use dynamic table state.lencode = state.lendyn; state.lenbits = 7; opts = { bits: state.lenbits }; ret = inflate_table(CODES, state.lens, 0, 19, state.lencode, 0, state.work, opts); state.lenbits = opts.bits; if (ret) { strm.msg = 'invalid code lengths set'; state.mode = BAD; break; } //Tracev((stderr, "inflate: code lengths ok\n")); state.have = 0; state.mode = CODELENS; /* falls through */ case CODELENS: while (state.have < state.nlen + state.ndist) { for (;;) { here = state.lencode[hold & ((1 << state.lenbits) - 1)];/*BITS(state.lenbits)*/ here_bits = here >>> 24; here_op = (here >>> 16) & 0xff; here_val = here & 0xffff; if ((here_bits) <= bits) { break; } //--- PULLBYTE() ---// if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; //---// } if (here_val < 16) { //--- DROPBITS(here.bits) ---// hold >>>= here_bits; bits -= here_bits; //---// state.lens[state.have++] = here_val; } else { if (here_val === 16) { //=== NEEDBITS(here.bits + 2); n = here_bits + 2; while (bits < n) { if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; } //===// //--- DROPBITS(here.bits) ---// hold >>>= here_bits; bits -= here_bits; //---// if (state.have === 0) { strm.msg = 'invalid bit length repeat'; state.mode = BAD; break; } len = state.lens[state.have - 1]; copy = 3 + (hold & 0x03);//BITS(2); //--- DROPBITS(2) ---// hold >>>= 2; bits -= 2; //---// } else if (here_val === 17) { //=== NEEDBITS(here.bits + 3); n = here_bits + 3; while (bits < n) { if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; } //===// //--- DROPBITS(here.bits) ---// hold >>>= here_bits; bits -= here_bits; //---// len = 0; copy = 3 + (hold & 0x07);//BITS(3); //--- DROPBITS(3) ---// hold >>>= 3; bits -= 3; //---// } else { //=== NEEDBITS(here.bits + 7); n = here_bits + 7; while (bits < n) { if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; } //===// //--- DROPBITS(here.bits) ---// hold >>>= here_bits; bits -= here_bits; //---// len = 0; copy = 11 + (hold & 0x7f);//BITS(7); //--- DROPBITS(7) ---// hold >>>= 7; bits -= 7; //---// } if (state.have + copy > state.nlen + state.ndist) { strm.msg = 'invalid bit length repeat'; state.mode = BAD; break; } while (copy--) { state.lens[state.have++] = len; } } } /* handle error breaks in while */ if (state.mode === BAD) { break; } /* check for end-of-block code (better have one) */ if (state.lens[256] === 0) { strm.msg = 'invalid code -- missing end-of-block'; state.mode = BAD; break; } /* build code tables -- note: do not change the lenbits or distbits values here (9 and 6) without reading the comments in inftrees.h concerning the ENOUGH constants, which depend on those values */ state.lenbits = 9; opts = { bits: state.lenbits }; ret = inflate_table(LENS, state.lens, 0, state.nlen, state.lencode, 0, state.work, opts); // We have separate tables & no pointers. 2 commented lines below not needed. // state.next_index = opts.table_index; state.lenbits = opts.bits; // state.lencode = state.next; if (ret) { strm.msg = 'invalid literal/lengths set'; state.mode = BAD; break; } state.distbits = 6; //state.distcode.copy(state.codes); // Switch to use dynamic table state.distcode = state.distdyn; opts = { bits: state.distbits }; ret = inflate_table(DISTS, state.lens, state.nlen, state.ndist, state.distcode, 0, state.work, opts); // We have separate tables & no pointers. 2 commented lines below not needed. // state.next_index = opts.table_index; state.distbits = opts.bits; // state.distcode = state.next; if (ret) { strm.msg = 'invalid distances set'; state.mode = BAD; break; } //Tracev((stderr, 'inflate: codes ok\n')); state.mode = LEN_; if (flush === Z_TREES) { break inf_leave; } /* falls through */ case LEN_: state.mode = LEN; /* falls through */ case LEN: if (have >= 6 && left >= 258) { //--- RESTORE() --- strm.next_out = put; strm.avail_out = left; strm.next_in = next; strm.avail_in = have; state.hold = hold; state.bits = bits; //--- inflate_fast(strm, _out); //--- LOAD() --- put = strm.next_out; output = strm.output; left = strm.avail_out; next = strm.next_in; input = strm.input; have = strm.avail_in; hold = state.hold; bits = state.bits; //--- if (state.mode === TYPE) { state.back = -1; } break; } state.back = 0; for (;;) { here = state.lencode[hold & ((1 << state.lenbits) - 1)]; /*BITS(state.lenbits)*/ here_bits = here >>> 24; here_op = (here >>> 16) & 0xff; here_val = here & 0xffff; if (here_bits <= bits) { break; } //--- PULLBYTE() ---// if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; //---// } if (here_op && (here_op & 0xf0) === 0) { last_bits = here_bits; last_op = here_op; last_val = here_val; for (;;) { here = state.lencode[last_val + ((hold & ((1 << (last_bits + last_op)) - 1))/*BITS(last.bits + last.op)*/ >> last_bits)]; here_bits = here >>> 24; here_op = (here >>> 16) & 0xff; here_val = here & 0xffff; if ((last_bits + here_bits) <= bits) { break; } //--- PULLBYTE() ---// if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; //---// } //--- DROPBITS(last.bits) ---// hold >>>= last_bits; bits -= last_bits; //---// state.back += last_bits; } //--- DROPBITS(here.bits) ---// hold >>>= here_bits; bits -= here_bits; //---// state.back += here_bits; state.length = here_val; if (here_op === 0) { //Tracevv((stderr, here.val >= 0x20 && here.val < 0x7f ? // "inflate: literal '%c'\n" : // "inflate: literal 0x%02x\n", here.val)); state.mode = LIT; break; } if (here_op & 32) { //Tracevv((stderr, "inflate: end of block\n")); state.back = -1; state.mode = TYPE; break; } if (here_op & 64) { strm.msg = 'invalid literal/length code'; state.mode = BAD; break; } state.extra = here_op & 15; state.mode = LENEXT; /* falls through */ case LENEXT: if (state.extra) { //=== NEEDBITS(state.extra); n = state.extra; while (bits < n) { if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; } //===// state.length += hold & ((1 << state.extra) - 1)/*BITS(state.extra)*/; //--- DROPBITS(state.extra) ---// hold >>>= state.extra; bits -= state.extra; //---// state.back += state.extra; } //Tracevv((stderr, "inflate: length %u\n", state.length)); state.was = state.length; state.mode = DIST; /* falls through */ case DIST: for (;;) { here = state.distcode[hold & ((1 << state.distbits) - 1)];/*BITS(state.distbits)*/ here_bits = here >>> 24; here_op = (here >>> 16) & 0xff; here_val = here & 0xffff; if ((here_bits) <= bits) { break; } //--- PULLBYTE() ---// if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; //---// } if ((here_op & 0xf0) === 0) { last_bits = here_bits; last_op = here_op; last_val = here_val; for (;;) { here = state.distcode[last_val + ((hold & ((1 << (last_bits + last_op)) - 1))/*BITS(last.bits + last.op)*/ >> last_bits)]; here_bits = here >>> 24; here_op = (here >>> 16) & 0xff; here_val = here & 0xffff; if ((last_bits + here_bits) <= bits) { break; } //--- PULLBYTE() ---// if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; //---// } //--- DROPBITS(last.bits) ---// hold >>>= last_bits; bits -= last_bits; //---// state.back += last_bits; } //--- DROPBITS(here.bits) ---// hold >>>= here_bits; bits -= here_bits; //---// state.back += here_bits; if (here_op & 64) { strm.msg = 'invalid distance code'; state.mode = BAD; break; } state.offset = here_val; state.extra = (here_op) & 15; state.mode = DISTEXT; /* falls through */ case DISTEXT: if (state.extra) { //=== NEEDBITS(state.extra); n = state.extra; while (bits < n) { if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; } //===// state.offset += hold & ((1 << state.extra) - 1)/*BITS(state.extra)*/; //--- DROPBITS(state.extra) ---// hold >>>= state.extra; bits -= state.extra; //---// state.back += state.extra; } //#ifdef INFLATE_STRICT if (state.offset > state.dmax) { strm.msg = 'invalid distance too far back'; state.mode = BAD; break; } //#endif //Tracevv((stderr, "inflate: distance %u\n", state.offset)); state.mode = MATCH; /* falls through */ case MATCH: if (left === 0) { break inf_leave; } copy = _out - left; if (state.offset > copy) { /* copy from window */ copy = state.offset - copy; if (copy > state.whave) { if (state.sane) { strm.msg = 'invalid distance too far back'; state.mode = BAD; break; } // (!) This block is disabled in zlib defaults, // don't enable it for binary compatibility //#ifdef INFLATE_ALLOW_INVALID_DISTANCE_TOOFAR_ARRR // Trace((stderr, "inflate.c too far\n")); // copy -= state.whave; // if (copy > state.length) { copy = state.length; } // if (copy > left) { copy = left; } // left -= copy; // state.length -= copy; // do { // output[put++] = 0; // } while (--copy); // if (state.length === 0) { state.mode = LEN; } // break; //#endif } if (copy > state.wnext) { copy -= state.wnext; from = state.wsize - copy; } else { from = state.wnext - copy; } if (copy > state.length) { copy = state.length; } from_source = state.window; } else { /* copy from output */ from_source = output; from = put - state.offset; copy = state.length; } if (copy > left) { copy = left; } left -= copy; state.length -= copy; do { output[put++] = from_source[from++]; } while (--copy); if (state.length === 0) { state.mode = LEN; } break; case LIT: if (left === 0) { break inf_leave; } output[put++] = state.length; left--; state.mode = LEN; break; case CHECK: if (state.wrap) { //=== NEEDBITS(32); while (bits < 32) { if (have === 0) { break inf_leave; } have--; // Use '|' instead of '+' to make sure that result is signed hold |= input[next++] << bits; bits += 8; } //===// _out -= left; strm.total_out += _out; state.total += _out; if (_out) { strm.adler = state.check = /*UPDATE(state.check, put - _out, _out);*/ (state.flags ? crc32(state.check, output, _out, put - _out) : adler32(state.check, output, _out, put - _out)); } _out = left; // NB: crc32 stored as signed 32-bit int, zswap32 returns signed too if ((state.flags ? hold : zswap32(hold)) !== state.check) { strm.msg = 'incorrect data check'; state.mode = BAD; break; } //=== INITBITS(); hold = 0; bits = 0; //===// //Tracev((stderr, "inflate: check matches trailer\n")); } state.mode = LENGTH; /* falls through */ case LENGTH: if (state.wrap && state.flags) { //=== NEEDBITS(32); while (bits < 32) { if (have === 0) { break inf_leave; } have--; hold += input[next++] << bits; bits += 8; } //===// if (hold !== (state.total & 0xffffffff)) { strm.msg = 'incorrect length check'; state.mode = BAD; break; } //=== INITBITS(); hold = 0; bits = 0; //===// //Tracev((stderr, "inflate: length matches trailer\n")); } state.mode = DONE; /* falls through */ case DONE: ret = Z_STREAM_END; break inf_leave; case BAD: ret = Z_DATA_ERROR; break inf_leave; case MEM: return Z_MEM_ERROR; case SYNC: /* falls through */ default: return Z_STREAM_ERROR; } } // inf_leave <- here is real place for "goto inf_leave", emulated via "break inf_leave" /* Return from inflate(), updating the total counts and the check value. If there was no progress during the inflate() call, return a buffer error. Call updatewindow() to create and/or update the window state. Note: a memory error from inflate() is non-recoverable. */ //--- RESTORE() --- strm.next_out = put; strm.avail_out = left; strm.next_in = next; strm.avail_in = have; state.hold = hold; state.bits = bits; //--- if (state.wsize || (_out !== strm.avail_out && state.mode < BAD && (state.mode < CHECK || flush !== Z_FINISH))) { if (updatewindow(strm, strm.output, strm.next_out, _out - strm.avail_out)) { state.mode = MEM; return Z_MEM_ERROR; } } _in -= strm.avail_in; _out -= strm.avail_out; strm.total_in += _in; strm.total_out += _out; state.total += _out; if (state.wrap && _out) { strm.adler = state.check = /*UPDATE(state.check, strm.next_out - _out, _out);*/ (state.flags ? crc32(state.check, output, _out, strm.next_out - _out) : adler32(state.check, output, _out, strm.next_out - _out)); } strm.data_type = state.bits + (state.last ? 64 : 0) + (state.mode === TYPE ? 128 : 0) + (state.mode === LEN_ || state.mode === COPY_ ? 256 : 0); if (((_in === 0 && _out === 0) || flush === Z_FINISH) && ret === Z_OK) { ret = Z_BUF_ERROR; } return ret; } function inflateEnd(strm) { if (!strm || !strm.state /*|| strm->zfree == (free_func)0*/) { return Z_STREAM_ERROR; } var state = strm.state; if (state.window) { state.window = null; } strm.state = null; return Z_OK; } function inflateGetHeader(strm, head) { var state; /* check state */ if (!strm || !strm.state) { return Z_STREAM_ERROR; } state = strm.state; if ((state.wrap & 2) === 0) { return Z_STREAM_ERROR; } /* save header structure */ state.head = head; head.done = false; return Z_OK; } function inflateSetDictionary(strm, dictionary) { var dictLength = dictionary.length; var state; var dictid; var ret; /* check state */ if (!strm /* == Z_NULL */ || !strm.state /* == Z_NULL */) { return Z_STREAM_ERROR; } state = strm.state; if (state.wrap !== 0 && state.mode !== DICT) { return Z_STREAM_ERROR; } /* check for correct dictionary identifier */ if (state.mode === DICT) { dictid = 1; /* adler32(0, null, 0)*/ /* dictid = adler32(dictid, dictionary, dictLength); */ dictid = adler32(dictid, dictionary, dictLength, 0); if (dictid !== state.check) { return Z_DATA_ERROR; } } /* copy dictionary to window using updatewindow(), which will amend the existing dictionary if appropriate */ ret = updatewindow(strm, dictionary, dictLength, dictLength); if (ret) { state.mode = MEM; return Z_MEM_ERROR; } state.havedict = 1; // Tracev((stderr, "inflate: dictionary set\n")); return Z_OK; } exports.inflateReset = inflateReset; exports.inflateReset2 = inflateReset2; exports.inflateResetKeep = inflateResetKeep; exports.inflateInit = inflateInit; exports.inflateInit2 = inflateInit2; exports.inflate = inflate; exports.inflateEnd = inflateEnd; exports.inflateGetHeader = inflateGetHeader; exports.inflateSetDictionary = inflateSetDictionary; exports.inflateInfo = 'pako inflate (from Nodeca project)'; /* Not implemented exports.inflateCopy = inflateCopy; exports.inflateGetDictionary = inflateGetDictionary; exports.inflateMark = inflateMark; exports.inflatePrime = inflatePrime; exports.inflateSync = inflateSync; exports.inflateSyncPoint = inflateSyncPoint; exports.inflateUndermine = inflateUndermine; */ },{"../utils/common":36,"./adler32":37,"./crc32":39,"./inffast":41,"./inftrees":43}],43:[function(require,module,exports){ 'use strict'; // (C) 1995-2013 Jean-loup Gailly and Mark Adler // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. var utils = require('../utils/common'); var MAXBITS = 15; var ENOUGH_LENS = 852; var ENOUGH_DISTS = 592; //var ENOUGH = (ENOUGH_LENS+ENOUGH_DISTS); var CODES = 0; var LENS = 1; var DISTS = 2; var lbase = [ /* Length codes 257..285 base */ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0 ]; var lext = [ /* Length codes 257..285 extra */ 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 72, 78 ]; var dbase = [ /* Distance codes 0..29 base */ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0, 0 ]; var dext = [ /* Distance codes 0..29 extra */ 16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 64, 64 ]; module.exports = function inflate_table(type, lens, lens_index, codes, table, table_index, work, opts) { var bits = opts.bits; //here = opts.here; /* table entry for duplication */ var len = 0; /* a code's length in bits */ var sym = 0; /* index of code symbols */ var min = 0, max = 0; /* minimum and maximum code lengths */ var root = 0; /* number of index bits for root table */ var curr = 0; /* number of index bits for current table */ var drop = 0; /* code bits to drop for sub-table */ var left = 0; /* number of prefix codes available */ var used = 0; /* code entries in table used */ var huff = 0; /* Huffman code */ var incr; /* for incrementing code, index */ var fill; /* index for replicating entries */ var low; /* low bits for current root entry */ var mask; /* mask for low root bits */ var next; /* next available space in table */ var base = null; /* base value table to use */ var base_index = 0; // var shoextra; /* extra bits table to use */ var end; /* use base and extra for symbol > end */ var count = new utils.Buf16(MAXBITS + 1); //[MAXBITS+1]; /* number of codes of each length */ var offs = new utils.Buf16(MAXBITS + 1); //[MAXBITS+1]; /* offsets in table for each length */ var extra = null; var extra_index = 0; var here_bits, here_op, here_val; /* Process a set of code lengths to create a canonical Huffman code. The code lengths are lens[0..codes-1]. Each length corresponds to the symbols 0..codes-1. The Huffman code is generated by first sorting the symbols by length from short to long, and retaining the symbol order for codes with equal lengths. Then the code starts with all zero bits for the first code of the shortest length, and the codes are integer increments for the same length, and zeros are appended as the length increases. For the deflate format, these bits are stored backwards from their more natural integer increment ordering, and so when the decoding tables are built in the large loop below, the integer codes are incremented backwards. This routine assumes, but does not check, that all of the entries in lens[] are in the range 0..MAXBITS. The caller must assure this. 1..MAXBITS is interpreted as that code length. zero means that that symbol does not occur in this code. The codes are sorted by computing a count of codes for each length, creating from that a table of starting indices for each length in the sorted table, and then entering the symbols in order in the sorted table. The sorted table is work[], with that space being provided by the caller. The length counts are used for other purposes as well, i.e. finding the minimum and maximum length codes, determining if there are any codes at all, checking for a valid set of lengths, and looking ahead at length counts to determine sub-table sizes when building the decoding tables. */ /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */ for (len = 0; len <= MAXBITS; len++) { count[len] = 0; } for (sym = 0; sym < codes; sym++) { count[lens[lens_index + sym]]++; } /* bound code lengths, force root to be within code lengths */ root = bits; for (max = MAXBITS; max >= 1; max--) { if (count[max] !== 0) { break; } } if (root > max) { root = max; } if (max === 0) { /* no symbols to code at all */ //table.op[opts.table_index] = 64; //here.op = (var char)64; /* invalid code marker */ //table.bits[opts.table_index] = 1; //here.bits = (var char)1; //table.val[opts.table_index++] = 0; //here.val = (var short)0; table[table_index++] = (1 << 24) | (64 << 16) | 0; //table.op[opts.table_index] = 64; //table.bits[opts.table_index] = 1; //table.val[opts.table_index++] = 0; table[table_index++] = (1 << 24) | (64 << 16) | 0; opts.bits = 1; return 0; /* no symbols, but wait for decoding to report error */ } for (min = 1; min < max; min++) { if (count[min] !== 0) { break; } } if (root < min) { root = min; } /* check for an over-subscribed or incomplete set of lengths */ left = 1; for (len = 1; len <= MAXBITS; len++) { left <<= 1; left -= count[len]; if (left < 0) { return -1; } /* over-subscribed */ } if (left > 0 && (type === CODES || max !== 1)) { return -1; /* incomplete set */ } /* generate offsets into symbol table for each length for sorting */ offs[1] = 0; for (len = 1; len < MAXBITS; len++) { offs[len + 1] = offs[len] + count[len]; } /* sort symbols by length, by symbol order within each length */ for (sym = 0; sym < codes; sym++) { if (lens[lens_index + sym] !== 0) { work[offs[lens[lens_index + sym]]++] = sym; } } /* Create and fill in decoding tables. In this loop, the table being filled is at next and has curr index bits. The code being used is huff with length len. That code is converted to an index by dropping drop bits off of the bottom. For codes where len is less than drop + curr, those top drop + curr - len bits are incremented through all values to fill the table with replicated entries. root is the number of index bits for the root table. When len exceeds root, sub-tables are created pointed to by the root entry with an index of the low root bits of huff. This is saved in low to check for when a new sub-table should be started. drop is zero when the root table is being filled, and drop is root when sub-tables are being filled. When a new sub-table is needed, it is necessary to look ahead in the code lengths to determine what size sub-table is needed. The length counts are used for this, and so count[] is decremented as codes are entered in the tables. used keeps track of how many table entries have been allocated from the provided *table space. It is checked for LENS and DIST tables against the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in the initial root table size constants. See the comments in inftrees.h for more information. sym increments through all symbols, and the loop terminates when all codes of length max, i.e. all codes, have been processed. This routine permits incomplete codes, so another loop after this one fills in the rest of the decoding tables with invalid code markers. */ /* set up for code type */ // poor man optimization - use if-else instead of switch, // to avoid deopts in old v8 if (type === CODES) { base = extra = work; /* dummy value--not used */ end = 19; } else if (type === LENS) { base = lbase; base_index -= 257; extra = lext; extra_index -= 257; end = 256; } else { /* DISTS */ base = dbase; extra = dext; end = -1; } /* initialize opts for loop */ huff = 0; /* starting code */ sym = 0; /* starting code symbol */ len = min; /* starting code length */ next = table_index; /* current table to fill in */ curr = root; /* current table index bits */ drop = 0; /* current bits to drop from code for index */ low = -1; /* trigger new sub-table when len > root */ used = 1 << root; /* use root table entries */ mask = used - 1; /* mask for comparing low */ /* check available table space */ if ((type === LENS && used > ENOUGH_LENS) || (type === DISTS && used > ENOUGH_DISTS)) { return 1; } /* process all codes and make table entries */ for (;;) { /* create table entry */ here_bits = len - drop; if (work[sym] < end) { here_op = 0; here_val = work[sym]; } else if (work[sym] > end) { here_op = extra[extra_index + work[sym]]; here_val = base[base_index + work[sym]]; } else { here_op = 32 + 64; /* end of block */ here_val = 0; } /* replicate for those indices with low len bits equal to huff */ incr = 1 << (len - drop); fill = 1 << curr; min = fill; /* save offset to next table */ do { fill -= incr; table[next + (huff >> drop) + fill] = (here_bits << 24) | (here_op << 16) | here_val |0; } while (fill !== 0); /* backwards increment the len-bit code huff */ incr = 1 << (len - 1); while (huff & incr) { incr >>= 1; } if (incr !== 0) { huff &= incr - 1; huff += incr; } else { huff = 0; } /* go to next symbol, update count, len */ sym++; if (--count[len] === 0) { if (len === max) { break; } len = lens[lens_index + work[sym]]; } /* create new sub-table if needed */ if (len > root && (huff & mask) !== low) { /* if first time, transition to sub-tables */ if (drop === 0) { drop = root; } /* increment past last table */ next += min; /* here min is 1 << curr */ /* determine length of next table */ curr = len - drop; left = 1 << curr; while (curr + drop < max) { left -= count[curr + drop]; if (left <= 0) { break; } curr++; left <<= 1; } /* check for enough space */ used += 1 << curr; if ((type === LENS && used > ENOUGH_LENS) || (type === DISTS && used > ENOUGH_DISTS)) { return 1; } /* point entry in root table to sub-table */ low = huff & mask; /*table.op[low] = curr; table.bits[low] = root; table.val[low] = next - opts.table_index;*/ table[low] = (root << 24) | (curr << 16) | (next - table_index) |0; } } /* fill in remaining table entry if code is incomplete (guaranteed to have at most one remaining entry, since if the code is incomplete, the maximum code length that was allowed to get this far is one bit) */ if (huff !== 0) { //table.op[next + huff] = 64; /* invalid code marker */ //table.bits[next + huff] = len - drop; //table.val[next + huff] = 0; table[next + huff] = ((len - drop) << 24) | (64 << 16) |0; } /* set return parameters */ //opts.table_index += used; opts.bits = root; return 0; }; },{"../utils/common":36}],44:[function(require,module,exports){ 'use strict'; // (C) 1995-2013 Jean-loup Gailly and Mark Adler // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. module.exports = { 2: 'need dictionary', /* Z_NEED_DICT 2 */ 1: 'stream end', /* Z_STREAM_END 1 */ 0: '', /* Z_OK 0 */ '-1': 'file error', /* Z_ERRNO (-1) */ '-2': 'stream error', /* Z_STREAM_ERROR (-2) */ '-3': 'data error', /* Z_DATA_ERROR (-3) */ '-4': 'insufficient memory', /* Z_MEM_ERROR (-4) */ '-5': 'buffer error', /* Z_BUF_ERROR (-5) */ '-6': 'incompatible version' /* Z_VERSION_ERROR (-6) */ }; },{}],45:[function(require,module,exports){ 'use strict'; // (C) 1995-2013 Jean-loup Gailly and Mark Adler // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. /* eslint-disable space-unary-ops */ var utils = require('../utils/common'); /* Public constants ==========================================================*/ /* ===========================================================================*/ //var Z_FILTERED = 1; //var Z_HUFFMAN_ONLY = 2; //var Z_RLE = 3; var Z_FIXED = 4; //var Z_DEFAULT_STRATEGY = 0; /* Possible values of the data_type field (though see inflate()) */ var Z_BINARY = 0; var Z_TEXT = 1; //var Z_ASCII = 1; // = Z_TEXT var Z_UNKNOWN = 2; /*============================================================================*/ function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } } // From zutil.h var STORED_BLOCK = 0; var STATIC_TREES = 1; var DYN_TREES = 2; /* The three kinds of block type */ var MIN_MATCH = 3; var MAX_MATCH = 258; /* The minimum and maximum match lengths */ // From deflate.h /* =========================================================================== * Internal compression state. */ var LENGTH_CODES = 29; /* number of length codes, not counting the special END_BLOCK code */ var LITERALS = 256; /* number of literal bytes 0..255 */ var L_CODES = LITERALS + 1 + LENGTH_CODES; /* number of Literal or Length codes, including the END_BLOCK code */ var D_CODES = 30; /* number of distance codes */ var BL_CODES = 19; /* number of codes used to transfer the bit lengths */ var HEAP_SIZE = 2 * L_CODES + 1; /* maximum heap size */ var MAX_BITS = 15; /* All codes must not exceed MAX_BITS bits */ var Buf_size = 16; /* size of bit buffer in bi_buf */ /* =========================================================================== * Constants */ var MAX_BL_BITS = 7; /* Bit length codes must not exceed MAX_BL_BITS bits */ var END_BLOCK = 256; /* end of block literal code */ var REP_3_6 = 16; /* repeat previous bit length 3-6 times (2 bits of repeat count) */ var REPZ_3_10 = 17; /* repeat a zero length 3-10 times (3 bits of repeat count) */ var REPZ_11_138 = 18; /* repeat a zero length 11-138 times (7 bits of repeat count) */ /* eslint-disable comma-spacing,array-bracket-spacing */ var extra_lbits = /* extra bits for each length code */ [0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0]; var extra_dbits = /* extra bits for each distance code */ [0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13]; var extra_blbits = /* extra bits for each bit length code */ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7]; var bl_order = [16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15]; /* eslint-enable comma-spacing,array-bracket-spacing */ /* The lengths of the bit length codes are sent in order of decreasing * probability, to avoid transmitting the lengths for unused bit length codes. */ /* =========================================================================== * Local data. These are initialized only once. */ // We pre-fill arrays with 0 to avoid uninitialized gaps var DIST_CODE_LEN = 512; /* see definition of array dist_code below */ // !!!! Use flat array instead of structure, Freq = i*2, Len = i*2+1 var static_ltree = new Array((L_CODES + 2) * 2); zero(static_ltree); /* The static literal tree. Since the bit lengths are imposed, there is no * need for the L_CODES extra codes used during heap construction. However * The codes 286 and 287 are needed to build a canonical tree (see _tr_init * below). */ var static_dtree = new Array(D_CODES * 2); zero(static_dtree); /* The static distance tree. (Actually a trivial tree since all codes use * 5 bits.) */ var _dist_code = new Array(DIST_CODE_LEN); zero(_dist_code); /* Distance codes. The first 256 values correspond to the distances * 3 .. 258, the last 256 values correspond to the top 8 bits of * the 15 bit distances. */ var _length_code = new Array(MAX_MATCH - MIN_MATCH + 1); zero(_length_code); /* length code for each normalized match length (0 == MIN_MATCH) */ var base_length = new Array(LENGTH_CODES); zero(base_length); /* First normalized length for each code (0 = MIN_MATCH) */ var base_dist = new Array(D_CODES); zero(base_dist); /* First normalized distance for each code (0 = distance of 1) */ function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) { this.static_tree = static_tree; /* static tree or NULL */ this.extra_bits = extra_bits; /* extra bits for each code or NULL */ this.extra_base = extra_base; /* base index for extra_bits */ this.elems = elems; /* max number of elements in the tree */ this.max_length = max_length; /* max bit length for the codes */ // show if `static_tree` has data or dummy - needed for monomorphic objects this.has_stree = static_tree && static_tree.length; } var static_l_desc; var static_d_desc; var static_bl_desc; function TreeDesc(dyn_tree, stat_desc) { this.dyn_tree = dyn_tree; /* the dynamic tree */ this.max_code = 0; /* largest code with non zero frequency */ this.stat_desc = stat_desc; /* the corresponding static tree */ } function d_code(dist) { return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)]; } /* =========================================================================== * Output a short LSB first on the stream. * IN assertion: there is enough room in pendingBuf. */ function put_short(s, w) { // put_byte(s, (uch)((w) & 0xff)); // put_byte(s, (uch)((ush)(w) >> 8)); s.pending_buf[s.pending++] = (w) & 0xff; s.pending_buf[s.pending++] = (w >>> 8) & 0xff; } /* =========================================================================== * Send a value on a given number of bits. * IN assertion: length <= 16 and value fits in length bits. */ function send_bits(s, value, length) { if (s.bi_valid > (Buf_size - length)) { s.bi_buf |= (value << s.bi_valid) & 0xffff; put_short(s, s.bi_buf); s.bi_buf = value >> (Buf_size - s.bi_valid); s.bi_valid += length - Buf_size; } else { s.bi_buf |= (value << s.bi_valid) & 0xffff; s.bi_valid += length; } } function send_code(s, c, tree) { send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/); } /* =========================================================================== * Reverse the first len bits of a code, using straightforward code (a faster * method would use a table) * IN assertion: 1 <= len <= 15 */ function bi_reverse(code, len) { var res = 0; do { res |= code & 1; code >>>= 1; res <<= 1; } while (--len > 0); return res >>> 1; } /* =========================================================================== * Flush the bit buffer, keeping at most 7 bits in it. */ function bi_flush(s) { if (s.bi_valid === 16) { put_short(s, s.bi_buf); s.bi_buf = 0; s.bi_valid = 0; } else if (s.bi_valid >= 8) { s.pending_buf[s.pending++] = s.bi_buf & 0xff; s.bi_buf >>= 8; s.bi_valid -= 8; } } /* =========================================================================== * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and * above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the * array bl_count contains the frequencies for each bit length. * The length opt_len is updated; static_len is also updated if stree is * not null. */ function gen_bitlen(s, desc) // deflate_state *s; // tree_desc *desc; /* the tree descriptor */ { var tree = desc.dyn_tree; var max_code = desc.max_code; var stree = desc.stat_desc.static_tree; var has_stree = desc.stat_desc.has_stree; var extra = desc.stat_desc.extra_bits; var base = desc.stat_desc.extra_base; var max_length = desc.stat_desc.max_length; var h; /* heap index */ var n, m; /* iterate over the tree elements */ var bits; /* bit length */ var xbits; /* extra bits */ var f; /* frequency */ var overflow = 0; /* number of elements with bit length too large */ for (bits = 0; bits <= MAX_BITS; bits++) { s.bl_count[bits] = 0; } /* In a first pass, compute the optimal bit lengths (which may * overflow in the case of the bit length tree). */ tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */ for (h = s.heap_max + 1; h < HEAP_SIZE; h++) { n = s.heap[h]; bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1; if (bits > max_length) { bits = max_length; overflow++; } tree[n * 2 + 1]/*.Len*/ = bits; /* We overwrite tree[n].Dad which is no longer needed */ if (n > max_code) { continue; } /* not a leaf node */ s.bl_count[bits]++; xbits = 0; if (n >= base) { xbits = extra[n - base]; } f = tree[n * 2]/*.Freq*/; s.opt_len += f * (bits + xbits); if (has_stree) { s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits); } } if (overflow === 0) { return; } // Trace((stderr,"\nbit length overflow\n")); /* This happens for example on obj2 and pic of the Calgary corpus */ /* Find the first bit length which could increase: */ do { bits = max_length - 1; while (s.bl_count[bits] === 0) { bits--; } s.bl_count[bits]--; /* move one leaf down the tree */ s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */ s.bl_count[max_length]--; /* The brother of the overflow item also moves one step up, * but this does not affect bl_count[max_length] */ overflow -= 2; } while (overflow > 0); /* Now recompute all bit lengths, scanning in increasing frequency. * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all * lengths instead of fixing only the wrong ones. This idea is taken * from 'ar' written by Haruhiko Okumura.) */ for (bits = max_length; bits !== 0; bits--) { n = s.bl_count[bits]; while (n !== 0) { m = s.heap[--h]; if (m > max_code) { continue; } if (tree[m * 2 + 1]/*.Len*/ !== bits) { // Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/; tree[m * 2 + 1]/*.Len*/ = bits; } n--; } } } /* =========================================================================== * Generate the codes for a given tree and bit counts (which need not be * optimal). * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non * zero code length. */ function gen_codes(tree, max_code, bl_count) // ct_data *tree; /* the tree to decorate */ // int max_code; /* largest code with non zero frequency */ // ushf *bl_count; /* number of codes at each bit length */ { var next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */ var code = 0; /* running code value */ var bits; /* bit index */ var n; /* code index */ /* The distribution counts are first used to generate the code values * without bit reversal. */ for (bits = 1; bits <= MAX_BITS; bits++) { next_code[bits] = code = (code + bl_count[bits - 1]) << 1; } /* Check that the bit counts in bl_count are consistent. The last code * must be all ones. */ //Assert (code + bl_count[MAX_BITS]-1 == (1< length code (0..28) */ length = 0; for (code = 0; code < LENGTH_CODES - 1; code++) { base_length[code] = length; for (n = 0; n < (1 << extra_lbits[code]); n++) { _length_code[length++] = code; } } //Assert (length == 256, "tr_static_init: length != 256"); /* Note that the length 255 (match length 258) can be represented * in two different ways: code 284 + 5 bits or code 285, so we * overwrite length_code[255] to use the best encoding: */ _length_code[length - 1] = code; /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ dist = 0; for (code = 0; code < 16; code++) { base_dist[code] = dist; for (n = 0; n < (1 << extra_dbits[code]); n++) { _dist_code[dist++] = code; } } //Assert (dist == 256, "tr_static_init: dist != 256"); dist >>= 7; /* from now on, all distances are divided by 128 */ for (; code < D_CODES; code++) { base_dist[code] = dist << 7; for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) { _dist_code[256 + dist++] = code; } } //Assert (dist == 256, "tr_static_init: 256+dist != 512"); /* Construct the codes of the static literal tree */ for (bits = 0; bits <= MAX_BITS; bits++) { bl_count[bits] = 0; } n = 0; while (n <= 143) { static_ltree[n * 2 + 1]/*.Len*/ = 8; n++; bl_count[8]++; } while (n <= 255) { static_ltree[n * 2 + 1]/*.Len*/ = 9; n++; bl_count[9]++; } while (n <= 279) { static_ltree[n * 2 + 1]/*.Len*/ = 7; n++; bl_count[7]++; } while (n <= 287) { static_ltree[n * 2 + 1]/*.Len*/ = 8; n++; bl_count[8]++; } /* Codes 286 and 287 do not exist, but we must include them in the * tree construction to get a canonical Huffman tree (longest code * all ones) */ gen_codes(static_ltree, L_CODES + 1, bl_count); /* The static distance tree is trivial: */ for (n = 0; n < D_CODES; n++) { static_dtree[n * 2 + 1]/*.Len*/ = 5; static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5); } // Now data ready and we can init static trees static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS); static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0, D_CODES, MAX_BITS); static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0, BL_CODES, MAX_BL_BITS); //static_init_done = true; } /* =========================================================================== * Initialize a new block. */ function init_block(s) { var n; /* iterates over tree elements */ /* Initialize the trees. */ for (n = 0; n < L_CODES; n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; } for (n = 0; n < D_CODES; n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; } for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; } s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1; s.opt_len = s.static_len = 0; s.last_lit = s.matches = 0; } /* =========================================================================== * Flush the bit buffer and align the output on a byte boundary */ function bi_windup(s) { if (s.bi_valid > 8) { put_short(s, s.bi_buf); } else if (s.bi_valid > 0) { //put_byte(s, (Byte)s->bi_buf); s.pending_buf[s.pending++] = s.bi_buf; } s.bi_buf = 0; s.bi_valid = 0; } /* =========================================================================== * Copy a stored block, storing first the length and its * one's complement if requested. */ function copy_block(s, buf, len, header) //DeflateState *s; //charf *buf; /* the input data */ //unsigned len; /* its length */ //int header; /* true if block header must be written */ { bi_windup(s); /* align on byte boundary */ if (header) { put_short(s, len); put_short(s, ~len); } // while (len--) { // put_byte(s, *buf++); // } utils.arraySet(s.pending_buf, s.window, buf, len, s.pending); s.pending += len; } /* =========================================================================== * Compares to subtrees, using the tree depth as tie breaker when * the subtrees have equal frequency. This minimizes the worst case length. */ function smaller(tree, n, m, depth) { var _n2 = n * 2; var _m2 = m * 2; return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ || (tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m])); } /* =========================================================================== * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). */ function pqdownheap(s, tree, k) // deflate_state *s; // ct_data *tree; /* the tree to restore */ // int k; /* node to move down */ { var v = s.heap[k]; var j = k << 1; /* left son of k */ while (j <= s.heap_len) { /* Set j to the smallest of the two sons: */ if (j < s.heap_len && smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) { j++; } /* Exit if v is smaller than both sons */ if (smaller(tree, v, s.heap[j], s.depth)) { break; } /* Exchange v with the smallest son */ s.heap[k] = s.heap[j]; k = j; /* And continue down the tree, setting j to the left son of k */ j <<= 1; } s.heap[k] = v; } // inlined manually // var SMALLEST = 1; /* =========================================================================== * Send the block data compressed using the given Huffman trees */ function compress_block(s, ltree, dtree) // deflate_state *s; // const ct_data *ltree; /* literal tree */ // const ct_data *dtree; /* distance tree */ { var dist; /* distance of matched string */ var lc; /* match length or unmatched char (if dist == 0) */ var lx = 0; /* running index in l_buf */ var code; /* the code to send */ var extra; /* number of extra bits to send */ if (s.last_lit !== 0) { do { dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]); lc = s.pending_buf[s.l_buf + lx]; lx++; if (dist === 0) { send_code(s, lc, ltree); /* send a literal byte */ //Tracecv(isgraph(lc), (stderr," '%c' ", lc)); } else { /* Here, lc is the match length - MIN_MATCH */ code = _length_code[lc]; send_code(s, code + LITERALS + 1, ltree); /* send the length code */ extra = extra_lbits[code]; if (extra !== 0) { lc -= base_length[code]; send_bits(s, lc, extra); /* send the extra length bits */ } dist--; /* dist is now the match distance - 1 */ code = d_code(dist); //Assert (code < D_CODES, "bad d_code"); send_code(s, code, dtree); /* send the distance code */ extra = extra_dbits[code]; if (extra !== 0) { dist -= base_dist[code]; send_bits(s, dist, extra); /* send the extra distance bits */ } } /* literal or match pair ? */ /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ //Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, // "pendingBuf overflow"); } while (lx < s.last_lit); } send_code(s, END_BLOCK, ltree); } /* =========================================================================== * Construct one Huffman tree and assigns the code bit strings and lengths. * Update the total bit length for the current block. * IN assertion: the field freq is set for all tree elements. * OUT assertions: the fields len and code are set to the optimal bit length * and corresponding code. The length opt_len is updated; static_len is * also updated if stree is not null. The field max_code is set. */ function build_tree(s, desc) // deflate_state *s; // tree_desc *desc; /* the tree descriptor */ { var tree = desc.dyn_tree; var stree = desc.stat_desc.static_tree; var has_stree = desc.stat_desc.has_stree; var elems = desc.stat_desc.elems; var n, m; /* iterate over heap elements */ var max_code = -1; /* largest code with non zero frequency */ var node; /* new node being created */ /* Construct the initial heap, with least frequent element in * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. * heap[0] is not used. */ s.heap_len = 0; s.heap_max = HEAP_SIZE; for (n = 0; n < elems; n++) { if (tree[n * 2]/*.Freq*/ !== 0) { s.heap[++s.heap_len] = max_code = n; s.depth[n] = 0; } else { tree[n * 2 + 1]/*.Len*/ = 0; } } /* The pkzip format requires that at least one distance code exists, * and that at least one bit should be sent even if there is only one * possible code. So to avoid special checks later on we force at least * two codes of non zero frequency. */ while (s.heap_len < 2) { node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0); tree[node * 2]/*.Freq*/ = 1; s.depth[node] = 0; s.opt_len--; if (has_stree) { s.static_len -= stree[node * 2 + 1]/*.Len*/; } /* node is 0 or 1 so it does not have extra bits */ } desc.max_code = max_code; /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, * establish sub-heaps of increasing lengths: */ for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); } /* Construct the Huffman tree by repeatedly combining the least two * frequent nodes. */ node = elems; /* next internal node of the tree */ do { //pqremove(s, tree, n); /* n = node of least frequency */ /*** pqremove ***/ n = s.heap[1/*SMALLEST*/]; s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--]; pqdownheap(s, tree, 1/*SMALLEST*/); /***/ m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */ s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */ s.heap[--s.heap_max] = m; /* Create a new node father of n and m */ tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/; s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1; tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node; /* and insert the new node in the heap */ s.heap[1/*SMALLEST*/] = node++; pqdownheap(s, tree, 1/*SMALLEST*/); } while (s.heap_len >= 2); s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/]; /* At this point, the fields freq and dad are set. We can now * generate the bit lengths. */ gen_bitlen(s, desc); /* The field len is now set, we can generate the bit codes */ gen_codes(tree, max_code, s.bl_count); } /* =========================================================================== * Scan a literal or distance tree to determine the frequencies of the codes * in the bit length tree. */ function scan_tree(s, tree, max_code) // deflate_state *s; // ct_data *tree; /* the tree to be scanned */ // int max_code; /* and its largest code of non zero frequency */ { var n; /* iterates over all tree elements */ var prevlen = -1; /* last emitted length */ var curlen; /* length of current code */ var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */ var count = 0; /* repeat count of the current code */ var max_count = 7; /* max repeat count */ var min_count = 4; /* min repeat count */ if (nextlen === 0) { max_count = 138; min_count = 3; } tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */ for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[(n + 1) * 2 + 1]/*.Len*/; if (++count < max_count && curlen === nextlen) { continue; } else if (count < min_count) { s.bl_tree[curlen * 2]/*.Freq*/ += count; } else if (curlen !== 0) { if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; } s.bl_tree[REP_3_6 * 2]/*.Freq*/++; } else if (count <= 10) { s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++; } else { s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++; } count = 0; prevlen = curlen; if (nextlen === 0) { max_count = 138; min_count = 3; } else if (curlen === nextlen) { max_count = 6; min_count = 3; } else { max_count = 7; min_count = 4; } } } /* =========================================================================== * Send a literal or distance tree in compressed form, using the codes in * bl_tree. */ function send_tree(s, tree, max_code) // deflate_state *s; // ct_data *tree; /* the tree to be scanned */ // int max_code; /* and its largest code of non zero frequency */ { var n; /* iterates over all tree elements */ var prevlen = -1; /* last emitted length */ var curlen; /* length of current code */ var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */ var count = 0; /* repeat count of the current code */ var max_count = 7; /* max repeat count */ var min_count = 4; /* min repeat count */ /* tree[max_code+1].Len = -1; */ /* guard already set */ if (nextlen === 0) { max_count = 138; min_count = 3; } for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[(n + 1) * 2 + 1]/*.Len*/; if (++count < max_count && curlen === nextlen) { continue; } else if (count < min_count) { do { send_code(s, curlen, s.bl_tree); } while (--count !== 0); } else if (curlen !== 0) { if (curlen !== prevlen) { send_code(s, curlen, s.bl_tree); count--; } //Assert(count >= 3 && count <= 6, " 3_6?"); send_code(s, REP_3_6, s.bl_tree); send_bits(s, count - 3, 2); } else if (count <= 10) { send_code(s, REPZ_3_10, s.bl_tree); send_bits(s, count - 3, 3); } else { send_code(s, REPZ_11_138, s.bl_tree); send_bits(s, count - 11, 7); } count = 0; prevlen = curlen; if (nextlen === 0) { max_count = 138; min_count = 3; } else if (curlen === nextlen) { max_count = 6; min_count = 3; } else { max_count = 7; min_count = 4; } } } /* =========================================================================== * Construct the Huffman tree for the bit lengths and return the index in * bl_order of the last bit length code to send. */ function build_bl_tree(s) { var max_blindex; /* index of last bit length code of non zero freq */ /* Determine the bit length frequencies for literal and distance trees */ scan_tree(s, s.dyn_ltree, s.l_desc.max_code); scan_tree(s, s.dyn_dtree, s.d_desc.max_code); /* Build the bit length tree: */ build_tree(s, s.bl_desc); /* opt_len now includes the length of the tree representations, except * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. */ /* Determine the number of bit length codes to send. The pkzip format * requires that at least 4 bit length codes be sent. (appnote.txt says * 3 but the actual value used is 4.) */ for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) { if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) { break; } } /* Update opt_len to include the bit length tree and counts */ s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4; //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", // s->opt_len, s->static_len)); return max_blindex; } /* =========================================================================== * Send the header for a block using dynamic Huffman trees: the counts, the * lengths of the bit length codes, the literal tree and the distance tree. * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. */ function send_all_trees(s, lcodes, dcodes, blcodes) // deflate_state *s; // int lcodes, dcodes, blcodes; /* number of codes for each tree */ { var rank; /* index in bl_order */ //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, // "too many codes"); //Tracev((stderr, "\nbl counts: ")); send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */ send_bits(s, dcodes - 1, 5); send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */ for (rank = 0; rank < blcodes; rank++) { //Tracev((stderr, "\nbl code %2d ", bl_order[rank])); send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3); } //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */ //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */ //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); } /* =========================================================================== * Check if the data type is TEXT or BINARY, using the following algorithm: * - TEXT if the two conditions below are satisfied: * a) There are no non-portable control characters belonging to the * "black list" (0..6, 14..25, 28..31). * b) There is at least one printable character belonging to the * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). * - BINARY otherwise. * - The following partially-portable control characters form a * "gray list" that is ignored in this detection algorithm: * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). * IN assertion: the fields Freq of dyn_ltree are set. */ function detect_data_type(s) { /* black_mask is the bit mask of black-listed bytes * set bits 0..6, 14..25, and 28..31 * 0xf3ffc07f = binary 11110011111111111100000001111111 */ var black_mask = 0xf3ffc07f; var n; /* Check for non-textual ("black-listed") bytes. */ for (n = 0; n <= 31; n++, black_mask >>>= 1) { if ((black_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) { return Z_BINARY; } } /* Check for textual ("white-listed") bytes. */ if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) { return Z_TEXT; } for (n = 32; n < LITERALS; n++) { if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) { return Z_TEXT; } } /* There are no "black-listed" or "white-listed" bytes: * this stream either is empty or has tolerated ("gray-listed") bytes only. */ return Z_BINARY; } var static_init_done = false; /* =========================================================================== * Initialize the tree data structures for a new zlib stream. */ function _tr_init(s) { if (!static_init_done) { tr_static_init(); static_init_done = true; } s.l_desc = new TreeDesc(s.dyn_ltree, static_l_desc); s.d_desc = new TreeDesc(s.dyn_dtree, static_d_desc); s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc); s.bi_buf = 0; s.bi_valid = 0; /* Initialize the first block of the first file: */ init_block(s); } /* =========================================================================== * Send a stored block */ function _tr_stored_block(s, buf, stored_len, last) //DeflateState *s; //charf *buf; /* input block */ //ulg stored_len; /* length of input block */ //int last; /* one if this is the last block for a file */ { send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3); /* send block type */ copy_block(s, buf, stored_len, true); /* with header */ } /* =========================================================================== * Send one empty static block to give enough lookahead for inflate. * This takes 10 bits, of which 7 may remain in the bit buffer. */ function _tr_align(s) { send_bits(s, STATIC_TREES << 1, 3); send_code(s, END_BLOCK, static_ltree); bi_flush(s); } /* =========================================================================== * Determine the best encoding for the current block: dynamic trees, static * trees or store, and output the encoded block to the zip file. */ function _tr_flush_block(s, buf, stored_len, last) //DeflateState *s; //charf *buf; /* input block, or NULL if too old */ //ulg stored_len; /* length of input block */ //int last; /* one if this is the last block for a file */ { var opt_lenb, static_lenb; /* opt_len and static_len in bytes */ var max_blindex = 0; /* index of last bit length code of non zero freq */ /* Build the Huffman trees unless a stored block is forced */ if (s.level > 0) { /* Check if the file is binary or text */ if (s.strm.data_type === Z_UNKNOWN) { s.strm.data_type = detect_data_type(s); } /* Construct the literal and distance trees */ build_tree(s, s.l_desc); // Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, // s->static_len)); build_tree(s, s.d_desc); // Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, // s->static_len)); /* At this point, opt_len and static_len are the total bit lengths of * the compressed block data, excluding the tree representations. */ /* Build the bit length tree for the above two trees, and get the index * in bl_order of the last bit length code to send. */ max_blindex = build_bl_tree(s); /* Determine the best encoding. Compute the block lengths in bytes. */ opt_lenb = (s.opt_len + 3 + 7) >>> 3; static_lenb = (s.static_len + 3 + 7) >>> 3; // Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", // opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, // s->last_lit)); if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; } } else { // Assert(buf != (char*)0, "lost buf"); opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ } if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) { /* 4: two words for the lengths */ /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. * Otherwise we can't have processed more than WSIZE input bytes since * the last block flush, because compression would have been * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to * transform a block into a stored block. */ _tr_stored_block(s, buf, stored_len, last); } else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) { send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3); compress_block(s, static_ltree, static_dtree); } else { send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3); send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1); compress_block(s, s.dyn_ltree, s.dyn_dtree); } // Assert (s->compressed_len == s->bits_sent, "bad compressed size"); /* The above check is made mod 2^32, for files larger than 512 MB * and uLong implemented on 32 bits. */ init_block(s); if (last) { bi_windup(s); } // Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, // s->compressed_len-7*last)); } /* =========================================================================== * Save the match info and tally the frequency counts. Return true if * the current block must be flushed. */ function _tr_tally(s, dist, lc) // deflate_state *s; // unsigned dist; /* distance of matched string */ // unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ { //var out_length, in_length, dcode; s.pending_buf[s.d_buf + s.last_lit * 2] = (dist >>> 8) & 0xff; s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff; s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff; s.last_lit++; if (dist === 0) { /* lc is the unmatched char */ s.dyn_ltree[lc * 2]/*.Freq*/++; } else { s.matches++; /* Here, lc is the match length - MIN_MATCH */ dist--; /* dist = match distance - 1 */ //Assert((ush)dist < (ush)MAX_DIST(s) && // (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && // (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2]/*.Freq*/++; s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++; } // (!) This block is disabled in zlib defaults, // don't enable it for binary compatibility //#ifdef TRUNCATE_BLOCK // /* Try to guess if it is profitable to stop the current block here */ // if ((s.last_lit & 0x1fff) === 0 && s.level > 2) { // /* Compute an upper bound for the compressed length */ // out_length = s.last_lit*8; // in_length = s.strstart - s.block_start; // // for (dcode = 0; dcode < D_CODES; dcode++) { // out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]); // } // out_length >>>= 3; // //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", // // s->last_lit, in_length, out_length, // // 100L - out_length*100L/in_length)); // if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) { // return true; // } // } //#endif return (s.last_lit === s.lit_bufsize - 1); /* We avoid equality with lit_bufsize because of wraparound at 64K * on 16 bit machines and because stored blocks are restricted to * 64K-1 bytes. */ } exports._tr_init = _tr_init; exports._tr_stored_block = _tr_stored_block; exports._tr_flush_block = _tr_flush_block; exports._tr_tally = _tr_tally; exports._tr_align = _tr_align; },{"../utils/common":36}],46:[function(require,module,exports){ 'use strict'; // (C) 1995-2013 Jean-loup Gailly and Mark Adler // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. function ZStream() { /* next input byte */ this.input = null; // JS specific, because we have no pointers this.next_in = 0; /* number of bytes available at input */ this.avail_in = 0; /* total number of input bytes read so far */ this.total_in = 0; /* next output byte should be put there */ this.output = null; // JS specific, because we have no pointers this.next_out = 0; /* remaining free space at output */ this.avail_out = 0; /* total number of bytes output so far */ this.total_out = 0; /* last error message, NULL if no error */ this.msg = ''/*Z_NULL*/; /* not visible by applications */ this.state = null; /* best guess about the data type: binary or text */ this.data_type = 2/*Z_UNKNOWN*/; /* adler32 value of the uncompressed data */ this.adler = 0; } module.exports = ZStream; },{}],47:[function(require,module,exports){ arguments[4][33][0].apply(exports,arguments) },{"dup":33}],48:[function(require,module,exports){ (function (Buffer){ /*! * The buffer module from node.js, for the browser. * * @author Feross Aboukhadijeh * @license MIT */ /* eslint-disable no-proto */ 'use strict' var base64 = require('base64-js') var ieee754 = require('ieee754') var customInspectSymbol = (typeof Symbol === 'function' && typeof Symbol.for === 'function') ? Symbol.for('nodejs.util.inspect.custom') : null exports.Buffer = Buffer exports.SlowBuffer = SlowBuffer exports.INSPECT_MAX_BYTES = 50 var K_MAX_LENGTH = 0x7fffffff exports.kMaxLength = K_MAX_LENGTH /** * If `Buffer.TYPED_ARRAY_SUPPORT`: * === true Use Uint8Array implementation (fastest) * === false Print warning and recommend using `buffer` v4.x which has an Object * implementation (most compatible, even IE6) * * Browsers that support typed arrays are IE 10+, Firefox 4+, Chrome 7+, Safari 5.1+, * Opera 11.6+, iOS 4.2+. * * We report that the browser does not support typed arrays if the are not subclassable * using __proto__. Firefox 4-29 lacks support for adding new properties to `Uint8Array` * (See: https://bugzilla.mozilla.org/show_bug.cgi?id=695438). IE 10 lacks support * for __proto__ and has a buggy typed array implementation. */ Buffer.TYPED_ARRAY_SUPPORT = typedArraySupport() if (!Buffer.TYPED_ARRAY_SUPPORT && typeof console !== 'undefined' && typeof console.error === 'function') { console.error( 'This browser lacks typed array (Uint8Array) support which is required by ' + '`buffer` v5.x. Use `buffer` v4.x if you require old browser support.' ) } function typedArraySupport () { // Can typed array instances can be augmented? try { var arr = new Uint8Array(1) var proto = { foo: function () { return 42 } } Object.setPrototypeOf(proto, Uint8Array.prototype) Object.setPrototypeOf(arr, proto) return arr.foo() === 42 } catch (e) { return false } } Object.defineProperty(Buffer.prototype, 'parent', { enumerable: true, get: function () { if (!Buffer.isBuffer(this)) return undefined return this.buffer } }) Object.defineProperty(Buffer.prototype, 'offset', { enumerable: true, get: function () { if (!Buffer.isBuffer(this)) return undefined return this.byteOffset } }) function createBuffer (length) { if (length > K_MAX_LENGTH) { throw new RangeError('The value "' + length + '" is invalid for option "size"') } // Return an augmented `Uint8Array` instance var buf = new Uint8Array(length) Object.setPrototypeOf(buf, Buffer.prototype) return buf } /** * The Buffer constructor returns instances of `Uint8Array` that have their * prototype changed to `Buffer.prototype`. Furthermore, `Buffer` is a subclass of * `Uint8Array`, so the returned instances will have all the node `Buffer` methods * and the `Uint8Array` methods. Square bracket notation works as expected -- it * returns a single octet. * * The `Uint8Array` prototype remains unmodified. */ function Buffer (arg, encodingOrOffset, length) { // Common case. if (typeof arg === 'number') { if (typeof encodingOrOffset === 'string') { throw new TypeError( 'The "string" argument must be of type string. Received type number' ) } return allocUnsafe(arg) } return from(arg, encodingOrOffset, length) } // Fix subarray() in ES2016. See: https://github.com/feross/buffer/pull/97 if (typeof Symbol !== 'undefined' && Symbol.species != null && Buffer[Symbol.species] === Buffer) { Object.defineProperty(Buffer, Symbol.species, { value: null, configurable: true, enumerable: false, writable: false }) } Buffer.poolSize = 8192 // not used by this implementation function from (value, encodingOrOffset, length) { if (typeof value === 'string') { return fromString(value, encodingOrOffset) } if (ArrayBuffer.isView(value)) { return fromArrayLike(value) } if (value == null) { throw new TypeError( 'The first argument must be one of type string, Buffer, ArrayBuffer, Array, ' + 'or Array-like Object. Received type ' + (typeof value) ) } if (isInstance(value, ArrayBuffer) || (value && isInstance(value.buffer, ArrayBuffer))) { return fromArrayBuffer(value, encodingOrOffset, length) } if (typeof value === 'number') { throw new TypeError( 'The "value" argument must not be of type number. Received type number' ) } var valueOf = value.valueOf && value.valueOf() if (valueOf != null && valueOf !== value) { return Buffer.from(valueOf, encodingOrOffset, length) } var b = fromObject(value) if (b) return b if (typeof Symbol !== 'undefined' && Symbol.toPrimitive != null && typeof value[Symbol.toPrimitive] === 'function') { return Buffer.from( value[Symbol.toPrimitive]('string'), encodingOrOffset, length ) } throw new TypeError( 'The first argument must be one of type string, Buffer, ArrayBuffer, Array, ' + 'or Array-like Object. Received type ' + (typeof value) ) } /** * Functionally equivalent to Buffer(arg, encoding) but throws a TypeError * if value is a number. * Buffer.from(str[, encoding]) * Buffer.from(array) * Buffer.from(buffer) * Buffer.from(arrayBuffer[, byteOffset[, length]]) **/ Buffer.from = function (value, encodingOrOffset, length) { return from(value, encodingOrOffset, length) } // Note: Change prototype *after* Buffer.from is defined to workaround Chrome bug: // https://github.com/feross/buffer/pull/148 Object.setPrototypeOf(Buffer.prototype, Uint8Array.prototype) Object.setPrototypeOf(Buffer, Uint8Array) function assertSize (size) { if (typeof size !== 'number') { throw new TypeError('"size" argument must be of type number') } else if (size < 0) { throw new RangeError('The value "' + size + '" is invalid for option "size"') } } function alloc (size, fill, encoding) { assertSize(size) if (size <= 0) { return createBuffer(size) } if (fill !== undefined) { // Only pay attention to encoding if it's a string. This // prevents accidentally sending in a number that would // be interpretted as a start offset. return typeof encoding === 'string' ? createBuffer(size).fill(fill, encoding) : createBuffer(size).fill(fill) } return createBuffer(size) } /** * Creates a new filled Buffer instance. * alloc(size[, fill[, encoding]]) **/ Buffer.alloc = function (size, fill, encoding) { return alloc(size, fill, encoding) } function allocUnsafe (size) { assertSize(size) return createBuffer(size < 0 ? 0 : checked(size) | 0) } /** * Equivalent to Buffer(num), by default creates a non-zero-filled Buffer instance. * */ Buffer.allocUnsafe = function (size) { return allocUnsafe(size) } /** * Equivalent to SlowBuffer(num), by default creates a non-zero-filled Buffer instance. */ Buffer.allocUnsafeSlow = function (size) { return allocUnsafe(size) } function fromString (string, encoding) { if (typeof encoding !== 'string' || encoding === '') { encoding = 'utf8' } if (!Buffer.isEncoding(encoding)) { throw new TypeError('Unknown encoding: ' + encoding) } var length = byteLength(string, encoding) | 0 var buf = createBuffer(length) var actual = buf.write(string, encoding) if (actual !== length) { // Writing a hex string, for example, that contains invalid characters will // cause everything after the first invalid character to be ignored. (e.g. // 'abxxcd' will be treated as 'ab') buf = buf.slice(0, actual) } return buf } function fromArrayLike (array) { var length = array.length < 0 ? 0 : checked(array.length) | 0 var buf = createBuffer(length) for (var i = 0; i < length; i += 1) { buf[i] = array[i] & 255 } return buf } function fromArrayBuffer (array, byteOffset, length) { if (byteOffset < 0 || array.byteLength < byteOffset) { throw new RangeError('"offset" is outside of buffer bounds') } if (array.byteLength < byteOffset + (length || 0)) { throw new RangeError('"length" is outside of buffer bounds') } var buf if (byteOffset === undefined && length === undefined) { buf = new Uint8Array(array) } else if (length === undefined) { buf = new Uint8Array(array, byteOffset) } else { buf = new Uint8Array(array, byteOffset, length) } // Return an augmented `Uint8Array` instance Object.setPrototypeOf(buf, Buffer.prototype) return buf } function fromObject (obj) { if (Buffer.isBuffer(obj)) { var len = checked(obj.length) | 0 var buf = createBuffer(len) if (buf.length === 0) { return buf } obj.copy(buf, 0, 0, len) return buf } if (obj.length !== undefined) { if (typeof obj.length !== 'number' || numberIsNaN(obj.length)) { return createBuffer(0) } return fromArrayLike(obj) } if (obj.type === 'Buffer' && Array.isArray(obj.data)) { return fromArrayLike(obj.data) } } function checked (length) { // Note: cannot use `length < K_MAX_LENGTH` here because that fails when // length is NaN (which is otherwise coerced to zero.) if (length >= K_MAX_LENGTH) { throw new RangeError('Attempt to allocate Buffer larger than maximum ' + 'size: 0x' + K_MAX_LENGTH.toString(16) + ' bytes') } return length | 0 } function SlowBuffer (length) { if (+length != length) { // eslint-disable-line eqeqeq length = 0 } return Buffer.alloc(+length) } Buffer.isBuffer = function isBuffer (b) { return b != null && b._isBuffer === true && b !== Buffer.prototype // so Buffer.isBuffer(Buffer.prototype) will be false } Buffer.compare = function compare (a, b) { if (isInstance(a, Uint8Array)) a = Buffer.from(a, a.offset, a.byteLength) if (isInstance(b, Uint8Array)) b = Buffer.from(b, b.offset, b.byteLength) if (!Buffer.isBuffer(a) || !Buffer.isBuffer(b)) { throw new TypeError( 'The "buf1", "buf2" arguments must be one of type Buffer or Uint8Array' ) } if (a === b) return 0 var x = a.length var y = b.length for (var i = 0, len = Math.min(x, y); i < len; ++i) { if (a[i] !== b[i]) { x = a[i] y = b[i] break } } if (x < y) return -1 if (y < x) return 1 return 0 } Buffer.isEncoding = function isEncoding (encoding) { switch (String(encoding).toLowerCase()) { case 'hex': case 'utf8': case 'utf-8': case 'ascii': case 'latin1': case 'binary': case 'base64': case 'ucs2': case 'ucs-2': case 'utf16le': case 'utf-16le': return true default: return false } } Buffer.concat = function concat (list, length) { if (!Array.isArray(list)) { throw new TypeError('"list" argument must be an Array of Buffers') } if (list.length === 0) { return Buffer.alloc(0) } var i if (length === undefined) { length = 0 for (i = 0; i < list.length; ++i) { length += list[i].length } } var buffer = Buffer.allocUnsafe(length) var pos = 0 for (i = 0; i < list.length; ++i) { var buf = list[i] if (isInstance(buf, Uint8Array)) { buf = Buffer.from(buf) } if (!Buffer.isBuffer(buf)) { throw new TypeError('"list" argument must be an Array of Buffers') } buf.copy(buffer, pos) pos += buf.length } return buffer } function byteLength (string, encoding) { if (Buffer.isBuffer(string)) { return string.length } if (ArrayBuffer.isView(string) || isInstance(string, ArrayBuffer)) { return string.byteLength } if (typeof string !== 'string') { throw new TypeError( 'The "string" argument must be one of type string, Buffer, or ArrayBuffer. ' + 'Received type ' + typeof string ) } var len = string.length var mustMatch = (arguments.length > 2 && arguments[2] === true) if (!mustMatch && len === 0) return 0 // Use a for loop to avoid recursion var loweredCase = false for (;;) { switch (encoding) { case 'ascii': case 'latin1': case 'binary': return len case 'utf8': case 'utf-8': return utf8ToBytes(string).length case 'ucs2': case 'ucs-2': case 'utf16le': case 'utf-16le': return len * 2 case 'hex': return len >>> 1 case 'base64': return base64ToBytes(string).length default: if (loweredCase) { return mustMatch ? -1 : utf8ToBytes(string).length // assume utf8 } encoding = ('' + encoding).toLowerCase() loweredCase = true } } } Buffer.byteLength = byteLength function slowToString (encoding, start, end) { var loweredCase = false // No need to verify that "this.length <= MAX_UINT32" since it's a read-only // property of a typed array. // This behaves neither like String nor Uint8Array in that we set start/end // to their upper/lower bounds if the value passed is out of range. // undefined is handled specially as per ECMA-262 6th Edition, // Section 13.3.3.7 Runtime Semantics: KeyedBindingInitialization. if (start === undefined || start < 0) { start = 0 } // Return early if start > this.length. Done here to prevent potential uint32 // coercion fail below. if (start > this.length) { return '' } if (end === undefined || end > this.length) { end = this.length } if (end <= 0) { return '' } // Force coersion to uint32. This will also coerce falsey/NaN values to 0. end >>>= 0 start >>>= 0 if (end <= start) { return '' } if (!encoding) encoding = 'utf8' while (true) { switch (encoding) { case 'hex': return hexSlice(this, start, end) case 'utf8': case 'utf-8': return utf8Slice(this, start, end) case 'ascii': return asciiSlice(this, start, end) case 'latin1': case 'binary': return latin1Slice(this, start, end) case 'base64': return base64Slice(this, start, end) case 'ucs2': case 'ucs-2': case 'utf16le': case 'utf-16le': return utf16leSlice(this, start, end) default: if (loweredCase) throw new TypeError('Unknown encoding: ' + encoding) encoding = (encoding + '').toLowerCase() loweredCase = true } } } // This property is used by `Buffer.isBuffer` (and the `is-buffer` npm package) // to detect a Buffer instance. It's not possible to use `instanceof Buffer` // reliably in a browserify context because there could be multiple different // copies of the 'buffer' package in use. This method works even for Buffer // instances that were created from another copy of the `buffer` package. // See: https://github.com/feross/buffer/issues/154 Buffer.prototype._isBuffer = true function swap (b, n, m) { var i = b[n] b[n] = b[m] b[m] = i } Buffer.prototype.swap16 = function swap16 () { var len = this.length if (len % 2 !== 0) { throw new RangeError('Buffer size must be a multiple of 16-bits') } for (var i = 0; i < len; i += 2) { swap(this, i, i + 1) } return this } Buffer.prototype.swap32 = function swap32 () { var len = this.length if (len % 4 !== 0) { throw new RangeError('Buffer size must be a multiple of 32-bits') } for (var i = 0; i < len; i += 4) { swap(this, i, i + 3) swap(this, i + 1, i + 2) } return this } Buffer.prototype.swap64 = function swap64 () { var len = this.length if (len % 8 !== 0) { throw new RangeError('Buffer size must be a multiple of 64-bits') } for (var i = 0; i < len; i += 8) { swap(this, i, i + 7) swap(this, i + 1, i + 6) swap(this, i + 2, i + 5) swap(this, i + 3, i + 4) } return this } Buffer.prototype.toString = function toString () { var length = this.length if (length === 0) return '' if (arguments.length === 0) return utf8Slice(this, 0, length) return slowToString.apply(this, arguments) } Buffer.prototype.toLocaleString = Buffer.prototype.toString Buffer.prototype.equals = function equals (b) { if (!Buffer.isBuffer(b)) throw new TypeError('Argument must be a Buffer') if (this === b) return true return Buffer.compare(this, b) === 0 } Buffer.prototype.inspect = function inspect () { var str = '' var max = exports.INSPECT_MAX_BYTES str = this.toString('hex', 0, max).replace(/(.{2})/g, '$1 ').trim() if (this.length > max) str += ' ... ' return '' } if (customInspectSymbol) { Buffer.prototype[customInspectSymbol] = Buffer.prototype.inspect } Buffer.prototype.compare = function compare (target, start, end, thisStart, thisEnd) { if (isInstance(target, Uint8Array)) { target = Buffer.from(target, target.offset, target.byteLength) } if (!Buffer.isBuffer(target)) { throw new TypeError( 'The "target" argument must be one of type Buffer or Uint8Array. ' + 'Received type ' + (typeof target) ) } if (start === undefined) { start = 0 } if (end === undefined) { end = target ? target.length : 0 } if (thisStart === undefined) { thisStart = 0 } if (thisEnd === undefined) { thisEnd = this.length } if (start < 0 || end > target.length || thisStart < 0 || thisEnd > this.length) { throw new RangeError('out of range index') } if (thisStart >= thisEnd && start >= end) { return 0 } if (thisStart >= thisEnd) { return -1 } if (start >= end) { return 1 } start >>>= 0 end >>>= 0 thisStart >>>= 0 thisEnd >>>= 0 if (this === target) return 0 var x = thisEnd - thisStart var y = end - start var len = Math.min(x, y) var thisCopy = this.slice(thisStart, thisEnd) var targetCopy = target.slice(start, end) for (var i = 0; i < len; ++i) { if (thisCopy[i] !== targetCopy[i]) { x = thisCopy[i] y = targetCopy[i] break } } if (x < y) return -1 if (y < x) return 1 return 0 } // Finds either the first index of `val` in `buffer` at offset >= `byteOffset`, // OR the last index of `val` in `buffer` at offset <= `byteOffset`. // // Arguments: // - buffer - a Buffer to search // - val - a string, Buffer, or number // - byteOffset - an index into `buffer`; will be clamped to an int32 // - encoding - an optional encoding, relevant is val is a string // - dir - true for indexOf, false for lastIndexOf function bidirectionalIndexOf (buffer, val, byteOffset, encoding, dir) { // Empty buffer means no match if (buffer.length === 0) return -1 // Normalize byteOffset if (typeof byteOffset === 'string') { encoding = byteOffset byteOffset = 0 } else if (byteOffset > 0x7fffffff) { byteOffset = 0x7fffffff } else if (byteOffset < -0x80000000) { byteOffset = -0x80000000 } byteOffset = +byteOffset // Coerce to Number. if (numberIsNaN(byteOffset)) { // byteOffset: it it's undefined, null, NaN, "foo", etc, search whole buffer byteOffset = dir ? 0 : (buffer.length - 1) } // Normalize byteOffset: negative offsets start from the end of the buffer if (byteOffset < 0) byteOffset = buffer.length + byteOffset if (byteOffset >= buffer.length) { if (dir) return -1 else byteOffset = buffer.length - 1 } else if (byteOffset < 0) { if (dir) byteOffset = 0 else return -1 } // Normalize val if (typeof val === 'string') { val = Buffer.from(val, encoding) } // Finally, search either indexOf (if dir is true) or lastIndexOf if (Buffer.isBuffer(val)) { // Special case: looking for empty string/buffer always fails if (val.length === 0) { return -1 } return arrayIndexOf(buffer, val, byteOffset, encoding, dir) } else if (typeof val === 'number') { val = val & 0xFF // Search for a byte value [0-255] if (typeof Uint8Array.prototype.indexOf === 'function') { if (dir) { return Uint8Array.prototype.indexOf.call(buffer, val, byteOffset) } else { return Uint8Array.prototype.lastIndexOf.call(buffer, val, byteOffset) } } return arrayIndexOf(buffer, [val], byteOffset, encoding, dir) } throw new TypeError('val must be string, number or Buffer') } function arrayIndexOf (arr, val, byteOffset, encoding, dir) { var indexSize = 1 var arrLength = arr.length var valLength = val.length if (encoding !== undefined) { encoding = String(encoding).toLowerCase() if (encoding === 'ucs2' || encoding === 'ucs-2' || encoding === 'utf16le' || encoding === 'utf-16le') { if (arr.length < 2 || val.length < 2) { return -1 } indexSize = 2 arrLength /= 2 valLength /= 2 byteOffset /= 2 } } function read (buf, i) { if (indexSize === 1) { return buf[i] } else { return buf.readUInt16BE(i * indexSize) } } var i if (dir) { var foundIndex = -1 for (i = byteOffset; i < arrLength; i++) { if (read(arr, i) === read(val, foundIndex === -1 ? 0 : i - foundIndex)) { if (foundIndex === -1) foundIndex = i if (i - foundIndex + 1 === valLength) return foundIndex * indexSize } else { if (foundIndex !== -1) i -= i - foundIndex foundIndex = -1 } } } else { if (byteOffset + valLength > arrLength) byteOffset = arrLength - valLength for (i = byteOffset; i >= 0; i--) { var found = true for (var j = 0; j < valLength; j++) { if (read(arr, i + j) !== read(val, j)) { found = false break } } if (found) return i } } return -1 } Buffer.prototype.includes = function includes (val, byteOffset, encoding) { return this.indexOf(val, byteOffset, encoding) !== -1 } Buffer.prototype.indexOf = function indexOf (val, byteOffset, encoding) { return bidirectionalIndexOf(this, val, byteOffset, encoding, true) } Buffer.prototype.lastIndexOf = function lastIndexOf (val, byteOffset, encoding) { return bidirectionalIndexOf(this, val, byteOffset, encoding, false) } function hexWrite (buf, string, offset, length) { offset = Number(offset) || 0 var remaining = buf.length - offset if (!length) { length = remaining } else { length = Number(length) if (length > remaining) { length = remaining } } var strLen = string.length if (length > strLen / 2) { length = strLen / 2 } for (var i = 0; i < length; ++i) { var parsed = parseInt(string.substr(i * 2, 2), 16) if (numberIsNaN(parsed)) return i buf[offset + i] = parsed } return i } function utf8Write (buf, string, offset, length) { return blitBuffer(utf8ToBytes(string, buf.length - offset), buf, offset, length) } function asciiWrite (buf, string, offset, length) { return blitBuffer(asciiToBytes(string), buf, offset, length) } function latin1Write (buf, string, offset, length) { return asciiWrite(buf, string, offset, length) } function base64Write (buf, string, offset, length) { return blitBuffer(base64ToBytes(string), buf, offset, length) } function ucs2Write (buf, string, offset, length) { return blitBuffer(utf16leToBytes(string, buf.length - offset), buf, offset, length) } Buffer.prototype.write = function write (string, offset, length, encoding) { // Buffer#write(string) if (offset === undefined) { encoding = 'utf8' length = this.length offset = 0 // Buffer#write(string, encoding) } else if (length === undefined && typeof offset === 'string') { encoding = offset length = this.length offset = 0 // Buffer#write(string, offset[, length][, encoding]) } else if (isFinite(offset)) { offset = offset >>> 0 if (isFinite(length)) { length = length >>> 0 if (encoding === undefined) encoding = 'utf8' } else { encoding = length length = undefined } } else { throw new Error( 'Buffer.write(string, encoding, offset[, length]) is no longer supported' ) } var remaining = this.length - offset if (length === undefined || length > remaining) length = remaining if ((string.length > 0 && (length < 0 || offset < 0)) || offset > this.length) { throw new RangeError('Attempt to write outside buffer bounds') } if (!encoding) encoding = 'utf8' var loweredCase = false for (;;) { switch (encoding) { case 'hex': return hexWrite(this, string, offset, length) case 'utf8': case 'utf-8': return utf8Write(this, string, offset, length) case 'ascii': return asciiWrite(this, string, offset, length) case 'latin1': case 'binary': return latin1Write(this, string, offset, length) case 'base64': // Warning: maxLength not taken into account in base64Write return base64Write(this, string, offset, length) case 'ucs2': case 'ucs-2': case 'utf16le': case 'utf-16le': return ucs2Write(this, string, offset, length) default: if (loweredCase) throw new TypeError('Unknown encoding: ' + encoding) encoding = ('' + encoding).toLowerCase() loweredCase = true } } } Buffer.prototype.toJSON = function toJSON () { return { type: 'Buffer', data: Array.prototype.slice.call(this._arr || this, 0) } } function base64Slice (buf, start, end) { if (start === 0 && end === buf.length) { return base64.fromByteArray(buf) } else { return base64.fromByteArray(buf.slice(start, end)) } } function utf8Slice (buf, start, end) { end = Math.min(buf.length, end) var res = [] var i = start while (i < end) { var firstByte = buf[i] var codePoint = null var bytesPerSequence = (firstByte > 0xEF) ? 4 : (firstByte > 0xDF) ? 3 : (firstByte > 0xBF) ? 2 : 1 if (i + bytesPerSequence <= end) { var secondByte, thirdByte, fourthByte, tempCodePoint switch (bytesPerSequence) { case 1: if (firstByte < 0x80) { codePoint = firstByte } break case 2: secondByte = buf[i + 1] if ((secondByte & 0xC0) === 0x80) { tempCodePoint = (firstByte & 0x1F) << 0x6 | (secondByte & 0x3F) if (tempCodePoint > 0x7F) { codePoint = tempCodePoint } } break case 3: secondByte = buf[i + 1] thirdByte = buf[i + 2] if ((secondByte & 0xC0) === 0x80 && (thirdByte & 0xC0) === 0x80) { tempCodePoint = (firstByte & 0xF) << 0xC | (secondByte & 0x3F) << 0x6 | (thirdByte & 0x3F) if (tempCodePoint > 0x7FF && (tempCodePoint < 0xD800 || tempCodePoint > 0xDFFF)) { codePoint = tempCodePoint } } break case 4: secondByte = buf[i + 1] thirdByte = buf[i + 2] fourthByte = buf[i + 3] if ((secondByte & 0xC0) === 0x80 && (thirdByte & 0xC0) === 0x80 && (fourthByte & 0xC0) === 0x80) { tempCodePoint = (firstByte & 0xF) << 0x12 | (secondByte & 0x3F) << 0xC | (thirdByte & 0x3F) << 0x6 | (fourthByte & 0x3F) if (tempCodePoint > 0xFFFF && tempCodePoint < 0x110000) { codePoint = tempCodePoint } } } } if (codePoint === null) { // we did not generate a valid codePoint so insert a // replacement char (U+FFFD) and advance only 1 byte codePoint = 0xFFFD bytesPerSequence = 1 } else if (codePoint > 0xFFFF) { // encode to utf16 (surrogate pair dance) codePoint -= 0x10000 res.push(codePoint >>> 10 & 0x3FF | 0xD800) codePoint = 0xDC00 | codePoint & 0x3FF } res.push(codePoint) i += bytesPerSequence } return decodeCodePointsArray(res) } // Based on http://stackoverflow.com/a/22747272/680742, the browser with // the lowest limit is Chrome, with 0x10000 args. // We go 1 magnitude less, for safety var MAX_ARGUMENTS_LENGTH = 0x1000 function decodeCodePointsArray (codePoints) { var len = codePoints.length if (len <= MAX_ARGUMENTS_LENGTH) { return String.fromCharCode.apply(String, codePoints) // avoid extra slice() } // Decode in chunks to avoid "call stack size exceeded". var res = '' var i = 0 while (i < len) { res += String.fromCharCode.apply( String, codePoints.slice(i, i += MAX_ARGUMENTS_LENGTH) ) } return res } function asciiSlice (buf, start, end) { var ret = '' end = Math.min(buf.length, end) for (var i = start; i < end; ++i) { ret += String.fromCharCode(buf[i] & 0x7F) } return ret } function latin1Slice (buf, start, end) { var ret = '' end = Math.min(buf.length, end) for (var i = start; i < end; ++i) { ret += String.fromCharCode(buf[i]) } return ret } function hexSlice (buf, start, end) { var len = buf.length if (!start || start < 0) start = 0 if (!end || end < 0 || end > len) end = len var out = '' for (var i = start; i < end; ++i) { out += hexSliceLookupTable[buf[i]] } return out } function utf16leSlice (buf, start, end) { var bytes = buf.slice(start, end) var res = '' for (var i = 0; i < bytes.length; i += 2) { res += String.fromCharCode(bytes[i] + (bytes[i + 1] * 256)) } return res } Buffer.prototype.slice = function slice (start, end) { var len = this.length start = ~~start end = end === undefined ? len : ~~end if (start < 0) { start += len if (start < 0) start = 0 } else if (start > len) { start = len } if (end < 0) { end += len if (end < 0) end = 0 } else if (end > len) { end = len } if (end < start) end = start var newBuf = this.subarray(start, end) // Return an augmented `Uint8Array` instance Object.setPrototypeOf(newBuf, Buffer.prototype) return newBuf } /* * Need to make sure that buffer isn't trying to write out of bounds. */ function checkOffset (offset, ext, length) { if ((offset % 1) !== 0 || offset < 0) throw new RangeError('offset is not uint') if (offset + ext > length) throw new RangeError('Trying to access beyond buffer length') } Buffer.prototype.readUIntLE = function readUIntLE (offset, byteLength, noAssert) { offset = offset >>> 0 byteLength = byteLength >>> 0 if (!noAssert) checkOffset(offset, byteLength, this.length) var val = this[offset] var mul = 1 var i = 0 while (++i < byteLength && (mul *= 0x100)) { val += this[offset + i] * mul } return val } Buffer.prototype.readUIntBE = function readUIntBE (offset, byteLength, noAssert) { offset = offset >>> 0 byteLength = byteLength >>> 0 if (!noAssert) { checkOffset(offset, byteLength, this.length) } var val = this[offset + --byteLength] var mul = 1 while (byteLength > 0 && (mul *= 0x100)) { val += this[offset + --byteLength] * mul } return val } Buffer.prototype.readUInt8 = function readUInt8 (offset, noAssert) { offset = offset >>> 0 if (!noAssert) checkOffset(offset, 1, this.length) return this[offset] } Buffer.prototype.readUInt16LE = function readUInt16LE (offset, noAssert) { offset = offset >>> 0 if (!noAssert) checkOffset(offset, 2, this.length) return this[offset] | (this[offset + 1] << 8) } Buffer.prototype.readUInt16BE = function readUInt16BE (offset, noAssert) { offset = offset >>> 0 if (!noAssert) checkOffset(offset, 2, this.length) return (this[offset] << 8) | this[offset + 1] } Buffer.prototype.readUInt32LE = function readUInt32LE (offset, noAssert) { offset = offset >>> 0 if (!noAssert) checkOffset(offset, 4, this.length) return ((this[offset]) | (this[offset + 1] << 8) | (this[offset + 2] << 16)) + (this[offset + 3] * 0x1000000) } Buffer.prototype.readUInt32BE = function readUInt32BE (offset, noAssert) { offset = offset >>> 0 if (!noAssert) checkOffset(offset, 4, this.length) return (this[offset] * 0x1000000) + ((this[offset + 1] << 16) | (this[offset + 2] << 8) | this[offset + 3]) } Buffer.prototype.readIntLE = function readIntLE (offset, byteLength, noAssert) { offset = offset >>> 0 byteLength = byteLength >>> 0 if (!noAssert) checkOffset(offset, byteLength, this.length) var val = this[offset] var mul = 1 var i = 0 while (++i < byteLength && (mul *= 0x100)) { val += this[offset + i] * mul } mul *= 0x80 if (val >= mul) val -= Math.pow(2, 8 * byteLength) return val } Buffer.prototype.readIntBE = function readIntBE (offset, byteLength, noAssert) { offset = offset >>> 0 byteLength = byteLength >>> 0 if (!noAssert) checkOffset(offset, byteLength, this.length) var i = byteLength var mul = 1 var val = this[offset + --i] while (i > 0 && (mul *= 0x100)) { val += this[offset + --i] * mul } mul *= 0x80 if (val >= mul) val -= Math.pow(2, 8 * byteLength) return val } Buffer.prototype.readInt8 = function readInt8 (offset, noAssert) { offset = offset >>> 0 if (!noAssert) checkOffset(offset, 1, this.length) if (!(this[offset] & 0x80)) return (this[offset]) return ((0xff - this[offset] + 1) * -1) } Buffer.prototype.readInt16LE = function readInt16LE (offset, noAssert) { offset = offset >>> 0 if (!noAssert) checkOffset(offset, 2, this.length) var val = this[offset] | (this[offset + 1] << 8) return (val & 0x8000) ? val | 0xFFFF0000 : val } Buffer.prototype.readInt16BE = function readInt16BE (offset, noAssert) { offset = offset >>> 0 if (!noAssert) checkOffset(offset, 2, this.length) var val = this[offset + 1] | (this[offset] << 8) return (val & 0x8000) ? val | 0xFFFF0000 : val } Buffer.prototype.readInt32LE = function readInt32LE (offset, noAssert) { offset = offset >>> 0 if (!noAssert) checkOffset(offset, 4, this.length) return (this[offset]) | (this[offset + 1] << 8) | (this[offset + 2] << 16) | (this[offset + 3] << 24) } Buffer.prototype.readInt32BE = function readInt32BE (offset, noAssert) { offset = offset >>> 0 if (!noAssert) checkOffset(offset, 4, this.length) return (this[offset] << 24) | (this[offset + 1] << 16) | (this[offset + 2] << 8) | (this[offset + 3]) } Buffer.prototype.readFloatLE = function readFloatLE (offset, noAssert) { offset = offset >>> 0 if (!noAssert) checkOffset(offset, 4, this.length) return ieee754.read(this, offset, true, 23, 4) } Buffer.prototype.readFloatBE = function readFloatBE (offset, noAssert) { offset = offset >>> 0 if (!noAssert) checkOffset(offset, 4, this.length) return ieee754.read(this, offset, false, 23, 4) } Buffer.prototype.readDoubleLE = function readDoubleLE (offset, noAssert) { offset = offset >>> 0 if (!noAssert) checkOffset(offset, 8, this.length) return ieee754.read(this, offset, true, 52, 8) } Buffer.prototype.readDoubleBE = function readDoubleBE (offset, noAssert) { offset = offset >>> 0 if (!noAssert) checkOffset(offset, 8, this.length) return ieee754.read(this, offset, false, 52, 8) } function checkInt (buf, value, offset, ext, max, min) { if (!Buffer.isBuffer(buf)) throw new TypeError('"buffer" argument must be a Buffer instance') if (value > max || value < min) throw new RangeError('"value" argument is out of bounds') if (offset + ext > buf.length) throw new RangeError('Index out of range') } Buffer.prototype.writeUIntLE = function writeUIntLE (value, offset, byteLength, noAssert) { value = +value offset = offset >>> 0 byteLength = byteLength >>> 0 if (!noAssert) { var maxBytes = Math.pow(2, 8 * byteLength) - 1 checkInt(this, value, offset, byteLength, maxBytes, 0) } var mul = 1 var i = 0 this[offset] = value & 0xFF while (++i < byteLength && (mul *= 0x100)) { this[offset + i] = (value / mul) & 0xFF } return offset + byteLength } Buffer.prototype.writeUIntBE = function writeUIntBE (value, offset, byteLength, noAssert) { value = +value offset = offset >>> 0 byteLength = byteLength >>> 0 if (!noAssert) { var maxBytes = Math.pow(2, 8 * byteLength) - 1 checkInt(this, value, offset, byteLength, maxBytes, 0) } var i = byteLength - 1 var mul = 1 this[offset + i] = value & 0xFF while (--i >= 0 && (mul *= 0x100)) { this[offset + i] = (value / mul) & 0xFF } return offset + byteLength } Buffer.prototype.writeUInt8 = function writeUInt8 (value, offset, noAssert) { value = +value offset = offset >>> 0 if (!noAssert) checkInt(this, value, offset, 1, 0xff, 0) this[offset] = (value & 0xff) return offset + 1 } Buffer.prototype.writeUInt16LE = function writeUInt16LE (value, offset, noAssert) { value = +value offset = offset >>> 0 if (!noAssert) checkInt(this, value, offset, 2, 0xffff, 0) this[offset] = (value & 0xff) this[offset + 1] = (value >>> 8) return offset + 2 } Buffer.prototype.writeUInt16BE = function writeUInt16BE (value, offset, noAssert) { value = +value offset = offset >>> 0 if (!noAssert) checkInt(this, value, offset, 2, 0xffff, 0) this[offset] = (value >>> 8) this[offset + 1] = (value & 0xff) return offset + 2 } Buffer.prototype.writeUInt32LE = function writeUInt32LE (value, offset, noAssert) { value = +value offset = offset >>> 0 if (!noAssert) checkInt(this, value, offset, 4, 0xffffffff, 0) this[offset + 3] = (value >>> 24) this[offset + 2] = (value >>> 16) this[offset + 1] = (value >>> 8) this[offset] = (value & 0xff) return offset + 4 } Buffer.prototype.writeUInt32BE = function writeUInt32BE (value, offset, noAssert) { value = +value offset = offset >>> 0 if (!noAssert) checkInt(this, value, offset, 4, 0xffffffff, 0) this[offset] = (value >>> 24) this[offset + 1] = (value >>> 16) this[offset + 2] = (value >>> 8) this[offset + 3] = (value & 0xff) return offset + 4 } Buffer.prototype.writeIntLE = function writeIntLE (value, offset, byteLength, noAssert) { value = +value offset = offset >>> 0 if (!noAssert) { var limit = Math.pow(2, (8 * byteLength) - 1) checkInt(this, value, offset, byteLength, limit - 1, -limit) } var i = 0 var mul = 1 var sub = 0 this[offset] = value & 0xFF while (++i < byteLength && (mul *= 0x100)) { if (value < 0 && sub === 0 && this[offset + i - 1] !== 0) { sub = 1 } this[offset + i] = ((value / mul) >> 0) - sub & 0xFF } return offset + byteLength } Buffer.prototype.writeIntBE = function writeIntBE (value, offset, byteLength, noAssert) { value = +value offset = offset >>> 0 if (!noAssert) { var limit = Math.pow(2, (8 * byteLength) - 1) checkInt(this, value, offset, byteLength, limit - 1, -limit) } var i = byteLength - 1 var mul = 1 var sub = 0 this[offset + i] = value & 0xFF while (--i >= 0 && (mul *= 0x100)) { if (value < 0 && sub === 0 && this[offset + i + 1] !== 0) { sub = 1 } this[offset + i] = ((value / mul) >> 0) - sub & 0xFF } return offset + byteLength } Buffer.prototype.writeInt8 = function writeInt8 (value, offset, noAssert) { value = +value offset = offset >>> 0 if (!noAssert) checkInt(this, value, offset, 1, 0x7f, -0x80) if (value < 0) value = 0xff + value + 1 this[offset] = (value & 0xff) return offset + 1 } Buffer.prototype.writeInt16LE = function writeInt16LE (value, offset, noAssert) { value = +value offset = offset >>> 0 if (!noAssert) checkInt(this, value, offset, 2, 0x7fff, -0x8000) this[offset] = (value & 0xff) this[offset + 1] = (value >>> 8) return offset + 2 } Buffer.prototype.writeInt16BE = function writeInt16BE (value, offset, noAssert) { value = +value offset = offset >>> 0 if (!noAssert) checkInt(this, value, offset, 2, 0x7fff, -0x8000) this[offset] = (value >>> 8) this[offset + 1] = (value & 0xff) return offset + 2 } Buffer.prototype.writeInt32LE = function writeInt32LE (value, offset, noAssert) { value = +value offset = offset >>> 0 if (!noAssert) checkInt(this, value, offset, 4, 0x7fffffff, -0x80000000) this[offset] = (value & 0xff) this[offset + 1] = (value >>> 8) this[offset + 2] = (value >>> 16) this[offset + 3] = (value >>> 24) return offset + 4 } Buffer.prototype.writeInt32BE = function writeInt32BE (value, offset, noAssert) { value = +value offset = offset >>> 0 if (!noAssert) checkInt(this, value, offset, 4, 0x7fffffff, -0x80000000) if (value < 0) value = 0xffffffff + value + 1 this[offset] = (value >>> 24) this[offset + 1] = (value >>> 16) this[offset + 2] = (value >>> 8) this[offset + 3] = (value & 0xff) return offset + 4 } function checkIEEE754 (buf, value, offset, ext, max, min) { if (offset + ext > buf.length) throw new RangeError('Index out of range') if (offset < 0) throw new RangeError('Index out of range') } function writeFloat (buf, value, offset, littleEndian, noAssert) { value = +value offset = offset >>> 0 if (!noAssert) { checkIEEE754(buf, value, offset, 4, 3.4028234663852886e+38, -3.4028234663852886e+38) } ieee754.write(buf, value, offset, littleEndian, 23, 4) return offset + 4 } Buffer.prototype.writeFloatLE = function writeFloatLE (value, offset, noAssert) { return writeFloat(this, value, offset, true, noAssert) } Buffer.prototype.writeFloatBE = function writeFloatBE (value, offset, noAssert) { return writeFloat(this, value, offset, false, noAssert) } function writeDouble (buf, value, offset, littleEndian, noAssert) { value = +value offset = offset >>> 0 if (!noAssert) { checkIEEE754(buf, value, offset, 8, 1.7976931348623157E+308, -1.7976931348623157E+308) } ieee754.write(buf, value, offset, littleEndian, 52, 8) return offset + 8 } Buffer.prototype.writeDoubleLE = function writeDoubleLE (value, offset, noAssert) { return writeDouble(this, value, offset, true, noAssert) } Buffer.prototype.writeDoubleBE = function writeDoubleBE (value, offset, noAssert) { return writeDouble(this, value, offset, false, noAssert) } // copy(targetBuffer, targetStart=0, sourceStart=0, sourceEnd=buffer.length) Buffer.prototype.copy = function copy (target, targetStart, start, end) { if (!Buffer.isBuffer(target)) throw new TypeError('argument should be a Buffer') if (!start) start = 0 if (!end && end !== 0) end = this.length if (targetStart >= target.length) targetStart = target.length if (!targetStart) targetStart = 0 if (end > 0 && end < start) end = start // Copy 0 bytes; we're done if (end === start) return 0 if (target.length === 0 || this.length === 0) return 0 // Fatal error conditions if (targetStart < 0) { throw new RangeError('targetStart out of bounds') } if (start < 0 || start >= this.length) throw new RangeError('Index out of range') if (end < 0) throw new RangeError('sourceEnd out of bounds') // Are we oob? if (end > this.length) end = this.length if (target.length - targetStart < end - start) { end = target.length - targetStart + start } var len = end - start if (this === target && typeof Uint8Array.prototype.copyWithin === 'function') { // Use built-in when available, missing from IE11 this.copyWithin(targetStart, start, end) } else if (this === target && start < targetStart && targetStart < end) { // descending copy from end for (var i = len - 1; i >= 0; --i) { target[i + targetStart] = this[i + start] } } else { Uint8Array.prototype.set.call( target, this.subarray(start, end), targetStart ) } return len } // Usage: // buffer.fill(number[, offset[, end]]) // buffer.fill(buffer[, offset[, end]]) // buffer.fill(string[, offset[, end]][, encoding]) Buffer.prototype.fill = function fill (val, start, end, encoding) { // Handle string cases: if (typeof val === 'string') { if (typeof start === 'string') { encoding = start start = 0 end = this.length } else if (typeof end === 'string') { encoding = end end = this.length } if (encoding !== undefined && typeof encoding !== 'string') { throw new TypeError('encoding must be a string') } if (typeof encoding === 'string' && !Buffer.isEncoding(encoding)) { throw new TypeError('Unknown encoding: ' + encoding) } if (val.length === 1) { var code = val.charCodeAt(0) if ((encoding === 'utf8' && code < 128) || encoding === 'latin1') { // Fast path: If `val` fits into a single byte, use that numeric value. val = code } } } else if (typeof val === 'number') { val = val & 255 } else if (typeof val === 'boolean') { val = Number(val) } // Invalid ranges are not set to a default, so can range check early. if (start < 0 || this.length < start || this.length < end) { throw new RangeError('Out of range index') } if (end <= start) { return this } start = start >>> 0 end = end === undefined ? this.length : end >>> 0 if (!val) val = 0 var i if (typeof val === 'number') { for (i = start; i < end; ++i) { this[i] = val } } else { var bytes = Buffer.isBuffer(val) ? val : Buffer.from(val, encoding) var len = bytes.length if (len === 0) { throw new TypeError('The value "' + val + '" is invalid for argument "value"') } for (i = 0; i < end - start; ++i) { this[i + start] = bytes[i % len] } } return this } // HELPER FUNCTIONS // ================ var INVALID_BASE64_RE = /[^+/0-9A-Za-z-_]/g function base64clean (str) { // Node takes equal signs as end of the Base64 encoding str = str.split('=')[0] // Node strips out invalid characters like \n and \t from the string, base64-js does not str = str.trim().replace(INVALID_BASE64_RE, '') // Node converts strings with length < 2 to '' if (str.length < 2) return '' // Node allows for non-padded base64 strings (missing trailing ===), base64-js does not while (str.length % 4 !== 0) { str = str + '=' } return str } function utf8ToBytes (string, units) { units = units || Infinity var codePoint var length = string.length var leadSurrogate = null var bytes = [] for (var i = 0; i < length; ++i) { codePoint = string.charCodeAt(i) // is surrogate component if (codePoint > 0xD7FF && codePoint < 0xE000) { // last char was a lead if (!leadSurrogate) { // no lead yet if (codePoint > 0xDBFF) { // unexpected trail if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD) continue } else if (i + 1 === length) { // unpaired lead if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD) continue } // valid lead leadSurrogate = codePoint continue } // 2 leads in a row if (codePoint < 0xDC00) { if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD) leadSurrogate = codePoint continue } // valid surrogate pair codePoint = (leadSurrogate - 0xD800 << 10 | codePoint - 0xDC00) + 0x10000 } else if (leadSurrogate) { // valid bmp char, but last char was a lead if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD) } leadSurrogate = null // encode utf8 if (codePoint < 0x80) { if ((units -= 1) < 0) break bytes.push(codePoint) } else if (codePoint < 0x800) { if ((units -= 2) < 0) break bytes.push( codePoint >> 0x6 | 0xC0, codePoint & 0x3F | 0x80 ) } else if (codePoint < 0x10000) { if ((units -= 3) < 0) break bytes.push( codePoint >> 0xC | 0xE0, codePoint >> 0x6 & 0x3F | 0x80, codePoint & 0x3F | 0x80 ) } else if (codePoint < 0x110000) { if ((units -= 4) < 0) break bytes.push( codePoint >> 0x12 | 0xF0, codePoint >> 0xC & 0x3F | 0x80, codePoint >> 0x6 & 0x3F | 0x80, codePoint & 0x3F | 0x80 ) } else { throw new Error('Invalid code point') } } return bytes } function asciiToBytes (str) { var byteArray = [] for (var i = 0; i < str.length; ++i) { // Node's code seems to be doing this and not & 0x7F.. byteArray.push(str.charCodeAt(i) & 0xFF) } return byteArray } function utf16leToBytes (str, units) { var c, hi, lo var byteArray = [] for (var i = 0; i < str.length; ++i) { if ((units -= 2) < 0) break c = str.charCodeAt(i) hi = c >> 8 lo = c % 256 byteArray.push(lo) byteArray.push(hi) } return byteArray } function base64ToBytes (str) { return base64.toByteArray(base64clean(str)) } function blitBuffer (src, dst, offset, length) { for (var i = 0; i < length; ++i) { if ((i + offset >= dst.length) || (i >= src.length)) break dst[i + offset] = src[i] } return i } // ArrayBuffer or Uint8Array objects from other contexts (i.e. iframes) do not pass // the `instanceof` check but they should be treated as of that type. // See: https://github.com/feross/buffer/issues/166 function isInstance (obj, type) { return obj instanceof type || (obj != null && obj.constructor != null && obj.constructor.name != null && obj.constructor.name === type.name) } function numberIsNaN (obj) { // For IE11 support return obj !== obj // eslint-disable-line no-self-compare } // Create lookup table for `toString('hex')` // See: https://github.com/feross/buffer/issues/219 var hexSliceLookupTable = (function () { var alphabet = '0123456789abcdef' var table = new Array(256) for (var i = 0; i < 16; ++i) { var i16 = i * 16 for (var j = 0; j < 16; ++j) { table[i16 + j] = alphabet[i] + alphabet[j] } } return table })() }).call(this,require("buffer").Buffer) },{"base64-js":29,"buffer":48,"ieee754":73}],49:[function(require,module,exports){ var Buffer = require('buffer').Buffer; // for use with browserify module.exports = function (a, b) { if (!Buffer.isBuffer(a)) return undefined; if (!Buffer.isBuffer(b)) return undefined; if (typeof a.equals === 'function') return a.equals(b); if (a.length !== b.length) return false; for (var i = 0; i < a.length; i++) { if (a[i] !== b[i]) return false; } return true; }; },{"buffer":48}],50:[function(require,module,exports){ module.exports = { "100": "Continue", "101": "Switching Protocols", "102": "Processing", "200": "OK", "201": "Created", "202": "Accepted", "203": "Non-Authoritative Information", "204": "No Content", "205": "Reset Content", "206": "Partial Content", "207": "Multi-Status", "208": "Already Reported", "226": "IM Used", "300": "Multiple Choices", "301": "Moved Permanently", "302": "Found", "303": "See Other", "304": "Not Modified", "305": "Use Proxy", "307": "Temporary Redirect", "308": "Permanent Redirect", "400": "Bad Request", "401": "Unauthorized", "402": "Payment Required", "403": "Forbidden", "404": "Not Found", "405": "Method Not Allowed", "406": "Not Acceptable", "407": "Proxy Authentication Required", "408": "Request Timeout", "409": "Conflict", "410": "Gone", "411": "Length Required", "412": "Precondition Failed", "413": "Payload Too Large", "414": "URI Too Long", "415": "Unsupported Media Type", "416": "Range Not Satisfiable", "417": "Expectation Failed", "418": "I'm a teapot", "421": "Misdirected Request", "422": "Unprocessable Entity", "423": "Locked", "424": "Failed Dependency", "425": "Unordered Collection", "426": "Upgrade Required", "428": "Precondition Required", "429": "Too Many Requests", "431": "Request Header Fields Too Large", "451": "Unavailable For Legal Reasons", "500": "Internal Server Error", "501": "Not Implemented", "502": "Bad Gateway", "503": "Service Unavailable", "504": "Gateway Timeout", "505": "HTTP Version Not Supported", "506": "Variant Also Negotiates", "507": "Insufficient Storage", "508": "Loop Detected", "509": "Bandwidth Limit Exceeded", "510": "Not Extended", "511": "Network Authentication Required" } },{}],51:[function(require,module,exports){ (function (Buffer){ // Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. // NOTE: These type checking functions intentionally don't use `instanceof` // because it is fragile and can be easily faked with `Object.create()`. function isArray(arg) { if (Array.isArray) { return Array.isArray(arg); } return objectToString(arg) === '[object Array]'; } exports.isArray = isArray; function isBoolean(arg) { return typeof arg === 'boolean'; } exports.isBoolean = isBoolean; function isNull(arg) { return arg === null; } exports.isNull = isNull; function isNullOrUndefined(arg) { return arg == null; } exports.isNullOrUndefined = isNullOrUndefined; function isNumber(arg) { return typeof arg === 'number'; } exports.isNumber = isNumber; function isString(arg) { return typeof arg === 'string'; } exports.isString = isString; function isSymbol(arg) { return typeof arg === 'symbol'; } exports.isSymbol = isSymbol; function isUndefined(arg) { return arg === void 0; } exports.isUndefined = isUndefined; function isRegExp(re) { return objectToString(re) === '[object RegExp]'; } exports.isRegExp = isRegExp; function isObject(arg) { return typeof arg === 'object' && arg !== null; } exports.isObject = isObject; function isDate(d) { return objectToString(d) === '[object Date]'; } exports.isDate = isDate; function isError(e) { return (objectToString(e) === '[object Error]' || e instanceof Error); } exports.isError = isError; function isFunction(arg) { return typeof arg === 'function'; } exports.isFunction = isFunction; function isPrimitive(arg) { return arg === null || typeof arg === 'boolean' || typeof arg === 'number' || typeof arg === 'string' || typeof arg === 'symbol' || // ES6 symbol typeof arg === 'undefined'; } exports.isPrimitive = isPrimitive; exports.isBuffer = Buffer.isBuffer; function objectToString(o) { return Object.prototype.toString.call(o); } }).call(this,{"isBuffer":require("../../is-buffer/index.js")}) },{"../../is-buffer/index.js":76}],52:[function(require,module,exports){ // Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. var objectCreate = Object.create || objectCreatePolyfill var objectKeys = Object.keys || objectKeysPolyfill var bind = Function.prototype.bind || functionBindPolyfill function EventEmitter() { if (!this._events || !Object.prototype.hasOwnProperty.call(this, '_events')) { this._events = objectCreate(null); this._eventsCount = 0; } this._maxListeners = this._maxListeners || undefined; } module.exports = EventEmitter; // Backwards-compat with node 0.10.x EventEmitter.EventEmitter = EventEmitter; EventEmitter.prototype._events = undefined; EventEmitter.prototype._maxListeners = undefined; // By default EventEmitters will print a warning if more than 10 listeners are // added to it. This is a useful default which helps finding memory leaks. var defaultMaxListeners = 10; var hasDefineProperty; try { var o = {}; if (Object.defineProperty) Object.defineProperty(o, 'x', { value: 0 }); hasDefineProperty = o.x === 0; } catch (err) { hasDefineProperty = false } if (hasDefineProperty) { Object.defineProperty(EventEmitter, 'defaultMaxListeners', { enumerable: true, get: function() { return defaultMaxListeners; }, set: function(arg) { // check whether the input is a positive number (whose value is zero or // greater and not a NaN). if (typeof arg !== 'number' || arg < 0 || arg !== arg) throw new TypeError('"defaultMaxListeners" must be a positive number'); defaultMaxListeners = arg; } }); } else { EventEmitter.defaultMaxListeners = defaultMaxListeners; } // Obviously not all Emitters should be limited to 10. This function allows // that to be increased. Set to zero for unlimited. EventEmitter.prototype.setMaxListeners = function setMaxListeners(n) { if (typeof n !== 'number' || n < 0 || isNaN(n)) throw new TypeError('"n" argument must be a positive number'); this._maxListeners = n; return this; }; function $getMaxListeners(that) { if (that._maxListeners === undefined) return EventEmitter.defaultMaxListeners; return that._maxListeners; } EventEmitter.prototype.getMaxListeners = function getMaxListeners() { return $getMaxListeners(this); }; // These standalone emit* functions are used to optimize calling of event // handlers for fast cases because emit() itself often has a variable number of // arguments and can be deoptimized because of that. These functions always have // the same number of arguments and thus do not get deoptimized, so the code // inside them can execute faster. function emitNone(handler, isFn, self) { if (isFn) handler.call(self); else { var len = handler.length; var listeners = arrayClone(handler, len); for (var i = 0; i < len; ++i) listeners[i].call(self); } } function emitOne(handler, isFn, self, arg1) { if (isFn) handler.call(self, arg1); else { var len = handler.length; var listeners = arrayClone(handler, len); for (var i = 0; i < len; ++i) listeners[i].call(self, arg1); } } function emitTwo(handler, isFn, self, arg1, arg2) { if (isFn) handler.call(self, arg1, arg2); else { var len = handler.length; var listeners = arrayClone(handler, len); for (var i = 0; i < len; ++i) listeners[i].call(self, arg1, arg2); } } function emitThree(handler, isFn, self, arg1, arg2, arg3) { if (isFn) handler.call(self, arg1, arg2, arg3); else { var len = handler.length; var listeners = arrayClone(handler, len); for (var i = 0; i < len; ++i) listeners[i].call(self, arg1, arg2, arg3); } } function emitMany(handler, isFn, self, args) { if (isFn) handler.apply(self, args); else { var len = handler.length; var listeners = arrayClone(handler, len); for (var i = 0; i < len; ++i) listeners[i].apply(self, args); } } EventEmitter.prototype.emit = function emit(type) { var er, handler, len, args, i, events; var doError = (type === 'error'); events = this._events; if (events) doError = (doError && events.error == null); else if (!doError) return false; // If there is no 'error' event listener then throw. if (doError) { if (arguments.length > 1) er = arguments[1]; if (er instanceof Error) { throw er; // Unhandled 'error' event } else { // At least give some kind of context to the user var err = new Error('Unhandled "error" event. (' + er + ')'); err.context = er; throw err; } return false; } handler = events[type]; if (!handler) return false; var isFn = typeof handler === 'function'; len = arguments.length; switch (len) { // fast cases case 1: emitNone(handler, isFn, this); break; case 2: emitOne(handler, isFn, this, arguments[1]); break; case 3: emitTwo(handler, isFn, this, arguments[1], arguments[2]); break; case 4: emitThree(handler, isFn, this, arguments[1], arguments[2], arguments[3]); break; // slower default: args = new Array(len - 1); for (i = 1; i < len; i++) args[i - 1] = arguments[i]; emitMany(handler, isFn, this, args); } return true; }; function _addListener(target, type, listener, prepend) { var m; var events; var existing; if (typeof listener !== 'function') throw new TypeError('"listener" argument must be a function'); events = target._events; if (!events) { events = target._events = objectCreate(null); target._eventsCount = 0; } else { // To avoid recursion in the case that type === "newListener"! Before // adding it to the listeners, first emit "newListener". if (events.newListener) { target.emit('newListener', type, listener.listener ? listener.listener : listener); // Re-assign `events` because a newListener handler could have caused the // this._events to be assigned to a new object events = target._events; } existing = events[type]; } if (!existing) { // Optimize the case of one listener. Don't need the extra array object. existing = events[type] = listener; ++target._eventsCount; } else { if (typeof existing === 'function') { // Adding the second element, need to change to array. existing = events[type] = prepend ? [listener, existing] : [existing, listener]; } else { // If we've already got an array, just append. if (prepend) { existing.unshift(listener); } else { existing.push(listener); } } // Check for listener leak if (!existing.warned) { m = $getMaxListeners(target); if (m && m > 0 && existing.length > m) { existing.warned = true; var w = new Error('Possible EventEmitter memory leak detected. ' + existing.length + ' "' + String(type) + '" listeners ' + 'added. Use emitter.setMaxListeners() to ' + 'increase limit.'); w.name = 'MaxListenersExceededWarning'; w.emitter = target; w.type = type; w.count = existing.length; if (typeof console === 'object' && console.warn) { console.warn('%s: %s', w.name, w.message); } } } } return target; } EventEmitter.prototype.addListener = function addListener(type, listener) { return _addListener(this, type, listener, false); }; EventEmitter.prototype.on = EventEmitter.prototype.addListener; EventEmitter.prototype.prependListener = function prependListener(type, listener) { return _addListener(this, type, listener, true); }; function onceWrapper() { if (!this.fired) { this.target.removeListener(this.type, this.wrapFn); this.fired = true; switch (arguments.length) { case 0: return this.listener.call(this.target); case 1: return this.listener.call(this.target, arguments[0]); case 2: return this.listener.call(this.target, arguments[0], arguments[1]); case 3: return this.listener.call(this.target, arguments[0], arguments[1], arguments[2]); default: var args = new Array(arguments.length); for (var i = 0; i < args.length; ++i) args[i] = arguments[i]; this.listener.apply(this.target, args); } } } function _onceWrap(target, type, listener) { var state = { fired: false, wrapFn: undefined, target: target, type: type, listener: listener }; var wrapped = bind.call(onceWrapper, state); wrapped.listener = listener; state.wrapFn = wrapped; return wrapped; } EventEmitter.prototype.once = function once(type, listener) { if (typeof listener !== 'function') throw new TypeError('"listener" argument must be a function'); this.on(type, _onceWrap(this, type, listener)); return this; }; EventEmitter.prototype.prependOnceListener = function prependOnceListener(type, listener) { if (typeof listener !== 'function') throw new TypeError('"listener" argument must be a function'); this.prependListener(type, _onceWrap(this, type, listener)); return this; }; // Emits a 'removeListener' event if and only if the listener was removed. EventEmitter.prototype.removeListener = function removeListener(type, listener) { var list, events, position, i, originalListener; if (typeof listener !== 'function') throw new TypeError('"listener" argument must be a function'); events = this._events; if (!events) return this; list = events[type]; if (!list) return this; if (list === listener || list.listener === listener) { if (--this._eventsCount === 0) this._events = objectCreate(null); else { delete events[type]; if (events.removeListener) this.emit('removeListener', type, list.listener || listener); } } else if (typeof list !== 'function') { position = -1; for (i = list.length - 1; i >= 0; i--) { if (list[i] === listener || list[i].listener === listener) { originalListener = list[i].listener; position = i; break; } } if (position < 0) return this; if (position === 0) list.shift(); else spliceOne(list, position); if (list.length === 1) events[type] = list[0]; if (events.removeListener) this.emit('removeListener', type, originalListener || listener); } return this; }; EventEmitter.prototype.removeAllListeners = function removeAllListeners(type) { var listeners, events, i; events = this._events; if (!events) return this; // not listening for removeListener, no need to emit if (!events.removeListener) { if (arguments.length === 0) { this._events = objectCreate(null); this._eventsCount = 0; } else if (events[type]) { if (--this._eventsCount === 0) this._events = objectCreate(null); else delete events[type]; } return this; } // emit removeListener for all listeners on all events if (arguments.length === 0) { var keys = objectKeys(events); var key; for (i = 0; i < keys.length; ++i) { key = keys[i]; if (key === 'removeListener') continue; this.removeAllListeners(key); } this.removeAllListeners('removeListener'); this._events = objectCreate(null); this._eventsCount = 0; return this; } listeners = events[type]; if (typeof listeners === 'function') { this.removeListener(type, listeners); } else if (listeners) { // LIFO order for (i = listeners.length - 1; i >= 0; i--) { this.removeListener(type, listeners[i]); } } return this; }; function _listeners(target, type, unwrap) { var events = target._events; if (!events) return []; var evlistener = events[type]; if (!evlistener) return []; if (typeof evlistener === 'function') return unwrap ? [evlistener.listener || evlistener] : [evlistener]; return unwrap ? unwrapListeners(evlistener) : arrayClone(evlistener, evlistener.length); } EventEmitter.prototype.listeners = function listeners(type) { return _listeners(this, type, true); }; EventEmitter.prototype.rawListeners = function rawListeners(type) { return _listeners(this, type, false); }; EventEmitter.listenerCount = function(emitter, type) { if (typeof emitter.listenerCount === 'function') { return emitter.listenerCount(type); } else { return listenerCount.call(emitter, type); } }; EventEmitter.prototype.listenerCount = listenerCount; function listenerCount(type) { var events = this._events; if (events) { var evlistener = events[type]; if (typeof evlistener === 'function') { return 1; } else if (evlistener) { return evlistener.length; } } return 0; } EventEmitter.prototype.eventNames = function eventNames() { return this._eventsCount > 0 ? Reflect.ownKeys(this._events) : []; }; // About 1.5x faster than the two-arg version of Array#splice(). function spliceOne(list, index) { for (var i = index, k = i + 1, n = list.length; k < n; i += 1, k += 1) list[i] = list[k]; list.pop(); } function arrayClone(arr, n) { var copy = new Array(n); for (var i = 0; i < n; ++i) copy[i] = arr[i]; return copy; } function unwrapListeners(arr) { var ret = new Array(arr.length); for (var i = 0; i < ret.length; ++i) { ret[i] = arr[i].listener || arr[i]; } return ret; } function objectCreatePolyfill(proto) { var F = function() {}; F.prototype = proto; return new F; } function objectKeysPolyfill(obj) { var keys = []; for (var k in obj) if (Object.prototype.hasOwnProperty.call(obj, k)) { keys.push(k); } return k; } function functionBindPolyfill(context) { var fn = this; return function () { return fn.apply(context, arguments); }; } },{}],53:[function(require,module,exports){ var Parser = require('./lib/parser'); function getGlobal() { return (1,eval)('this'); } module.exports = { create: function(buffer, global) { global = global || getGlobal(); if(buffer instanceof global.ArrayBuffer) { var DOMBufferStream = require('./lib/dom-bufferstream'); return new Parser(new DOMBufferStream(buffer, 0, buffer.byteLength, true, global)); } else { var NodeBufferStream = require('./lib/bufferstream'); return new Parser(new NodeBufferStream(buffer, 0, buffer.length, true)); } } }; },{"./lib/bufferstream":54,"./lib/dom-bufferstream":56,"./lib/parser":60}],54:[function(require,module,exports){ function BufferStream(buffer, offset, length, bigEndian) { this.buffer = buffer; this.offset = offset || 0; length = typeof length === 'number' ? length : buffer.length; this.endPosition = this.offset + length; this.setBigEndian(bigEndian); } BufferStream.prototype = { setBigEndian: function(bigEndian) { this.bigEndian = !!bigEndian; }, nextUInt8: function() { var value = this.buffer.readUInt8(this.offset); this.offset += 1; return value; }, nextInt8: function() { var value = this.buffer.readInt8(this.offset); this.offset += 1; return value; }, nextUInt16: function() { var value = this.bigEndian ? this.buffer.readUInt16BE(this.offset) : this.buffer.readUInt16LE(this.offset); this.offset += 2; return value; }, nextUInt32: function() { var value = this.bigEndian ? this.buffer.readUInt32BE(this.offset) : this.buffer.readUInt32LE(this.offset); this.offset += 4; return value; }, nextInt16: function() { var value = this.bigEndian ? this.buffer.readInt16BE(this.offset) : this.buffer.readInt16LE(this.offset); this.offset += 2; return value; }, nextInt32: function() { var value = this.bigEndian ? this.buffer.readInt32BE(this.offset) : this.buffer.readInt32LE(this.offset); this.offset += 4; return value; }, nextFloat: function() { var value = this.bigEndian ? this.buffer.readFloatBE(this.offset) : this.buffer.readFloatLE(this.offset); this.offset += 4; return value; }, nextDouble: function() { var value = this.bigEndian ? this.buffer.readDoubleBE(this.offset) : this.buffer.readDoubleLE(this.offset); this.offset += 8; return value; }, nextBuffer: function(length) { var value = this.buffer.slice(this.offset, this.offset + length); this.offset += length; return value; }, remainingLength: function() { return this.endPosition - this.offset; }, nextString: function(length) { var value = this.buffer.toString('utf8', this.offset, this.offset + length); this.offset += length; return value; }, mark: function() { var self = this; return { openWithOffset: function(offset) { offset = (offset || 0) + this.offset; return new BufferStream(self.buffer, offset, self.endPosition - offset, self.bigEndian); }, offset: this.offset }; }, offsetFrom: function(marker) { return this.offset - marker.offset; }, skip: function(amount) { this.offset += amount; }, branch: function(offset, length) { length = typeof length === 'number' ? length : this.endPosition - (this.offset + offset); return new BufferStream(this.buffer, this.offset + offset, length, this.bigEndian); } }; module.exports = BufferStream; },{}],55:[function(require,module,exports){ function parseNumber(s) { return parseInt(s, 10); } //in seconds var hours = 3600; var minutes = 60; //take date (year, month, day) and time (hour, minutes, seconds) digits in UTC //and return a timestamp in seconds function parseDateTimeParts(dateParts, timeParts) { dateParts = dateParts.map(parseNumber); timeParts = timeParts.map(parseNumber); var year = dateParts[0]; var month = dateParts[1] - 1; var day = dateParts[2]; var hours = timeParts[0]; var minutes = timeParts[1]; var seconds = timeParts[2]; var date = Date.UTC(year, month, day, hours, minutes, seconds, 0); var timestamp = date / 1000; return timestamp; } //parse date with "2004-09-04T23:39:06-08:00" format, //one of the formats supported by ISO 8601, and //convert to utc timestamp in seconds function parseDateWithTimezoneFormat(dateTimeStr) { var dateParts = dateTimeStr.substr(0, 10).split('-'); var timeParts = dateTimeStr.substr(11, 8).split(':'); var timezoneStr = dateTimeStr.substr(19, 6); var timezoneParts = timezoneStr.split(':').map(parseNumber); var timezoneOffset = (timezoneParts[0] * hours) + (timezoneParts[1] * minutes); var timestamp = parseDateTimeParts(dateParts, timeParts); //minus because the timezoneOffset describes //how much the described time is ahead of UTC timestamp -= timezoneOffset; if(typeof timestamp === 'number' && !isNaN(timestamp)) { return timestamp; } } //parse date with "YYYY:MM:DD hh:mm:ss" format, convert to utc timestamp in seconds function parseDateWithSpecFormat(dateTimeStr) { var parts = dateTimeStr.split(' '), dateParts = parts[0].split(':'), timeParts = parts[1].split(':'); var timestamp = parseDateTimeParts(dateParts, timeParts); if(typeof timestamp === 'number' && !isNaN(timestamp)) { return timestamp; } } function parseExifDate(dateTimeStr) { //some easy checks to determine two common date formats //is the date in the standard "YYYY:MM:DD hh:mm:ss" format? var isSpecFormat = dateTimeStr.length === 19 && dateTimeStr.charAt(4) === ':'; //is the date in the non-standard format, //"2004-09-04T23:39:06-08:00" to include a timezone? var isTimezoneFormat = dateTimeStr.length === 25 && dateTimeStr.charAt(10) === 'T'; var timestamp; if(isTimezoneFormat) { return parseDateWithTimezoneFormat(dateTimeStr); } else if(isSpecFormat) { return parseDateWithSpecFormat(dateTimeStr); } } module.exports = { parseDateWithSpecFormat: parseDateWithSpecFormat, parseDateWithTimezoneFormat: parseDateWithTimezoneFormat, parseExifDate: parseExifDate }; },{}],56:[function(require,module,exports){ /*jslint browser: true, devel: true, bitwise: false, debug: true, eqeq: false, es5: true, evil: false, forin: false, newcap: false, nomen: true, plusplus: true, regexp: false, unparam: false, sloppy: true, stupid: false, sub: false, todo: true, vars: true, white: true */ function DOMBufferStream(arrayBuffer, offset, length, bigEndian, global, parentOffset) { this.global = global; offset = offset || 0; length = length || (arrayBuffer.byteLength - offset); this.arrayBuffer = arrayBuffer.slice(offset, offset + length); this.view = new global.DataView(this.arrayBuffer, 0, this.arrayBuffer.byteLength); this.setBigEndian(bigEndian); this.offset = 0; this.parentOffset = (parentOffset || 0) + offset; } DOMBufferStream.prototype = { setBigEndian: function(bigEndian) { this.littleEndian = !bigEndian; }, nextUInt8: function() { var value = this.view.getUint8(this.offset); this.offset += 1; return value; }, nextInt8: function() { var value = this.view.getInt8(this.offset); this.offset += 1; return value; }, nextUInt16: function() { var value = this.view.getUint16(this.offset, this.littleEndian); this.offset += 2; return value; }, nextUInt32: function() { var value = this.view.getUint32(this.offset, this.littleEndian); this.offset += 4; return value; }, nextInt16: function() { var value = this.view.getInt16(this.offset, this.littleEndian); this.offset += 2; return value; }, nextInt32: function() { var value = this.view.getInt32(this.offset, this.littleEndian); this.offset += 4; return value; }, nextFloat: function() { var value = this.view.getFloat32(this.offset, this.littleEndian); this.offset += 4; return value; }, nextDouble: function() { var value = this.view.getFloat64(this.offset, this.littleEndian); this.offset += 8; return value; }, nextBuffer: function(length) { //this won't work in IE10 var value = this.arrayBuffer.slice(this.offset, this.offset + length); this.offset += length; return value; }, remainingLength: function() { return this.arrayBuffer.byteLength - this.offset; }, nextString: function(length) { var value = this.arrayBuffer.slice(this.offset, this.offset + length); value = String.fromCharCode.apply(null, new this.global.Uint8Array(value)); this.offset += length; return value; }, mark: function() { var self = this; return { openWithOffset: function(offset) { offset = (offset || 0) + this.offset; return new DOMBufferStream(self.arrayBuffer, offset, self.arrayBuffer.byteLength - offset, !self.littleEndian, self.global, self.parentOffset); }, offset: this.offset, getParentOffset: function() { return self.parentOffset; } }; }, offsetFrom: function(marker) { return this.parentOffset + this.offset - (marker.offset + marker.getParentOffset()); }, skip: function(amount) { this.offset += amount; }, branch: function(offset, length) { length = typeof length === 'number' ? length : this.arrayBuffer.byteLength - (this.offset + offset); return new DOMBufferStream(this.arrayBuffer, this.offset + offset, length, !this.littleEndian, this.global, this.parentOffset); } }; module.exports = DOMBufferStream; },{}],57:[function(require,module,exports){ module.exports = { exif : { 0x0001 : "InteropIndex", 0x0002 : "InteropVersion", 0x000B : "ProcessingSoftware", 0x00FE : "SubfileType", 0x00FF : "OldSubfileType", 0x0100 : "ImageWidth", 0x0101 : "ImageHeight", 0x0102 : "BitsPerSample", 0x0103 : "Compression", 0x0106 : "PhotometricInterpretation", 0x0107 : "Thresholding", 0x0108 : "CellWidth", 0x0109 : "CellLength", 0x010A : "FillOrder", 0x010D : "DocumentName", 0x010E : "ImageDescription", 0x010F : "Make", 0x0110 : "Model", 0x0111 : "StripOffsets", 0x0112 : "Orientation", 0x0115 : "SamplesPerPixel", 0x0116 : "RowsPerStrip", 0x0117 : "StripByteCounts", 0x0118 : "MinSampleValue", 0x0119 : "MaxSampleValue", 0x011A : "XResolution", 0x011B : "YResolution", 0x011C : "PlanarConfiguration", 0x011D : "PageName", 0x011E : "XPosition", 0x011F : "YPosition", 0x0120 : "FreeOffsets", 0x0121 : "FreeByteCounts", 0x0122 : "GrayResponseUnit", 0x0123 : "GrayResponseCurve", 0x0124 : "T4Options", 0x0125 : "T6Options", 0x0128 : "ResolutionUnit", 0x0129 : "PageNumber", 0x012C : "ColorResponseUnit", 0x012D : "TransferFunction", 0x0131 : "Software", 0x0132 : "ModifyDate", 0x013B : "Artist", 0x013C : "HostComputer", 0x013D : "Predictor", 0x013E : "WhitePoint", 0x013F : "PrimaryChromaticities", 0x0140 : "ColorMap", 0x0141 : "HalftoneHints", 0x0142 : "TileWidth", 0x0143 : "TileLength", 0x0144 : "TileOffsets", 0x0145 : "TileByteCounts", 0x0146 : "BadFaxLines", 0x0147 : "CleanFaxData", 0x0148 : "ConsecutiveBadFaxLines", 0x014A : "SubIFD", 0x014C : "InkSet", 0x014D : "InkNames", 0x014E : "NumberofInks", 0x0150 : "DotRange", 0x0151 : "TargetPrinter", 0x0152 : "ExtraSamples", 0x0153 : "SampleFormat", 0x0154 : "SMinSampleValue", 0x0155 : "SMaxSampleValue", 0x0156 : "TransferRange", 0x0157 : "ClipPath", 0x0158 : "XClipPathUnits", 0x0159 : "YClipPathUnits", 0x015A : "Indexed", 0x015B : "JPEGTables", 0x015F : "OPIProxy", 0x0190 : "GlobalParametersIFD", 0x0191 : "ProfileType", 0x0192 : "FaxProfile", 0x0193 : "CodingMethods", 0x0194 : "VersionYear", 0x0195 : "ModeNumber", 0x01B1 : "Decode", 0x01B2 : "DefaultImageColor", 0x01B3 : "T82Options", 0x01B5 : "JPEGTables", 0x0200 : "JPEGProc", 0x0201 : "ThumbnailOffset", 0x0202 : "ThumbnailLength", 0x0203 : "JPEGRestartInterval", 0x0205 : "JPEGLosslessPredictors", 0x0206 : "JPEGPointTransforms", 0x0207 : "JPEGQTables", 0x0208 : "JPEGDCTables", 0x0209 : "JPEGACTables", 0x0211 : "YCbCrCoefficients", 0x0212 : "YCbCrSubSampling", 0x0213 : "YCbCrPositioning", 0x0214 : "ReferenceBlackWhite", 0x022F : "StripRowCounts", 0x02BC : "ApplicationNotes", 0x03E7 : "USPTOMiscellaneous", 0x1000 : "RelatedImageFileFormat", 0x1001 : "RelatedImageWidth", 0x1002 : "RelatedImageHeight", 0x4746 : "Rating", 0x4747 : "XP_DIP_XML", 0x4748 : "StitchInfo", 0x4749 : "RatingPercent", 0x800D : "ImageID", 0x80A3 : "WangTag1", 0x80A4 : "WangAnnotation", 0x80A5 : "WangTag3", 0x80A6 : "WangTag4", 0x80E3 : "Matteing", 0x80E4 : "DataType", 0x80E5 : "ImageDepth", 0x80E6 : "TileDepth", 0x827D : "Model2", 0x828D : "CFARepeatPatternDim", 0x828E : "CFAPattern2", 0x828F : "BatteryLevel", 0x8290 : "KodakIFD", 0x8298 : "Copyright", 0x829A : "ExposureTime", 0x829D : "FNumber", 0x82A5 : "MDFileTag", 0x82A6 : "MDScalePixel", 0x82A7 : "MDColorTable", 0x82A8 : "MDLabName", 0x82A9 : "MDSampleInfo", 0x82AA : "MDPrepDate", 0x82AB : "MDPrepTime", 0x82AC : "MDFileUnits", 0x830E : "PixelScale", 0x8335 : "AdventScale", 0x8336 : "AdventRevision", 0x835C : "UIC1Tag", 0x835D : "UIC2Tag", 0x835E : "UIC3Tag", 0x835F : "UIC4Tag", 0x83BB : "IPTC-NAA", 0x847E : "IntergraphPacketData", 0x847F : "IntergraphFlagRegisters", 0x8480 : "IntergraphMatrix", 0x8481 : "INGRReserved", 0x8482 : "ModelTiePoint", 0x84E0 : "Site", 0x84E1 : "ColorSequence", 0x84E2 : "IT8Header", 0x84E3 : "RasterPadding", 0x84E4 : "BitsPerRunLength", 0x84E5 : "BitsPerExtendedRunLength", 0x84E6 : "ColorTable", 0x84E7 : "ImageColorIndicator", 0x84E8 : "BackgroundColorIndicator", 0x84E9 : "ImageColorValue", 0x84EA : "BackgroundColorValue", 0x84EB : "PixelIntensityRange", 0x84EC : "TransparencyIndicator", 0x84ED : "ColorCharacterization", 0x84EE : "HCUsage", 0x84EF : "TrapIndicator", 0x84F0 : "CMYKEquivalent", 0x8546 : "SEMInfo", 0x8568 : "AFCP_IPTC", 0x85B8 : "PixelMagicJBIGOptions", 0x85D8 : "ModelTransform", 0x8602 : "WB_GRGBLevels", 0x8606 : "LeafData", 0x8649 : "PhotoshopSettings", 0x8769 : "ExifOffset", 0x8773 : "ICC_Profile", 0x877F : "TIFF_FXExtensions", 0x8780 : "MultiProfiles", 0x8781 : "SharedData", 0x8782 : "T88Options", 0x87AC : "ImageLayer", 0x87AF : "GeoTiffDirectory", 0x87B0 : "GeoTiffDoubleParams", 0x87B1 : "GeoTiffAsciiParams", 0x8822 : "ExposureProgram", 0x8824 : "SpectralSensitivity", 0x8825 : "GPSInfo", 0x8827 : "ISO", 0x8828 : "Opto-ElectricConvFactor", 0x8829 : "Interlace", 0x882A : "TimeZoneOffset", 0x882B : "SelfTimerMode", 0x8830 : "SensitivityType", 0x8831 : "StandardOutputSensitivity", 0x8832 : "RecommendedExposureIndex", 0x8833 : "ISOSpeed", 0x8834 : "ISOSpeedLatitudeyyy", 0x8835 : "ISOSpeedLatitudezzz", 0x885C : "FaxRecvParams", 0x885D : "FaxSubAddress", 0x885E : "FaxRecvTime", 0x888A : "LeafSubIFD", 0x9000 : "ExifVersion", 0x9003 : "DateTimeOriginal", 0x9004 : "CreateDate", 0x9101 : "ComponentsConfiguration", 0x9102 : "CompressedBitsPerPixel", 0x9201 : "ShutterSpeedValue", 0x9202 : "ApertureValue", 0x9203 : "BrightnessValue", 0x9204 : "ExposureCompensation", 0x9205 : "MaxApertureValue", 0x9206 : "SubjectDistance", 0x9207 : "MeteringMode", 0x9208 : "LightSource", 0x9209 : "Flash", 0x920A : "FocalLength", 0x920B : "FlashEnergy", 0x920C : "SpatialFrequencyResponse", 0x920D : "Noise", 0x920E : "FocalPlaneXResolution", 0x920F : "FocalPlaneYResolution", 0x9210 : "FocalPlaneResolutionUnit", 0x9211 : "ImageNumber", 0x9212 : "SecurityClassification", 0x9213 : "ImageHistory", 0x9214 : "SubjectArea", 0x9215 : "ExposureIndex", 0x9216 : "TIFF-EPStandardID", 0x9217 : "SensingMethod", 0x923A : "CIP3DataFile", 0x923B : "CIP3Sheet", 0x923C : "CIP3Side", 0x923F : "StoNits", 0x927C : "MakerNote", 0x9286 : "UserComment", 0x9290 : "SubSecTime", 0x9291 : "SubSecTimeOriginal", 0x9292 : "SubSecTimeDigitized", 0x932F : "MSDocumentText", 0x9330 : "MSPropertySetStorage", 0x9331 : "MSDocumentTextPosition", 0x935C : "ImageSourceData", 0x9C9B : "XPTitle", 0x9C9C : "XPComment", 0x9C9D : "XPAuthor", 0x9C9E : "XPKeywords", 0x9C9F : "XPSubject", 0xA000 : "FlashpixVersion", 0xA001 : "ColorSpace", 0xA002 : "ExifImageWidth", 0xA003 : "ExifImageHeight", 0xA004 : "RelatedSoundFile", 0xA005 : "InteropOffset", 0xA20B : "FlashEnergy", 0xA20C : "SpatialFrequencyResponse", 0xA20D : "Noise", 0xA20E : "FocalPlaneXResolution", 0xA20F : "FocalPlaneYResolution", 0xA210 : "FocalPlaneResolutionUnit", 0xA211 : "ImageNumber", 0xA212 : "SecurityClassification", 0xA213 : "ImageHistory", 0xA214 : "SubjectLocation", 0xA215 : "ExposureIndex", 0xA216 : "TIFF-EPStandardID", 0xA217 : "SensingMethod", 0xA300 : "FileSource", 0xA301 : "SceneType", 0xA302 : "CFAPattern", 0xA401 : "CustomRendered", 0xA402 : "ExposureMode", 0xA403 : "WhiteBalance", 0xA404 : "DigitalZoomRatio", 0xA405 : "FocalLengthIn35mmFormat", 0xA406 : "SceneCaptureType", 0xA407 : "GainControl", 0xA408 : "Contrast", 0xA409 : "Saturation", 0xA40A : "Sharpness", 0xA40B : "DeviceSettingDescription", 0xA40C : "SubjectDistanceRange", 0xA420 : "ImageUniqueID", 0xA430 : "OwnerName", 0xA431 : "SerialNumber", 0xA432 : "LensInfo", 0xA433 : "LensMake", 0xA434 : "LensModel", 0xA435 : "LensSerialNumber", 0xA480 : "GDALMetadata", 0xA481 : "GDALNoData", 0xA500 : "Gamma", 0xAFC0 : "ExpandSoftware", 0xAFC1 : "ExpandLens", 0xAFC2 : "ExpandFilm", 0xAFC3 : "ExpandFilterLens", 0xAFC4 : "ExpandScanner", 0xAFC5 : "ExpandFlashLamp", 0xBC01 : "PixelFormat", 0xBC02 : "Transformation", 0xBC03 : "Uncompressed", 0xBC04 : "ImageType", 0xBC80 : "ImageWidth", 0xBC81 : "ImageHeight", 0xBC82 : "WidthResolution", 0xBC83 : "HeightResolution", 0xBCC0 : "ImageOffset", 0xBCC1 : "ImageByteCount", 0xBCC2 : "AlphaOffset", 0xBCC3 : "AlphaByteCount", 0xBCC4 : "ImageDataDiscard", 0xBCC5 : "AlphaDataDiscard", 0xC427 : "OceScanjobDesc", 0xC428 : "OceApplicationSelector", 0xC429 : "OceIDNumber", 0xC42A : "OceImageLogic", 0xC44F : "Annotations", 0xC4A5 : "PrintIM", 0xC580 : "USPTOOriginalContentType", 0xC612 : "DNGVersion", 0xC613 : "DNGBackwardVersion", 0xC614 : "UniqueCameraModel", 0xC615 : "LocalizedCameraModel", 0xC616 : "CFAPlaneColor", 0xC617 : "CFALayout", 0xC618 : "LinearizationTable", 0xC619 : "BlackLevelRepeatDim", 0xC61A : "BlackLevel", 0xC61B : "BlackLevelDeltaH", 0xC61C : "BlackLevelDeltaV", 0xC61D : "WhiteLevel", 0xC61E : "DefaultScale", 0xC61F : "DefaultCropOrigin", 0xC620 : "DefaultCropSize", 0xC621 : "ColorMatrix1", 0xC622 : "ColorMatrix2", 0xC623 : "CameraCalibration1", 0xC624 : "CameraCalibration2", 0xC625 : "ReductionMatrix1", 0xC626 : "ReductionMatrix2", 0xC627 : "AnalogBalance", 0xC628 : "AsShotNeutral", 0xC629 : "AsShotWhiteXY", 0xC62A : "BaselineExposure", 0xC62B : "BaselineNoise", 0xC62C : "BaselineSharpness", 0xC62D : "BayerGreenSplit", 0xC62E : "LinearResponseLimit", 0xC62F : "CameraSerialNumber", 0xC630 : "DNGLensInfo", 0xC631 : "ChromaBlurRadius", 0xC632 : "AntiAliasStrength", 0xC633 : "ShadowScale", 0xC634 : "DNGPrivateData", 0xC635 : "MakerNoteSafety", 0xC640 : "RawImageSegmentation", 0xC65A : "CalibrationIlluminant1", 0xC65B : "CalibrationIlluminant2", 0xC65C : "BestQualityScale", 0xC65D : "RawDataUniqueID", 0xC660 : "AliasLayerMetadata", 0xC68B : "OriginalRawFileName", 0xC68C : "OriginalRawFileData", 0xC68D : "ActiveArea", 0xC68E : "MaskedAreas", 0xC68F : "AsShotICCProfile", 0xC690 : "AsShotPreProfileMatrix", 0xC691 : "CurrentICCProfile", 0xC692 : "CurrentPreProfileMatrix", 0xC6BF : "ColorimetricReference", 0xC6D2 : "PanasonicTitle", 0xC6D3 : "PanasonicTitle2", 0xC6F3 : "CameraCalibrationSig", 0xC6F4 : "ProfileCalibrationSig", 0xC6F5 : "ProfileIFD", 0xC6F6 : "AsShotProfileName", 0xC6F7 : "NoiseReductionApplied", 0xC6F8 : "ProfileName", 0xC6F9 : "ProfileHueSatMapDims", 0xC6FA : "ProfileHueSatMapData1", 0xC6FB : "ProfileHueSatMapData2", 0xC6FC : "ProfileToneCurve", 0xC6FD : "ProfileEmbedPolicy", 0xC6FE : "ProfileCopyright", 0xC714 : "ForwardMatrix1", 0xC715 : "ForwardMatrix2", 0xC716 : "PreviewApplicationName", 0xC717 : "PreviewApplicationVersion", 0xC718 : "PreviewSettingsName", 0xC719 : "PreviewSettingsDigest", 0xC71A : "PreviewColorSpace", 0xC71B : "PreviewDateTime", 0xC71C : "RawImageDigest", 0xC71D : "OriginalRawFileDigest", 0xC71E : "SubTileBlockSize", 0xC71F : "RowInterleaveFactor", 0xC725 : "ProfileLookTableDims", 0xC726 : "ProfileLookTableData", 0xC740 : "OpcodeList1", 0xC741 : "OpcodeList2", 0xC74E : "OpcodeList3", 0xC761 : "NoiseProfile", 0xC763 : "TimeCodes", 0xC764 : "FrameRate", 0xC772 : "TStop", 0xC789 : "ReelName", 0xC791 : "OriginalDefaultFinalSize", 0xC792 : "OriginalBestQualitySize", 0xC793 : "OriginalDefaultCropSize", 0xC7A1 : "CameraLabel", 0xC7A3 : "ProfileHueSatMapEncoding", 0xC7A4 : "ProfileLookTableEncoding", 0xC7A5 : "BaselineExposureOffset", 0xC7A6 : "DefaultBlackRender", 0xC7A7 : "NewRawImageDigest", 0xC7A8 : "RawToPreviewGain", 0xC7B5 : "DefaultUserCrop", 0xEA1C : "Padding", 0xEA1D : "OffsetSchema", 0xFDE8 : "OwnerName", 0xFDE9 : "SerialNumber", 0xFDEA : "Lens", 0xFE00 : "KDC_IFD", 0xFE4C : "RawFile", 0xFE4D : "Converter", 0xFE4E : "WhiteBalance", 0xFE51 : "Exposure", 0xFE52 : "Shadows", 0xFE53 : "Brightness", 0xFE54 : "Contrast", 0xFE55 : "Saturation", 0xFE56 : "Sharpness", 0xFE57 : "Smoothness", 0xFE58 : "MoireFilter" }, gps : { 0x0000 : 'GPSVersionID', 0x0001 : 'GPSLatitudeRef', 0x0002 : 'GPSLatitude', 0x0003 : 'GPSLongitudeRef', 0x0004 : 'GPSLongitude', 0x0005 : 'GPSAltitudeRef', 0x0006 : 'GPSAltitude', 0x0007 : 'GPSTimeStamp', 0x0008 : 'GPSSatellites', 0x0009 : 'GPSStatus', 0x000A : 'GPSMeasureMode', 0x000B : 'GPSDOP', 0x000C : 'GPSSpeedRef', 0x000D : 'GPSSpeed', 0x000E : 'GPSTrackRef', 0x000F : 'GPSTrack', 0x0010 : 'GPSImgDirectionRef', 0x0011 : 'GPSImgDirection', 0x0012 : 'GPSMapDatum', 0x0013 : 'GPSDestLatitudeRef', 0x0014 : 'GPSDestLatitude', 0x0015 : 'GPSDestLongitudeRef', 0x0016 : 'GPSDestLongitude', 0x0017 : 'GPSDestBearingRef', 0x0018 : 'GPSDestBearing', 0x0019 : 'GPSDestDistanceRef', 0x001A : 'GPSDestDistance', 0x001B : 'GPSProcessingMethod', 0x001C : 'GPSAreaInformation', 0x001D : 'GPSDateStamp', 0x001E : 'GPSDifferential', 0x001F : 'GPSHPositioningError' } }; },{}],58:[function(require,module,exports){ /*jslint browser: true, devel: true, bitwise: false, debug: true, eqeq: false, es5: true, evil: false, forin: false, newcap: false, nomen: true, plusplus: true, regexp: false, unparam: false, sloppy: true, stupid: false, sub: false, todo: true, vars: true, white: true */ function readExifValue(format, stream) { switch(format) { case 1: return stream.nextUInt8(); case 3: return stream.nextUInt16(); case 4: return stream.nextUInt32(); case 5: return [stream.nextUInt32(), stream.nextUInt32()]; case 6: return stream.nextInt8(); case 8: return stream.nextUInt16(); case 9: return stream.nextUInt32(); case 10: return [stream.nextInt32(), stream.nextInt32()]; case 11: return stream.nextFloat(); case 12: return stream.nextDouble(); default: throw new Error('Invalid format while decoding: ' + format); } } function getBytesPerComponent(format) { switch(format) { case 1: case 2: case 6: case 7: return 1; case 3: case 8: return 2; case 4: case 9: case 11: return 4; case 5: case 10: case 12: return 8; default: return 0; } } function readExifTag(tiffMarker, stream) { var tagType = stream.nextUInt16(), format = stream.nextUInt16(), bytesPerComponent = getBytesPerComponent(format), components = stream.nextUInt32(), valueBytes = bytesPerComponent * components, values, value, c; /* if the value is bigger then 4 bytes, the value is in the data section of the IFD and the value present in the tag is the offset starting from the tiff header. So we replace the stream with a stream that is located at the given offset in the data section. s*/ if(valueBytes > 4) { stream = tiffMarker.openWithOffset(stream.nextUInt32()); } //we don't want to read strings as arrays if(format === 2) { values = stream.nextString(components); //cut off \0 characters var lastNull = values.indexOf('\0'); if(lastNull !== -1) { values = values.substr(0, lastNull); } } else if(format === 7) { values = stream.nextBuffer(components); } else if(format !== 0) { values = []; for(c = 0; c < components; ++c) { values.push(readExifValue(format, stream)); } } //since our stream is a stateful object, we need to skip remaining bytes //so our offset stays correct if(valueBytes < 4) { stream.skip(4 - valueBytes); } return [tagType, values, format]; } function readIFDSection(tiffMarker, stream, iterator) { var numberOfEntries = stream.nextUInt16(), tag, i; for(i = 0; i < numberOfEntries; ++i) { tag = readExifTag(tiffMarker, stream); iterator(tag[0], tag[1], tag[2]); } } function readHeader(stream) { var exifHeader = stream.nextString(6); if(exifHeader !== 'Exif\0\0') { throw new Error('Invalid EXIF header'); } var tiffMarker = stream.mark(); var tiffHeader = stream.nextUInt16(); if(tiffHeader === 0x4949) { stream.setBigEndian(false); } else if(tiffHeader === 0x4D4D) { stream.setBigEndian(true); } else { throw new Error('Invalid TIFF header'); } if(stream.nextUInt16() !== 0x002A) { throw new Error('Invalid TIFF data'); } return tiffMarker; } module.exports = { IFD0: 1, IFD1: 2, GPSIFD: 3, SubIFD: 4, InteropIFD: 5, parseTags: function(stream, iterator) { var tiffMarker; try { tiffMarker = readHeader(stream); } catch(e) { return false; //ignore APP1 sections with invalid headers } var subIfdOffset, gpsOffset, interopOffset; var ifd0Stream = tiffMarker.openWithOffset(stream.nextUInt32()), IFD0 = this.IFD0; readIFDSection(tiffMarker, ifd0Stream, function(tagType, value, format) { switch(tagType) { case 0x8825: gpsOffset = value[0]; break; case 0x8769: subIfdOffset = value[0]; break; default: iterator(IFD0, tagType, value, format); break; } }); var ifd1Offset = ifd0Stream.nextUInt32(); if(ifd1Offset !== 0) { var ifd1Stream = tiffMarker.openWithOffset(ifd1Offset); readIFDSection(tiffMarker, ifd1Stream, iterator.bind(null, this.IFD1)); } if(gpsOffset) { var gpsStream = tiffMarker.openWithOffset(gpsOffset); readIFDSection(tiffMarker, gpsStream, iterator.bind(null, this.GPSIFD)); } if(subIfdOffset) { var subIfdStream = tiffMarker.openWithOffset(subIfdOffset), InteropIFD = this.InteropIFD; readIFDSection(tiffMarker, subIfdStream, function(tagType, value, format) { if(tagType === 0xA005) { interopOffset = value[0]; } else { iterator(InteropIFD, tagType, value, format); } }); } if(interopOffset) { var interopStream = tiffMarker.openWithOffset(interopOffset); readIFDSection(tiffMarker, interopStream, iterator.bind(null, this.InteropIFD)); } return true; } }; },{}],59:[function(require,module,exports){ /*jslint browser: true, devel: true, bitwise: false, debug: true, eqeq: false, es5: true, evil: false, forin: false, newcap: false, nomen: true, plusplus: true, regexp: false, unparam: false, sloppy: true, stupid: false, sub: false, todo: true, vars: true, white: true */ module.exports = { parseSections: function(stream, iterator) { var len, markerType; stream.setBigEndian(true); //stop reading the stream at the SOS (Start of Stream) marker, //because its length is not stored in the header so we can't //know where to jump to. The only marker after that is just EOI (End Of Image) anyway while(stream.remainingLength() > 0 && markerType !== 0xDA) { if(stream.nextUInt8() !== 0xFF) { throw new Error('Invalid JPEG section offset'); } markerType = stream.nextUInt8(); //don't read size from markers that have no datas if((markerType >= 0xD0 && markerType <= 0xD9) || markerType === 0xDA) { len = 0; } else { len = stream.nextUInt16() - 2; } iterator(markerType, stream.branch(0, len)); stream.skip(len); } }, //stream should be located after SOF section size and in big endian mode, like passed to parseSections iterator getSizeFromSOFSection: function(stream) { stream.skip(1); return { height: stream.nextUInt16(), width: stream.nextUInt16() }; }, getSectionName: function(markerType) { var name, index; switch(markerType) { case 0xD8: name = 'SOI'; break; case 0xC4: name = 'DHT'; break; case 0xDB: name = 'DQT'; break; case 0xDD: name = 'DRI'; break; case 0xDA: name = 'SOS'; break; case 0xFE: name = 'COM'; break; case 0xD9: name = 'EOI'; break; default: if(markerType >= 0xE0 && markerType <= 0xEF) { name = 'APP'; index = markerType - 0xE0; } else if(markerType >= 0xC0 && markerType <= 0xCF && markerType !== 0xC4 && markerType !== 0xC8 && markerType !== 0xCC) { name = 'SOF'; index = markerType - 0xC0; } else if(markerType >= 0xD0 && markerType <= 0xD7) { name = 'RST'; index = markerType - 0xD0; } break; } var nameStruct = { name: name }; if(typeof index === 'number') { nameStruct.index = index; } return nameStruct; } }; },{}],60:[function(require,module,exports){ /*jslint browser: true, devel: true, bitwise: false, debug: true, eqeq: false, es5: true, evil: false, forin: false, newcap: false, nomen: true, plusplus: true, regexp: false, unparam: false, sloppy: true, stupid: false, sub: false, todo: true, vars: true, white: true */ var jpeg = require('./jpeg'), exif = require('./exif'), simplify = require('./simplify'); function ExifResult(startMarker, tags, imageSize, thumbnailOffset, thumbnailLength, thumbnailType, app1Offset) { this.startMarker = startMarker; this.tags = tags; this.imageSize = imageSize; this.thumbnailOffset = thumbnailOffset; this.thumbnailLength = thumbnailLength; this.thumbnailType = thumbnailType; this.app1Offset = app1Offset; } ExifResult.prototype = { hasThumbnail: function(mime) { if(!this.thumbnailOffset || !this.thumbnailLength) { return false; } if(typeof mime !== 'string') { return true; } if(mime.toLowerCase().trim() === 'image/jpeg') { return this.thumbnailType === 6; } if(mime.toLowerCase().trim() === 'image/tiff') { return this.thumbnailType === 1; } return false; }, getThumbnailOffset: function() { return this.app1Offset + 6 + this.thumbnailOffset; }, getThumbnailLength: function() { return this.thumbnailLength; }, getThumbnailBuffer: function() { return this._getThumbnailStream().nextBuffer(this.thumbnailLength); }, _getThumbnailStream: function() { return this.startMarker.openWithOffset(this.getThumbnailOffset()); }, getImageSize: function() { return this.imageSize; }, getThumbnailSize: function() { var stream = this._getThumbnailStream(), size; jpeg.parseSections(stream, function(sectionType, sectionStream) { if(jpeg.getSectionName(sectionType).name === 'SOF') { size = jpeg.getSizeFromSOFSection(sectionStream); } }); return size; } }; function Parser(stream) { this.stream = stream; this.flags = { readBinaryTags: false, resolveTagNames: true, simplifyValues: true, imageSize: true, hidePointers: true, returnTags: true }; } Parser.prototype = { enableBinaryFields: function(enable) { this.flags.readBinaryTags = !!enable; return this; }, enablePointers: function(enable) { this.flags.hidePointers = !enable; return this; }, enableTagNames: function(enable) { this.flags.resolveTagNames = !!enable; return this; }, enableImageSize: function(enable) { this.flags.imageSize = !!enable; return this; }, enableReturnTags: function(enable) { this.flags.returnTags = !!enable; return this; }, enableSimpleValues: function(enable) { this.flags.simplifyValues = !!enable; return this; }, parse: function() { var start = this.stream.mark(), stream = start.openWithOffset(0), flags = this.flags, tags, imageSize, thumbnailOffset, thumbnailLength, thumbnailType, app1Offset, tagNames, getTagValue, setTagValue; if(flags.resolveTagNames) { tagNames = require('./exif-tags'); } if(flags.resolveTagNames) { tags = {}; getTagValue = function(t) { return tags[t.name]; }; setTagValue = function(t, value) { tags[t.name] = value; }; } else { tags = []; getTagValue = function(t) { var i; for(i = 0; i < tags.length; ++i) { if(tags[i].type === t.type && tags[i].section === t.section) { return tags.value; } } }; setTagValue = function(t, value) { var i; for(i = 0; i < tags.length; ++i) { if(tags[i].type === t.type && tags[i].section === t.section) { tags.value = value; return; } } }; } jpeg.parseSections(stream, function(sectionType, sectionStream) { var validExifHeaders, sectionOffset = sectionStream.offsetFrom(start); if(sectionType === 0xE1) { validExifHeaders = exif.parseTags(sectionStream, function(ifdSection, tagType, value, format) { //ignore binary fields if disabled if(!flags.readBinaryTags && format === 7) { return; } if(tagType === 0x0201) { thumbnailOffset = value[0]; if(flags.hidePointers) {return;} } else if(tagType === 0x0202) { thumbnailLength = value[0]; if(flags.hidePointers) {return;} } else if(tagType === 0x0103) { thumbnailType = value[0]; if(flags.hidePointers) {return;} } //if flag is set to not store tags, return here after storing pointers if(!flags.returnTags) { return; } if(flags.simplifyValues) { value = simplify.simplifyValue(value, format); } if(flags.resolveTagNames) { var sectionTagNames = ifdSection === exif.GPSIFD ? tagNames.gps : tagNames.exif; var name = sectionTagNames[tagType]; if(!name) { name = tagNames.exif[tagType]; } if (!tags.hasOwnProperty(name)) { tags[name] = value; } } else { tags.push({ section: ifdSection, type: tagType, value: value }); } }); if(validExifHeaders) { app1Offset = sectionOffset; } } else if(flags.imageSize && jpeg.getSectionName(sectionType).name === 'SOF') { imageSize = jpeg.getSizeFromSOFSection(sectionStream); } }); if(flags.simplifyValues) { simplify.castDegreeValues(getTagValue, setTagValue); simplify.castDateValues(getTagValue, setTagValue); } return new ExifResult(start, tags, imageSize, thumbnailOffset, thumbnailLength, thumbnailType, app1Offset); } }; module.exports = Parser; },{"./exif":58,"./exif-tags":57,"./jpeg":59,"./simplify":61}],61:[function(require,module,exports){ var exif = require('./exif'); var date = require('./date'); var degreeTags = [{ section: exif.GPSIFD, type: 0x0002, name: 'GPSLatitude', refType: 0x0001, refName: 'GPSLatitudeRef', posVal: 'N' }, { section: exif.GPSIFD, type: 0x0004, name: 'GPSLongitude', refType: 0x0003, refName: 'GPSLongitudeRef', posVal: 'E' }]; var dateTags = [{ section: exif.SubIFD, type: 0x0132, name: 'ModifyDate' }, { section: exif.SubIFD, type: 0x9003, name: 'DateTimeOriginal' }, { section: exif.SubIFD, type: 0x9004, name: 'CreateDate' }, { section: exif.SubIFD, type: 0x0132, name : 'ModifyDate', }]; module.exports = { castDegreeValues: function(getTagValue, setTagValue) { degreeTags.forEach(function(t) { var degreeVal = getTagValue(t); if(degreeVal) { var degreeRef = getTagValue({section: t.section, type: t.refType, name: t.refName}); var degreeNumRef = degreeRef === t.posVal ? 1 : -1; var degree = (degreeVal[0] + (degreeVal[1] / 60) + (degreeVal[2] / 3600)) * degreeNumRef; setTagValue(t, degree); } }); }, castDateValues: function(getTagValue, setTagValue) { dateTags.forEach(function(t) { var dateStrVal = getTagValue(t); if(dateStrVal) { //some easy checks to determine two common date formats var timestamp = date.parseExifDate(dateStrVal); if(typeof timestamp !== 'undefined') { setTagValue(t, timestamp); } } }); }, simplifyValue: function(values, format) { if(Array.isArray(values)) { values = values.map(function(value) { if(format === 10 || format === 5) { return value[0] / value[1]; } return value; }); if(values.length === 1) { values = values[0]; } } return values; } }; },{"./date":55,"./exif":58}],62:[function(require,module,exports){ 'use strict'; var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault"); var _toConsumableArray2 = _interopRequireDefault(require("@babel/runtime/helpers/toConsumableArray")); var toBytes = function toBytes(s) { return (0, _toConsumableArray2["default"])(s).map(function (c) { return c.charCodeAt(0); }); }; var xpiZipFilename = toBytes('META-INF/mozilla.rsa'); var oxmlContentTypes = toBytes('[Content_Types].xml'); var oxmlRels = toBytes('_rels/.rels'); module.exports = function (input) { var buf = input instanceof Uint8Array ? input : new Uint8Array(input); if (!(buf && buf.length > 1)) { return null; } var check = function check(header, options) { options = Object.assign({ offset: 0 }, options); for (var i = 0; i < header.length; i++) { // If a bitmask is set if (options.mask) { // If header doesn't equal `buf` with bits masked off if (header[i] !== (options.mask[i] & buf[i + options.offset])) { return false; } } else if (header[i] !== buf[i + options.offset]) { return false; } } return true; }; var checkString = function checkString(header, options) { return check(toBytes(header), options); }; if (check([0xFF, 0xD8, 0xFF])) { return { ext: 'jpg', mime: 'image/jpeg' }; } if (check([0x89, 0x50, 0x4E, 0x47, 0x0D, 0x0A, 0x1A, 0x0A])) { return { ext: 'png', mime: 'image/png' }; } if (check([0x47, 0x49, 0x46])) { return { ext: 'gif', mime: 'image/gif' }; } if (check([0x57, 0x45, 0x42, 0x50], { offset: 8 })) { return { ext: 'webp', mime: 'image/webp' }; } if (check([0x46, 0x4C, 0x49, 0x46])) { return { ext: 'flif', mime: 'image/flif' }; } // Needs to be before `tif` check if ((check([0x49, 0x49, 0x2A, 0x0]) || check([0x4D, 0x4D, 0x0, 0x2A])) && check([0x43, 0x52], { offset: 8 })) { return { ext: 'cr2', mime: 'image/x-canon-cr2' }; } if (check([0x49, 0x49, 0x2A, 0x0]) || check([0x4D, 0x4D, 0x0, 0x2A])) { return { ext: 'tif', mime: 'image/tiff' }; } if (check([0x42, 0x4D])) { return { ext: 'bmp', mime: 'image/bmp' }; } if (check([0x49, 0x49, 0xBC])) { return { ext: 'jxr', mime: 'image/vnd.ms-photo' }; } if (check([0x38, 0x42, 0x50, 0x53])) { return { ext: 'psd', mime: 'image/vnd.adobe.photoshop' }; } // Zip-based file formats // Need to be before the `zip` check if (check([0x50, 0x4B, 0x3, 0x4])) { if (check([0x6D, 0x69, 0x6D, 0x65, 0x74, 0x79, 0x70, 0x65, 0x61, 0x70, 0x70, 0x6C, 0x69, 0x63, 0x61, 0x74, 0x69, 0x6F, 0x6E, 0x2F, 0x65, 0x70, 0x75, 0x62, 0x2B, 0x7A, 0x69, 0x70], { offset: 30 })) { return { ext: 'epub', mime: 'application/epub+zip' }; } // Assumes signed `.xpi` from addons.mozilla.org if (check(xpiZipFilename, { offset: 30 })) { return { ext: 'xpi', mime: 'application/x-xpinstall' }; } if (checkString('mimetypeapplication/vnd.oasis.opendocument.text', { offset: 30 })) { return { ext: 'odt', mime: 'application/vnd.oasis.opendocument.text' }; } if (checkString('mimetypeapplication/vnd.oasis.opendocument.spreadsheet', { offset: 30 })) { return { ext: 'ods', mime: 'application/vnd.oasis.opendocument.spreadsheet' }; } if (checkString('mimetypeapplication/vnd.oasis.opendocument.presentation', { offset: 30 })) { return { ext: 'odp', mime: 'application/vnd.oasis.opendocument.presentation' }; } // The docx, xlsx and pptx file types extend the Office Open XML file format: // https://en.wikipedia.org/wiki/Office_Open_XML_file_formats // We look for: // - one entry named '[Content_Types].xml' or '_rels/.rels', // - one entry indicating specific type of file. // MS Office, OpenOffice and LibreOffice may put the parts in different order, so the check should not rely on it. var findNextZipHeaderIndex = function findNextZipHeaderIndex(arr) { var startAt = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : 0; return arr.findIndex(function (el, i, arr) { return i >= startAt && arr[i] === 0x50 && arr[i + 1] === 0x4B && arr[i + 2] === 0x3 && arr[i + 3] === 0x4; }); }; var zipHeaderIndex = 0; // The first zip header was already found at index 0 var oxmlFound = false; var type = null; do { var offset = zipHeaderIndex + 30; if (!oxmlFound) { oxmlFound = check(oxmlContentTypes, { offset: offset }) || check(oxmlRels, { offset: offset }); } if (!type) { if (checkString('word/', { offset: offset })) { type = { ext: 'docx', mime: 'application/vnd.openxmlformats-officedocument.wordprocessingml.document' }; } else if (checkString('ppt/', { offset: offset })) { type = { ext: 'pptx', mime: 'application/vnd.openxmlformats-officedocument.presentationml.presentation' }; } else if (checkString('xl/', { offset: offset })) { type = { ext: 'xlsx', mime: 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet' }; } } if (oxmlFound && type) { return type; } zipHeaderIndex = findNextZipHeaderIndex(buf, offset); } while (zipHeaderIndex >= 0); // No more zip parts available in the buffer, but maybe we are almost certain about the type? if (type) { return type; } } if (check([0x50, 0x4B]) && (buf[2] === 0x3 || buf[2] === 0x5 || buf[2] === 0x7) && (buf[3] === 0x4 || buf[3] === 0x6 || buf[3] === 0x8)) { return { ext: 'zip', mime: 'application/zip' }; } if (check([0x75, 0x73, 0x74, 0x61, 0x72], { offset: 257 })) { return { ext: 'tar', mime: 'application/x-tar' }; } if (check([0x52, 0x61, 0x72, 0x21, 0x1A, 0x7]) && (buf[6] === 0x0 || buf[6] === 0x1)) { return { ext: 'rar', mime: 'application/x-rar-compressed' }; } if (check([0x1F, 0x8B, 0x8])) { return { ext: 'gz', mime: 'application/gzip' }; } if (check([0x42, 0x5A, 0x68])) { return { ext: 'bz2', mime: 'application/x-bzip2' }; } if (check([0x37, 0x7A, 0xBC, 0xAF, 0x27, 0x1C])) { return { ext: '7z', mime: 'application/x-7z-compressed' }; } if (check([0x78, 0x01])) { return { ext: 'dmg', mime: 'application/x-apple-diskimage' }; } if (check([0x33, 0x67, 0x70, 0x35]) || // 3gp5 check([0x0, 0x0, 0x0]) && check([0x66, 0x74, 0x79, 0x70], { offset: 4 }) && (check([0x6D, 0x70, 0x34, 0x31], { offset: 8 }) || // MP41 check([0x6D, 0x70, 0x34, 0x32], { offset: 8 }) || // MP42 check([0x69, 0x73, 0x6F, 0x6D], { offset: 8 }) || // ISOM check([0x69, 0x73, 0x6F, 0x32], { offset: 8 }) || // ISO2 check([0x6D, 0x6D, 0x70, 0x34], { offset: 8 }) || // MMP4 check([0x4D, 0x34, 0x56], { offset: 8 }) || // M4V check([0x64, 0x61, 0x73, 0x68], { offset: 8 }) // DASH )) { return { ext: 'mp4', mime: 'video/mp4' }; } if (check([0x4D, 0x54, 0x68, 0x64])) { return { ext: 'mid', mime: 'audio/midi' }; } // https://github.com/threatstack/libmagic/blob/master/magic/Magdir/matroska if (check([0x1A, 0x45, 0xDF, 0xA3])) { var sliced = buf.subarray(4, 4 + 4096); var idPos = sliced.findIndex(function (el, i, arr) { return arr[i] === 0x42 && arr[i + 1] === 0x82; }); if (idPos !== -1) { var docTypePos = idPos + 3; var findDocType = function findDocType(type) { return (0, _toConsumableArray2["default"])(type).every(function (c, i) { return sliced[docTypePos + i] === c.charCodeAt(0); }); }; if (findDocType('matroska')) { return { ext: 'mkv', mime: 'video/x-matroska' }; } if (findDocType('webm')) { return { ext: 'webm', mime: 'video/webm' }; } } } if (check([0x0, 0x0, 0x0, 0x14, 0x66, 0x74, 0x79, 0x70, 0x71, 0x74, 0x20, 0x20]) || check([0x66, 0x72, 0x65, 0x65], { offset: 4 }) || check([0x66, 0x74, 0x79, 0x70, 0x71, 0x74, 0x20, 0x20], { offset: 4 }) || check([0x6D, 0x64, 0x61, 0x74], { offset: 4 }) || // MJPEG check([0x77, 0x69, 0x64, 0x65], { offset: 4 })) { return { ext: 'mov', mime: 'video/quicktime' }; } // RIFF file format which might be AVI, WAV, QCP, etc if (check([0x52, 0x49, 0x46, 0x46])) { if (check([0x41, 0x56, 0x49], { offset: 8 })) { return { ext: 'avi', mime: 'video/vnd.avi' }; } if (check([0x57, 0x41, 0x56, 0x45], { offset: 8 })) { return { ext: 'wav', mime: 'audio/vnd.wave' }; } // QLCM, QCP file if (check([0x51, 0x4C, 0x43, 0x4D], { offset: 8 })) { return { ext: 'qcp', mime: 'audio/qcelp' }; } } if (check([0x30, 0x26, 0xB2, 0x75, 0x8E, 0x66, 0xCF, 0x11, 0xA6, 0xD9])) { return { ext: 'wmv', mime: 'video/x-ms-wmv' }; } if (check([0x0, 0x0, 0x1, 0xBA]) || check([0x0, 0x0, 0x1, 0xB3])) { return { ext: 'mpg', mime: 'video/mpeg' }; } if (check([0x66, 0x74, 0x79, 0x70, 0x33, 0x67], { offset: 4 })) { return { ext: '3gp', mime: 'video/3gpp' }; } // Check for MPEG header at different starting offsets for (var start = 0; start < 2 && start < buf.length - 16; start++) { if (check([0x49, 0x44, 0x33], { offset: start }) || // ID3 header check([0xFF, 0xE2], { offset: start, mask: [0xFF, 0xE2] }) // MPEG 1 or 2 Layer 3 header ) { return { ext: 'mp3', mime: 'audio/mpeg' }; } if (check([0xFF, 0xE4], { offset: start, mask: [0xFF, 0xE4] }) // MPEG 1 or 2 Layer 2 header ) { return { ext: 'mp2', mime: 'audio/mpeg' }; } if (check([0xFF, 0xF8], { offset: start, mask: [0xFF, 0xFC] }) // MPEG 2 layer 0 using ADTS ) { return { ext: 'mp2', mime: 'audio/mpeg' }; } if (check([0xFF, 0xF0], { offset: start, mask: [0xFF, 0xFC] }) // MPEG 4 layer 0 using ADTS ) { return { ext: 'mp4', mime: 'audio/mpeg' }; } } if (check([0x66, 0x74, 0x79, 0x70, 0x4D, 0x34, 0x41], { offset: 4 }) || check([0x4D, 0x34, 0x41, 0x20])) { return { // MPEG-4 layer 3 (audio) ext: 'm4a', mime: 'audio/mp4' // RFC 4337 }; } // Needs to be before `ogg` check if (check([0x4F, 0x70, 0x75, 0x73, 0x48, 0x65, 0x61, 0x64], { offset: 28 })) { return { ext: 'opus', mime: 'audio/opus' }; } // If 'OggS' in first bytes, then OGG container if (check([0x4F, 0x67, 0x67, 0x53])) { // This is a OGG container // If ' theora' in header. if (check([0x80, 0x74, 0x68, 0x65, 0x6F, 0x72, 0x61], { offset: 28 })) { return { ext: 'ogv', mime: 'video/ogg' }; } // If '\x01video' in header. if (check([0x01, 0x76, 0x69, 0x64, 0x65, 0x6F, 0x00], { offset: 28 })) { return { ext: 'ogm', mime: 'video/ogg' }; } // If ' FLAC' in header https://xiph.org/flac/faq.html if (check([0x7F, 0x46, 0x4C, 0x41, 0x43], { offset: 28 })) { return { ext: 'oga', mime: 'audio/ogg' }; } // 'Speex ' in header https://en.wikipedia.org/wiki/Speex if (check([0x53, 0x70, 0x65, 0x65, 0x78, 0x20, 0x20], { offset: 28 })) { return { ext: 'spx', mime: 'audio/ogg' }; } // If '\x01vorbis' in header if (check([0x01, 0x76, 0x6F, 0x72, 0x62, 0x69, 0x73], { offset: 28 })) { return { ext: 'ogg', mime: 'audio/ogg' }; } // Default OGG container https://www.iana.org/assignments/media-types/application/ogg return { ext: 'ogx', mime: 'application/ogg' }; } if (check([0x66, 0x4C, 0x61, 0x43])) { return { ext: 'flac', mime: 'audio/x-flac' }; } if (check([0x4D, 0x41, 0x43, 0x20])) { // 'MAC ' return { ext: 'ape', mime: 'audio/ape' }; } if (check([0x77, 0x76, 0x70, 0x6B])) { // 'wvpk' return { ext: 'wv', mime: 'audio/wavpack' }; } if (check([0x23, 0x21, 0x41, 0x4D, 0x52, 0x0A])) { return { ext: 'amr', mime: 'audio/amr' }; } if (check([0x25, 0x50, 0x44, 0x46])) { return { ext: 'pdf', mime: 'application/pdf' }; } if (check([0x4D, 0x5A])) { return { ext: 'exe', mime: 'application/x-msdownload' }; } if ((buf[0] === 0x43 || buf[0] === 0x46) && check([0x57, 0x53], { offset: 1 })) { return { ext: 'swf', mime: 'application/x-shockwave-flash' }; } if (check([0x7B, 0x5C, 0x72, 0x74, 0x66])) { return { ext: 'rtf', mime: 'application/rtf' }; } if (check([0x00, 0x61, 0x73, 0x6D])) { return { ext: 'wasm', mime: 'application/wasm' }; } if (check([0x77, 0x4F, 0x46, 0x46]) && (check([0x00, 0x01, 0x00, 0x00], { offset: 4 }) || check([0x4F, 0x54, 0x54, 0x4F], { offset: 4 }))) { return { ext: 'woff', mime: 'font/woff' }; } if (check([0x77, 0x4F, 0x46, 0x32]) && (check([0x00, 0x01, 0x00, 0x00], { offset: 4 }) || check([0x4F, 0x54, 0x54, 0x4F], { offset: 4 }))) { return { ext: 'woff2', mime: 'font/woff2' }; } if (check([0x4C, 0x50], { offset: 34 }) && (check([0x00, 0x00, 0x01], { offset: 8 }) || check([0x01, 0x00, 0x02], { offset: 8 }) || check([0x02, 0x00, 0x02], { offset: 8 }))) { return { ext: 'eot', mime: 'application/vnd.ms-fontobject' }; } if (check([0x00, 0x01, 0x00, 0x00, 0x00])) { return { ext: 'ttf', mime: 'font/ttf' }; } if (check([0x4F, 0x54, 0x54, 0x4F, 0x00])) { return { ext: 'otf', mime: 'font/otf' }; } if (check([0x00, 0x00, 0x01, 0x00])) { return { ext: 'ico', mime: 'image/x-icon' }; } if (check([0x00, 0x00, 0x02, 0x00])) { return { ext: 'cur', mime: 'image/x-icon' }; } if (check([0x46, 0x4C, 0x56, 0x01])) { return { ext: 'flv', mime: 'video/x-flv' }; } if (check([0x25, 0x21])) { return { ext: 'ps', mime: 'application/postscript' }; } if (check([0xFD, 0x37, 0x7A, 0x58, 0x5A, 0x00])) { return { ext: 'xz', mime: 'application/x-xz' }; } if (check([0x53, 0x51, 0x4C, 0x69])) { return { ext: 'sqlite', mime: 'application/x-sqlite3' }; } if (check([0x4E, 0x45, 0x53, 0x1A])) { return { ext: 'nes', mime: 'application/x-nintendo-nes-rom' }; } if (check([0x43, 0x72, 0x32, 0x34])) { return { ext: 'crx', mime: 'application/x-google-chrome-extension' }; } if (check([0x4D, 0x53, 0x43, 0x46]) || check([0x49, 0x53, 0x63, 0x28])) { return { ext: 'cab', mime: 'application/vnd.ms-cab-compressed' }; } // Needs to be before `ar` check if (check([0x21, 0x3C, 0x61, 0x72, 0x63, 0x68, 0x3E, 0x0A, 0x64, 0x65, 0x62, 0x69, 0x61, 0x6E, 0x2D, 0x62, 0x69, 0x6E, 0x61, 0x72, 0x79])) { return { ext: 'deb', mime: 'application/x-deb' }; } if (check([0x21, 0x3C, 0x61, 0x72, 0x63, 0x68, 0x3E])) { return { ext: 'ar', mime: 'application/x-unix-archive' }; } if (check([0xED, 0xAB, 0xEE, 0xDB])) { return { ext: 'rpm', mime: 'application/x-rpm' }; } if (check([0x1F, 0xA0]) || check([0x1F, 0x9D])) { return { ext: 'Z', mime: 'application/x-compress' }; } if (check([0x4C, 0x5A, 0x49, 0x50])) { return { ext: 'lz', mime: 'application/x-lzip' }; } if (check([0xD0, 0xCF, 0x11, 0xE0, 0xA1, 0xB1, 0x1A, 0xE1])) { return { ext: 'msi', mime: 'application/x-msi' }; } if (check([0x06, 0x0E, 0x2B, 0x34, 0x02, 0x05, 0x01, 0x01, 0x0D, 0x01, 0x02, 0x01, 0x01, 0x02])) { return { ext: 'mxf', mime: 'application/mxf' }; } if (check([0x47], { offset: 4 }) && (check([0x47], { offset: 192 }) || check([0x47], { offset: 196 }))) { return { ext: 'mts', mime: 'video/mp2t' }; } if (check([0x42, 0x4C, 0x45, 0x4E, 0x44, 0x45, 0x52])) { return { ext: 'blend', mime: 'application/x-blender' }; } if (check([0x42, 0x50, 0x47, 0xFB])) { return { ext: 'bpg', mime: 'image/bpg' }; } if (check([0x00, 0x00, 0x00, 0x0C, 0x6A, 0x50, 0x20, 0x20, 0x0D, 0x0A, 0x87, 0x0A])) { // JPEG-2000 family if (check([0x6A, 0x70, 0x32, 0x20], { offset: 20 })) { return { ext: 'jp2', mime: 'image/jp2' }; } if (check([0x6A, 0x70, 0x78, 0x20], { offset: 20 })) { return { ext: 'jpx', mime: 'image/jpx' }; } if (check([0x6A, 0x70, 0x6D, 0x20], { offset: 20 })) { return { ext: 'jpm', mime: 'image/jpm' }; } if (check([0x6D, 0x6A, 0x70, 0x32], { offset: 20 })) { return { ext: 'mj2', mime: 'image/mj2' }; } } if (check([0x46, 0x4F, 0x52, 0x4D, 0x00])) { return { ext: 'aif', mime: 'audio/aiff' }; } if (checkString('= 3) { receiver = thisArg; } if (toStr.call(list) === '[object Array]') { forEachArray(list, iterator, receiver); } else if (typeof list === 'string') { forEachString(list, iterator, receiver); } else { forEachObject(list, iterator, receiver); } }; module.exports = forEach; },{"is-callable":77}],64:[function(require,module,exports){ // (c) Dean McNamee , 2013. // // https://github.com/deanm/omggif // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to // deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or // sell copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. // // omggif is a JavaScript implementation of a GIF 89a encoder and decoder, // including animation and compression. It does not rely on any specific // underlying system, so should run in the browser, Node, or Plask. "use strict"; function GifWriter(buf, width, height, gopts) { var p = 0; var gopts = gopts === undefined ? { } : gopts; var loop_count = gopts.loop === undefined ? null : gopts.loop; var global_palette = gopts.palette === undefined ? null : gopts.palette; if (width <= 0 || height <= 0 || width > 65535 || height > 65535) throw new Error("Width/Height invalid."); function check_palette_and_num_colors(palette) { var num_colors = palette.length; if (num_colors < 2 || num_colors > 256 || num_colors & (num_colors-1)) { throw new Error( "Invalid code/color length, must be power of 2 and 2 .. 256."); } return num_colors; } // - Header. buf[p++] = 0x47; buf[p++] = 0x49; buf[p++] = 0x46; // GIF buf[p++] = 0x38; buf[p++] = 0x39; buf[p++] = 0x61; // 89a // Handling of Global Color Table (palette) and background index. var gp_num_colors_pow2 = 0; var background = 0; if (global_palette !== null) { var gp_num_colors = check_palette_and_num_colors(global_palette); while (gp_num_colors >>= 1) ++gp_num_colors_pow2; gp_num_colors = 1 << gp_num_colors_pow2; --gp_num_colors_pow2; if (gopts.background !== undefined) { background = gopts.background; if (background >= gp_num_colors) throw new Error("Background index out of range."); // The GIF spec states that a background index of 0 should be ignored, so // this is probably a mistake and you really want to set it to another // slot in the palette. But actually in the end most browsers, etc end // up ignoring this almost completely (including for dispose background). if (background === 0) throw new Error("Background index explicitly passed as 0."); } } // - Logical Screen Descriptor. // NOTE(deanm): w/h apparently ignored by implementations, but set anyway. buf[p++] = width & 0xff; buf[p++] = width >> 8 & 0xff; buf[p++] = height & 0xff; buf[p++] = height >> 8 & 0xff; // NOTE: Indicates 0-bpp original color resolution (unused?). buf[p++] = (global_palette !== null ? 0x80 : 0) | // Global Color Table Flag. gp_num_colors_pow2; // NOTE: No sort flag (unused?). buf[p++] = background; // Background Color Index. buf[p++] = 0; // Pixel aspect ratio (unused?). // - Global Color Table if (global_palette !== null) { for (var i = 0, il = global_palette.length; i < il; ++i) { var rgb = global_palette[i]; buf[p++] = rgb >> 16 & 0xff; buf[p++] = rgb >> 8 & 0xff; buf[p++] = rgb & 0xff; } } if (loop_count !== null) { // Netscape block for looping. if (loop_count < 0 || loop_count > 65535) throw new Error("Loop count invalid.") // Extension code, label, and length. buf[p++] = 0x21; buf[p++] = 0xff; buf[p++] = 0x0b; // NETSCAPE2.0 buf[p++] = 0x4e; buf[p++] = 0x45; buf[p++] = 0x54; buf[p++] = 0x53; buf[p++] = 0x43; buf[p++] = 0x41; buf[p++] = 0x50; buf[p++] = 0x45; buf[p++] = 0x32; buf[p++] = 0x2e; buf[p++] = 0x30; // Sub-block buf[p++] = 0x03; buf[p++] = 0x01; buf[p++] = loop_count & 0xff; buf[p++] = loop_count >> 8 & 0xff; buf[p++] = 0x00; // Terminator. } var ended = false; this.addFrame = function(x, y, w, h, indexed_pixels, opts) { if (ended === true) { --p; ended = false; } // Un-end. opts = opts === undefined ? { } : opts; // TODO(deanm): Bounds check x, y. Do they need to be within the virtual // canvas width/height, I imagine? if (x < 0 || y < 0 || x > 65535 || y > 65535) throw new Error("x/y invalid.") if (w <= 0 || h <= 0 || w > 65535 || h > 65535) throw new Error("Width/Height invalid.") if (indexed_pixels.length < w * h) throw new Error("Not enough pixels for the frame size."); var using_local_palette = true; var palette = opts.palette; if (palette === undefined || palette === null) { using_local_palette = false; palette = global_palette; } if (palette === undefined || palette === null) throw new Error("Must supply either a local or global palette."); var num_colors = check_palette_and_num_colors(palette); // Compute the min_code_size (power of 2), destroying num_colors. var min_code_size = 0; while (num_colors >>= 1) ++min_code_size; num_colors = 1 << min_code_size; // Now we can easily get it back. var delay = opts.delay === undefined ? 0 : opts.delay; // From the spec: // 0 - No disposal specified. The decoder is // not required to take any action. // 1 - Do not dispose. The graphic is to be left // in place. // 2 - Restore to background color. The area used by the // graphic must be restored to the background color. // 3 - Restore to previous. The decoder is required to // restore the area overwritten by the graphic with // what was there prior to rendering the graphic. // 4-7 - To be defined. // NOTE(deanm): Dispose background doesn't really work, apparently most // browsers ignore the background palette index and clear to transparency. var disposal = opts.disposal === undefined ? 0 : opts.disposal; if (disposal < 0 || disposal > 3) // 4-7 is reserved. throw new Error("Disposal out of range."); var use_transparency = false; var transparent_index = 0; if (opts.transparent !== undefined && opts.transparent !== null) { use_transparency = true; transparent_index = opts.transparent; if (transparent_index < 0 || transparent_index >= num_colors) throw new Error("Transparent color index."); } if (disposal !== 0 || use_transparency || delay !== 0) { // - Graphics Control Extension buf[p++] = 0x21; buf[p++] = 0xf9; // Extension / Label. buf[p++] = 4; // Byte size. buf[p++] = disposal << 2 | (use_transparency === true ? 1 : 0); buf[p++] = delay & 0xff; buf[p++] = delay >> 8 & 0xff; buf[p++] = transparent_index; // Transparent color index. buf[p++] = 0; // Block Terminator. } // - Image Descriptor buf[p++] = 0x2c; // Image Seperator. buf[p++] = x & 0xff; buf[p++] = x >> 8 & 0xff; // Left. buf[p++] = y & 0xff; buf[p++] = y >> 8 & 0xff; // Top. buf[p++] = w & 0xff; buf[p++] = w >> 8 & 0xff; buf[p++] = h & 0xff; buf[p++] = h >> 8 & 0xff; // NOTE: No sort flag (unused?). // TODO(deanm): Support interlace. buf[p++] = using_local_palette === true ? (0x80 | (min_code_size-1)) : 0; // - Local Color Table if (using_local_palette === true) { for (var i = 0, il = palette.length; i < il; ++i) { var rgb = palette[i]; buf[p++] = rgb >> 16 & 0xff; buf[p++] = rgb >> 8 & 0xff; buf[p++] = rgb & 0xff; } } p = GifWriterOutputLZWCodeStream( buf, p, min_code_size < 2 ? 2 : min_code_size, indexed_pixels); return p; }; this.end = function() { if (ended === false) { buf[p++] = 0x3b; // Trailer. ended = true; } return p; }; this.getOutputBuffer = function() { return buf; }; this.setOutputBuffer = function(v) { buf = v; }; this.getOutputBufferPosition = function() { return p; }; this.setOutputBufferPosition = function(v) { p = v; }; } // Main compression routine, palette indexes -> LZW code stream. // |index_stream| must have at least one entry. function GifWriterOutputLZWCodeStream(buf, p, min_code_size, index_stream) { buf[p++] = min_code_size; var cur_subblock = p++; // Pointing at the length field. var clear_code = 1 << min_code_size; var code_mask = clear_code - 1; var eoi_code = clear_code + 1; var next_code = eoi_code + 1; var cur_code_size = min_code_size + 1; // Number of bits per code. var cur_shift = 0; // We have at most 12-bit codes, so we should have to hold a max of 19 // bits here (and then we would write out). var cur = 0; function emit_bytes_to_buffer(bit_block_size) { while (cur_shift >= bit_block_size) { buf[p++] = cur & 0xff; cur >>= 8; cur_shift -= 8; if (p === cur_subblock + 256) { // Finished a subblock. buf[cur_subblock] = 255; cur_subblock = p++; } } } function emit_code(c) { cur |= c << cur_shift; cur_shift += cur_code_size; emit_bytes_to_buffer(8); } // I am not an expert on the topic, and I don't want to write a thesis. // However, it is good to outline here the basic algorithm and the few data // structures and optimizations here that make this implementation fast. // The basic idea behind LZW is to build a table of previously seen runs // addressed by a short id (herein called output code). All data is // referenced by a code, which represents one or more values from the // original input stream. All input bytes can be referenced as the same // value as an output code. So if you didn't want any compression, you // could more or less just output the original bytes as codes (there are // some details to this, but it is the idea). In order to achieve // compression, values greater then the input range (codes can be up to // 12-bit while input only 8-bit) represent a sequence of previously seen // inputs. The decompressor is able to build the same mapping while // decoding, so there is always a shared common knowledge between the // encoding and decoder, which is also important for "timing" aspects like // how to handle variable bit width code encoding. // // One obvious but very important consequence of the table system is there // is always a unique id (at most 12-bits) to map the runs. 'A' might be // 4, then 'AA' might be 10, 'AAA' 11, 'AAAA' 12, etc. This relationship // can be used for an effecient lookup strategy for the code mapping. We // need to know if a run has been seen before, and be able to map that run // to the output code. Since we start with known unique ids (input bytes), // and then from those build more unique ids (table entries), we can // continue this chain (almost like a linked list) to always have small // integer values that represent the current byte chains in the encoder. // This means instead of tracking the input bytes (AAAABCD) to know our // current state, we can track the table entry for AAAABC (it is guaranteed // to exist by the nature of the algorithm) and the next character D. // Therefor the tuple of (table_entry, byte) is guaranteed to also be // unique. This allows us to create a simple lookup key for mapping input // sequences to codes (table indices) without having to store or search // any of the code sequences. So if 'AAAA' has a table entry of 12, the // tuple of ('AAAA', K) for any input byte K will be unique, and can be our // key. This leads to a integer value at most 20-bits, which can always // fit in an SMI value and be used as a fast sparse array / object key. // Output code for the current contents of the index buffer. var ib_code = index_stream[0] & code_mask; // Load first input index. var code_table = { }; // Key'd on our 20-bit "tuple". emit_code(clear_code); // Spec says first code should be a clear code. // First index already loaded, process the rest of the stream. for (var i = 1, il = index_stream.length; i < il; ++i) { var k = index_stream[i] & code_mask; var cur_key = ib_code << 8 | k; // (prev, k) unique tuple. var cur_code = code_table[cur_key]; // buffer + k. // Check if we have to create a new code table entry. if (cur_code === undefined) { // We don't have buffer + k. // Emit index buffer (without k). // This is an inline version of emit_code, because this is the core // writing routine of the compressor (and V8 cannot inline emit_code // because it is a closure here in a different context). Additionally // we can call emit_byte_to_buffer less often, because we can have // 30-bits (from our 31-bit signed SMI), and we know our codes will only // be 12-bits, so can safely have 18-bits there without overflow. // emit_code(ib_code); cur |= ib_code << cur_shift; cur_shift += cur_code_size; while (cur_shift >= 8) { buf[p++] = cur & 0xff; cur >>= 8; cur_shift -= 8; if (p === cur_subblock + 256) { // Finished a subblock. buf[cur_subblock] = 255; cur_subblock = p++; } } if (next_code === 4096) { // Table full, need a clear. emit_code(clear_code); next_code = eoi_code + 1; cur_code_size = min_code_size + 1; code_table = { }; } else { // Table not full, insert a new entry. // Increase our variable bit code sizes if necessary. This is a bit // tricky as it is based on "timing" between the encoding and // decoder. From the encoders perspective this should happen after // we've already emitted the index buffer and are about to create the // first table entry that would overflow our current code bit size. if (next_code >= (1 << cur_code_size)) ++cur_code_size; code_table[cur_key] = next_code++; // Insert into code table. } ib_code = k; // Index buffer to single input k. } else { ib_code = cur_code; // Index buffer to sequence in code table. } } emit_code(ib_code); // There will still be something in the index buffer. emit_code(eoi_code); // End Of Information. // Flush / finalize the sub-blocks stream to the buffer. emit_bytes_to_buffer(1); // Finish the sub-blocks, writing out any unfinished lengths and // terminating with a sub-block of length 0. If we have already started // but not yet used a sub-block it can just become the terminator. if (cur_subblock + 1 === p) { // Started but unused. buf[cur_subblock] = 0; } else { // Started and used, write length and additional terminator block. buf[cur_subblock] = p - cur_subblock - 1; buf[p++] = 0; } return p; } function GifReader(buf) { var p = 0; // - Header (GIF87a or GIF89a). if (buf[p++] !== 0x47 || buf[p++] !== 0x49 || buf[p++] !== 0x46 || buf[p++] !== 0x38 || (buf[p++]+1 & 0xfd) !== 0x38 || buf[p++] !== 0x61) { throw new Error("Invalid GIF 87a/89a header."); } // - Logical Screen Descriptor. var width = buf[p++] | buf[p++] << 8; var height = buf[p++] | buf[p++] << 8; var pf0 = buf[p++]; // . var global_palette_flag = pf0 >> 7; var num_global_colors_pow2 = pf0 & 0x7; var num_global_colors = 1 << (num_global_colors_pow2 + 1); var background = buf[p++]; buf[p++]; // Pixel aspect ratio (unused?). var global_palette_offset = null; var global_palette_size = null; if (global_palette_flag) { global_palette_offset = p; global_palette_size = num_global_colors; p += num_global_colors * 3; // Seek past palette. } var no_eof = true; var frames = [ ]; var delay = 0; var transparent_index = null; var disposal = 0; // 0 - No disposal specified. var loop_count = null; this.width = width; this.height = height; while (no_eof && p < buf.length) { switch (buf[p++]) { case 0x21: // Graphics Control Extension Block switch (buf[p++]) { case 0xff: // Application specific block // Try if it's a Netscape block (with animation loop counter). if (buf[p ] !== 0x0b || // 21 FF already read, check block size. // NETSCAPE2.0 buf[p+1 ] == 0x4e && buf[p+2 ] == 0x45 && buf[p+3 ] == 0x54 && buf[p+4 ] == 0x53 && buf[p+5 ] == 0x43 && buf[p+6 ] == 0x41 && buf[p+7 ] == 0x50 && buf[p+8 ] == 0x45 && buf[p+9 ] == 0x32 && buf[p+10] == 0x2e && buf[p+11] == 0x30 && // Sub-block buf[p+12] == 0x03 && buf[p+13] == 0x01 && buf[p+16] == 0) { p += 14; loop_count = buf[p++] | buf[p++] << 8; p++; // Skip terminator. } else { // We don't know what it is, just try to get past it. p += 12; while (true) { // Seek through subblocks. var block_size = buf[p++]; // Bad block size (ex: undefined from an out of bounds read). if (!(block_size >= 0)) throw Error("Invalid block size"); if (block_size === 0) break; // 0 size is terminator p += block_size; } } break; case 0xf9: // Graphics Control Extension if (buf[p++] !== 0x4 || buf[p+4] !== 0) throw new Error("Invalid graphics extension block."); var pf1 = buf[p++]; delay = buf[p++] | buf[p++] << 8; transparent_index = buf[p++]; if ((pf1 & 1) === 0) transparent_index = null; disposal = pf1 >> 2 & 0x7; p++; // Skip terminator. break; case 0xfe: // Comment Extension. while (true) { // Seek through subblocks. var block_size = buf[p++]; // Bad block size (ex: undefined from an out of bounds read). if (!(block_size >= 0)) throw Error("Invalid block size"); if (block_size === 0) break; // 0 size is terminator // console.log(buf.slice(p, p+block_size).toString('ascii')); p += block_size; } break; default: throw new Error( "Unknown graphic control label: 0x" + buf[p-1].toString(16)); } break; case 0x2c: // Image Descriptor. var x = buf[p++] | buf[p++] << 8; var y = buf[p++] | buf[p++] << 8; var w = buf[p++] | buf[p++] << 8; var h = buf[p++] | buf[p++] << 8; var pf2 = buf[p++]; var local_palette_flag = pf2 >> 7; var interlace_flag = pf2 >> 6 & 1; var num_local_colors_pow2 = pf2 & 0x7; var num_local_colors = 1 << (num_local_colors_pow2 + 1); var palette_offset = global_palette_offset; var palette_size = global_palette_size; var has_local_palette = false; if (local_palette_flag) { var has_local_palette = true; palette_offset = p; // Override with local palette. palette_size = num_local_colors; p += num_local_colors * 3; // Seek past palette. } var data_offset = p; p++; // codesize while (true) { var block_size = buf[p++]; // Bad block size (ex: undefined from an out of bounds read). if (!(block_size >= 0)) throw Error("Invalid block size"); if (block_size === 0) break; // 0 size is terminator p += block_size; } frames.push({x: x, y: y, width: w, height: h, has_local_palette: has_local_palette, palette_offset: palette_offset, palette_size: palette_size, data_offset: data_offset, data_length: p - data_offset, transparent_index: transparent_index, interlaced: !!interlace_flag, delay: delay, disposal: disposal}); break; case 0x3b: // Trailer Marker (end of file). no_eof = false; break; default: throw new Error("Unknown gif block: 0x" + buf[p-1].toString(16)); break; } } this.numFrames = function() { return frames.length; }; this.loopCount = function() { return loop_count; }; this.frameInfo = function(frame_num) { if (frame_num < 0 || frame_num >= frames.length) throw new Error("Frame index out of range."); return frames[frame_num]; } this.decodeAndBlitFrameBGRA = function(frame_num, pixels) { var frame = this.frameInfo(frame_num); var num_pixels = frame.width * frame.height; var index_stream = new Uint8Array(num_pixels); // At most 8-bit indices. GifReaderLZWOutputIndexStream( buf, frame.data_offset, index_stream, num_pixels); var palette_offset = frame.palette_offset; // NOTE(deanm): It seems to be much faster to compare index to 256 than // to === null. Not sure why, but CompareStub_EQ_STRICT shows up high in // the profile, not sure if it's related to using a Uint8Array. var trans = frame.transparent_index; if (trans === null) trans = 256; // We are possibly just blitting to a portion of the entire frame. // That is a subrect within the framerect, so the additional pixels // must be skipped over after we finished a scanline. var framewidth = frame.width; var framestride = width - framewidth; var xleft = framewidth; // Number of subrect pixels left in scanline. // Output indicies of the top left and bottom right corners of the subrect. var opbeg = ((frame.y * width) + frame.x) * 4; var opend = ((frame.y + frame.height) * width + frame.x) * 4; var op = opbeg; var scanstride = framestride * 4; // Use scanstride to skip past the rows when interlacing. This is skipping // 7 rows for the first two passes, then 3 then 1. if (frame.interlaced === true) { scanstride += width * 4 * 7; // Pass 1. } var interlaceskip = 8; // Tracking the row interval in the current pass. for (var i = 0, il = index_stream.length; i < il; ++i) { var index = index_stream[i]; if (xleft === 0) { // Beginning of new scan line op += scanstride; xleft = framewidth; if (op >= opend) { // Catch the wrap to switch passes when interlacing. scanstride = framestride * 4 + width * 4 * (interlaceskip-1); // interlaceskip / 2 * 4 is interlaceskip << 1. op = opbeg + (framewidth + framestride) * (interlaceskip << 1); interlaceskip >>= 1; } } if (index === trans) { op += 4; } else { var r = buf[palette_offset + index * 3]; var g = buf[palette_offset + index * 3 + 1]; var b = buf[palette_offset + index * 3 + 2]; pixels[op++] = b; pixels[op++] = g; pixels[op++] = r; pixels[op++] = 255; } --xleft; } }; // I will go to copy and paste hell one day... this.decodeAndBlitFrameRGBA = function(frame_num, pixels) { var frame = this.frameInfo(frame_num); var num_pixels = frame.width * frame.height; var index_stream = new Uint8Array(num_pixels); // At most 8-bit indices. GifReaderLZWOutputIndexStream( buf, frame.data_offset, index_stream, num_pixels); var palette_offset = frame.palette_offset; // NOTE(deanm): It seems to be much faster to compare index to 256 than // to === null. Not sure why, but CompareStub_EQ_STRICT shows up high in // the profile, not sure if it's related to using a Uint8Array. var trans = frame.transparent_index; if (trans === null) trans = 256; // We are possibly just blitting to a portion of the entire frame. // That is a subrect within the framerect, so the additional pixels // must be skipped over after we finished a scanline. var framewidth = frame.width; var framestride = width - framewidth; var xleft = framewidth; // Number of subrect pixels left in scanline. // Output indicies of the top left and bottom right corners of the subrect. var opbeg = ((frame.y * width) + frame.x) * 4; var opend = ((frame.y + frame.height) * width + frame.x) * 4; var op = opbeg; var scanstride = framestride * 4; // Use scanstride to skip past the rows when interlacing. This is skipping // 7 rows for the first two passes, then 3 then 1. if (frame.interlaced === true) { scanstride += width * 4 * 7; // Pass 1. } var interlaceskip = 8; // Tracking the row interval in the current pass. for (var i = 0, il = index_stream.length; i < il; ++i) { var index = index_stream[i]; if (xleft === 0) { // Beginning of new scan line op += scanstride; xleft = framewidth; if (op >= opend) { // Catch the wrap to switch passes when interlacing. scanstride = framestride * 4 + width * 4 * (interlaceskip-1); // interlaceskip / 2 * 4 is interlaceskip << 1. op = opbeg + (framewidth + framestride) * (interlaceskip << 1); interlaceskip >>= 1; } } if (index === trans) { op += 4; } else { var r = buf[palette_offset + index * 3]; var g = buf[palette_offset + index * 3 + 1]; var b = buf[palette_offset + index * 3 + 2]; pixels[op++] = r; pixels[op++] = g; pixels[op++] = b; pixels[op++] = 255; } --xleft; } }; } function GifReaderLZWOutputIndexStream(code_stream, p, output, output_length) { var min_code_size = code_stream[p++]; var clear_code = 1 << min_code_size; var eoi_code = clear_code + 1; var next_code = eoi_code + 1; var cur_code_size = min_code_size + 1; // Number of bits per code. // NOTE: This shares the same name as the encoder, but has a different // meaning here. Here this masks each code coming from the code stream. var code_mask = (1 << cur_code_size) - 1; var cur_shift = 0; var cur = 0; var op = 0; // Output pointer. var subblock_size = code_stream[p++]; // TODO(deanm): Would using a TypedArray be any faster? At least it would // solve the fast mode / backing store uncertainty. // var code_table = Array(4096); var code_table = new Int32Array(4096); // Can be signed, we only use 20 bits. var prev_code = null; // Track code-1. while (true) { // Read up to two bytes, making sure we always 12-bits for max sized code. while (cur_shift < 16) { if (subblock_size === 0) break; // No more data to be read. cur |= code_stream[p++] << cur_shift; cur_shift += 8; if (subblock_size === 1) { // Never let it get to 0 to hold logic above. subblock_size = code_stream[p++]; // Next subblock. } else { --subblock_size; } } // TODO(deanm): We should never really get here, we should have received // and EOI. if (cur_shift < cur_code_size) break; var code = cur & code_mask; cur >>= cur_code_size; cur_shift -= cur_code_size; // TODO(deanm): Maybe should check that the first code was a clear code, // at least this is what you're supposed to do. But actually our encoder // now doesn't emit a clear code first anyway. if (code === clear_code) { // We don't actually have to clear the table. This could be a good idea // for greater error checking, but we don't really do any anyway. We // will just track it with next_code and overwrite old entries. next_code = eoi_code + 1; cur_code_size = min_code_size + 1; code_mask = (1 << cur_code_size) - 1; // Don't update prev_code ? prev_code = null; continue; } else if (code === eoi_code) { break; } // We have a similar situation as the decoder, where we want to store // variable length entries (code table entries), but we want to do in a // faster manner than an array of arrays. The code below stores sort of a // linked list within the code table, and then "chases" through it to // construct the dictionary entries. When a new entry is created, just the // last byte is stored, and the rest (prefix) of the entry is only // referenced by its table entry. Then the code chases through the // prefixes until it reaches a single byte code. We have to chase twice, // first to compute the length, and then to actually copy the data to the // output (backwards, since we know the length). The alternative would be // storing something in an intermediate stack, but that doesn't make any // more sense. I implemented an approach where it also stored the length // in the code table, although it's a bit tricky because you run out of // bits (12 + 12 + 8), but I didn't measure much improvements (the table // entries are generally not the long). Even when I created benchmarks for // very long table entries the complexity did not seem worth it. // The code table stores the prefix entry in 12 bits and then the suffix // byte in 8 bits, so each entry is 20 bits. var chase_code = code < next_code ? code : prev_code; // Chase what we will output, either {CODE} or {CODE-1}. var chase_length = 0; var chase = chase_code; while (chase > clear_code) { chase = code_table[chase] >> 8; ++chase_length; } var k = chase; var op_end = op + chase_length + (chase_code !== code ? 1 : 0); if (op_end > output_length) { console.log("Warning, gif stream longer than expected."); return; } // Already have the first byte from the chase, might as well write it fast. output[op++] = k; op += chase_length; var b = op; // Track pointer, writing backwards. if (chase_code !== code) // The case of emitting {CODE-1} + k. output[op++] = k; chase = chase_code; while (chase_length--) { chase = code_table[chase]; output[--b] = chase & 0xff; // Write backwards. chase >>= 8; // Pull down to the prefix code. } if (prev_code !== null && next_code < 4096) { code_table[next_code++] = prev_code << 8 | k; // TODO(deanm): Figure out this clearing vs code growth logic better. I // have an feeling that it should just happen somewhere else, for now it // is awkward between when we grow past the max and then hit a clear code. // For now just check if we hit the max 12-bits (then a clear code should // follow, also of course encoded in 12-bits). if (next_code >= code_mask+1 && cur_code_size < 12) { ++cur_code_size; code_mask = code_mask << 1 | 1; } } prev_code = code; } if (op !== output_length) { console.log("Warning, gif stream shorter than expected."); } return output; } // CommonJS. try { exports.GifWriter = GifWriter; exports.GifReader = GifReader } catch(e) {} },{}],65:[function(require,module,exports){ (function (Buffer){ 'use strict'; /** @class BitmapImage */ class BitmapImage { /** * BitmapImage is a class that hold an RGBA (red, green, blue, alpha) representation of an image. It's shape is borrowed from the Jimp package to make it easy to transfer GIF image frames into Jimp and Jimp images into GIF image frames. Each instance has a `bitmap` property having the following properties: * * Property | Description * --- | --- * bitmap.width | width of image in pixels * bitmap.height | height of image in pixels * bitmap.data | a Buffer whose every four bytes represents a pixel, each sequential byte of a pixel corresponding to the red, green, blue, and alpha values of the pixel * * Its constructor supports the following signatures: * * * new BitmapImage(bitmap: { width: number, height: number, data: Buffer }) * * new BitmapImage(bitmapImage: BitmapImage) * * new BitmapImage(width: number, height: number, buffer: Buffer) * * new BitmapImage(width: number, height: number, backgroundRGBA?: number) * * When a `BitmapImage` is provided, the constructed `BitmapImage` is a deep clone of the provided one, so that each image's pixel data can subsequently be modified without affecting each other. * * `backgroundRGBA` is an optional parameter representing a pixel as a single number. In hex, the number is as follows: 0xRRGGBBAA, where RR is the red byte, GG the green byte, BB, the blue byte, and AA the alpha value. An AA of 0x00 is considered transparent, and all non-zero AA values are treated as opaque. */ constructor(...args) { // don't confirm the number of args, because a subclass may have // additional args and pass them all to the superclass if (args.length === 0) { throw new Error("constructor requires parameters"); } const firstArg = args[0]; if (firstArg !== null && typeof firstArg === 'object') { if (firstArg instanceof BitmapImage) { // copy a provided BitmapImage const sourceBitmap = firstArg.bitmap; this.bitmap = { width: sourceBitmap.width, height: sourceBitmap.height, data: new Buffer(sourceBitmap.width * sourceBitmap.height * 4) }; sourceBitmap.data.copy(this.bitmap.data); } else if (firstArg.width && firstArg.height && firstArg.data) { // share a provided bitmap this.bitmap = firstArg; } else { throw new Error("unrecognized constructor parameters"); } } else if (typeof firstArg === 'number' && typeof args[1] === 'number') { const width = firstArg; const height = args[1]; const thirdArg = args[2]; this.bitmap = { width, height }; if (Buffer.isBuffer(thirdArg)) { this.bitmap.data = thirdArg; } else { this.bitmap.data = new Buffer(width * height * 4); if (typeof thirdArg === 'number') { this.fillRGBA(thirdArg); } } } else { throw new Error("unrecognized constructor parameters"); } } /** * Copy a square portion of this image into another image. * * @param {BitmapImage} toImage Image into which to copy the square * @param {number} toX x-coord in toImage of upper-left corner of receiving square * @param {number} toY y-coord in toImage of upper-left corner of receiving square * @param {number} fromX x-coord in this image of upper-left corner of source square * @param {number} fromY y-coord in this image of upper-left corner of source square * @return {BitmapImage} The present image to allow for chaining. */ blit(toImage, toX, toY, fromX, fromY, fromWidth, fromHeight) { if (fromX + fromWidth > this.bitmap.width) { throw new Error("copy exceeds width of source bitmap"); } if (toX + fromWidth > toImage.bitmap.width) { throw new Error("copy exceeds width of target bitmap"); } if (fromY + fromHeight > this.bitmap.height) { throw new Error("copy exceeds height of source bitmap"); } if (toY + fromHeight > toImage.bitmap.height) { throw new Erro("copy exceeds height of target bitmap"); } const sourceBuf = this.bitmap.data; const targetBuf = toImage.bitmap.data; const sourceByteWidth = this.bitmap.width * 4; const targetByteWidth = toImage.bitmap.width * 4; const copyByteWidth = fromWidth * 4; let si = fromY * sourceByteWidth + fromX * 4; let ti = toY * targetByteWidth + toX * 4; while (--fromHeight >= 0) { sourceBuf.copy(targetBuf, ti, si, si + copyByteWidth); si += sourceByteWidth; ti += targetByteWidth; } return this; } /** * Fills the image with a single color. * * @param {number} rgba Color with which to fill image, expressed as a singlenumber in the form 0xRRGGBBAA, where AA is 0x00 for transparent and any other value for opaque. * @return {BitmapImage} The present image to allow for chaining. */ fillRGBA(rgba) { const buf = this.bitmap.data; const bufByteWidth = this.bitmap.height * 4; let bi = 0; while (bi < bufByteWidth) { buf.writeUInt32BE(rgba, bi); bi += 4; } while (bi < buf.length) { buf.copy(buf, bi, 0, bufByteWidth); bi += bufByteWidth; } return this; } /** * Gets the RGBA number of the pixel at the given coordinate in the form 0xRRGGBBAA, where AA is the alpha value, with alpha 0x00 encoding to transparency in GIFs. * * @param {number} x x-coord of pixel * @param {number} y y-coord of pixel * @return {number} RGBA of pixel in 0xRRGGBBAA form */ getRGBA(x, y) { const bi = (y * this.bitmap.width + x) * 4; return this.bitmap.data.readUInt32BE(bi); } /** * Gets a set of all RGBA colors found within the image. * * @return {Set} Set of all RGBA colors that the image contains. */ getRGBASet() { const rgbaSet = new Set(); const buf = this.bitmap.data; for (let bi = 0; bi < buf.length; bi += 4) { rgbaSet.add(buf.readUInt32BE(bi, true)); } return rgbaSet; } /** * Converts the image to greyscale using inferred Adobe metrics. * * @return {BitmapImage} The present image to allow for chaining. */ greyscale() { const buf = this.bitmap.data; this.scan(0, 0, this.bitmap.width, this.bitmap.height, (x, y, idx) => { const grey = Math.round( 0.299 * buf[idx] + 0.587 * buf[idx + 1] + 0.114 * buf[idx + 2] ); buf[idx] = grey; buf[idx + 1] = grey; buf[idx + 2] = grey; }); return this; } /** * Reframes the image as if placing a frame around the original image and replacing the original image with the newly framed image. When the new frame is strictly within the boundaries of the original image, this method crops the image. When any of the new boundaries exceed those of the original image, the `fillRGBA` must be provided to indicate the color with which to fill the extra space added to the image. * * @param {number} xOffset The x-coord offset of the upper-left pixel of the desired image relative to the present image. * @param {number} yOffset The y-coord offset of the upper-left pixel of the desired image relative to the present image. * @param {number} width The width of the new image after reframing * @param {number} height The height of the new image after reframing * @param {number} fillRGBA The color with which to fill space added to the image as a result of the reframing, in 0xRRGGBBAA format, where AA is 0x00 to indicate transparent and a non-zero value to indicate opaque. This parameter is only required when the reframing exceeds the original boundaries (i.e. does not simply perform a crop). * @return {BitmapImage} The present image to allow for chaining. */ reframe(xOffset, yOffset, width, height, fillRGBA) { const cropX = (xOffset < 0 ? 0 : xOffset); const cropY = (yOffset < 0 ? 0 : yOffset); const cropWidth = (width + cropX > this.bitmap.width ? this.bitmap.width - cropX : width); const cropHeight = (height + cropY > this.bitmap.height ? this.bitmap.height - cropY : height); const newX = (xOffset < 0 ? -xOffset : 0); const newY = (yOffset < 0 ? -yOffset : 0); let image; if (fillRGBA === undefined) { if (cropX !== xOffset || cropY != yOffset || cropWidth !== width || cropHeight !== height) { throw new GifError(`fillRGBA required for this reframing`); } image = new BitmapImage(width, height); } else { image = new BitmapImage(width, height, fillRGBA); } this.blit(image, newX, newY, cropX, cropY, cropWidth, cropHeight); this.bitmap = image.bitmap; return this; } /** * Scales the image size up by an integer factor. Each pixel of the original image becomes a square of the same color in the new image having a size of `factor` x `factor` pixels. * * @param {number} factor The factor by which to scale up the image. Must be an integer >= 1. * @return {BitmapImage} The present image to allow for chaining. */ scale(factor) { if (factor === 1) { return; } if (!Number.isInteger(factor) || factor < 1) { throw new Error("the scale must be an integer >= 1"); } const sourceWidth = this.bitmap.width; const sourceHeight = this.bitmap.height; const destByteWidth = sourceWidth * factor * 4; const sourceBuf = this.bitmap.data; const destBuf = new Buffer(sourceHeight * destByteWidth * factor); let sourceIndex = 0; let priorDestRowIndex; let destIndex = 0; for (let y = 0; y < sourceHeight; ++y) { priorDestRowIndex = destIndex; for (let x = 0; x < sourceWidth; ++x) { const color = sourceBuf.readUInt32BE(sourceIndex, true); for (let cx = 0; cx < factor; ++cx) { destBuf.writeUInt32BE(color, destIndex); destIndex += 4; } sourceIndex += 4; } for (let cy = 1; cy < factor; ++cy) { destBuf.copy(destBuf, destIndex, priorDestRowIndex, destIndex); destIndex += destByteWidth; priorDestRowIndex += destByteWidth; } } this.bitmap = { width: sourceWidth * factor, height: sourceHeight * factor, data: destBuf }; return this; } /** * Scans all coordinates of the image, handing each in turn to the provided handler function. * * @param {function} scanHandler A function(x: number, y: number, bi: number) to be called for each pixel of the image with that pixel's x-coord, y-coord, and index into the `data` buffer. The function accesses the pixel at this coordinate by accessing the `this.data` at index `bi`. * @see scanAllIndexes */ scanAllCoords(scanHandler) { const width = this.bitmap.width; const bufferLength = this.bitmap.data.length; let x = 0; let y = 0; for (let bi = 0; bi < bufferLength; bi += 4) { scanHandler(x, y, bi); if (++x === width) { x = 0; ++y; } } } /** * Scans all pixels of the image, handing the index of each in turn to the provided handler function. Runs a bit faster than `scanAllCoords()`, should the handler not need pixel coordinates. * * @param {function} scanHandler A function(bi: number) to be called for each pixel of the image with that pixel's index into the `data` buffer. The pixels is found at index 'bi' within `this.data`. * @see scanAllCoords */ scanAllIndexes(scanHandler) { const bufferLength = this.bitmap.data.length; for (let bi = 0; bi < bufferLength; bi += 4) { scanHandler(bi); } } } module.exports = BitmapImage; }).call(this,require("buffer").Buffer) },{"buffer":48}],66:[function(require,module,exports){ 'use strict'; /** @class Gif */ class Gif { // width - width of GIF in pixels // height - height of GIF in pixels // loops - 0 = unending; (n > 0) = iterate n times // usesTransparency - whether any frames have transparent pixels // colorScope - scope of color tables in GIF // frames - array of frames // buffer - GIF-formatted data /** * Gif is a class representing an encoded GIF. It is intended to be a read-only representation of a byte-encoded GIF. Only encoders and decoders should be creating instances of this class. * * Property | Description * --- | --- * width | width of the GIF at its widest * height | height of the GIF at its highest * loops | the number of times the GIF should loop before stopping; 0 => loop indefinately * usesTransparency | boolean indicating whether at least one frame contains at least one transparent pixel * colorScope | the scope of the color tables as encoded within the GIF; either Gif.GlobalColorsOnly (== 1) or Gif.LocalColorsOnly (== 2). * frames | a array of GifFrame instances, one for each frame of the GIF * buffer | a Buffer holding the encoding's byte data * * Its constructor should only ever be called by the GIF encoder or decoder. * * @param {Buffer} buffer A Buffer containing the encoded bytes * @param {GifFrame[]} frames Array of frames found in the encoding * @param {object} spec Properties of the encoding as listed above */ constructor(buffer, frames, spec) { this.width = spec.width; this.height = spec.height; this.loops = spec.loops; this.usesTransparency = spec.usesTransparency; this.colorScope = spec.colorScope; this.frames = frames; this.buffer = buffer; } } Gif.GlobalColorsPreferred = 0; Gif.GlobalColorsOnly = 1; Gif.LocalColorsOnly = 2; /** @class GifError */ class GifError extends Error { /** * GifError is a class representing a GIF-related error * * @param {string|Error} messageOrError */ constructor(messageOrError) { super(messageOrError); if (messageOrError instanceof Error) { this.stack = 'Gif' + messageOrError.stack; } } } exports.Gif = Gif; exports.GifError = GifError; },{}],67:[function(require,module,exports){ (function (process,Buffer){ 'use strict'; const Omggif = require('omggif'); const { Gif, GifError } = require('./gif'); let GifUtil; // allow circular dependency with GifUtil process.nextTick(() => { GifUtil = require('./gifutil'); }); const { GifFrame } = require('./gifframe'); const PER_GIF_OVERHEAD = 200; // these are guesses at upper limits const PER_FRAME_OVERHEAD = 100; // Note: I experimented with accepting a global color table when encoding and returning the global color table when decoding. Doing this properly greatly increased the complexity of the code and the amount of clock cycles required. The main issue is that each frame can specify any color of the global color table to be transparent within the frame, while this GIF library strives to hide GIF formatting details from its clients. E.g. it's possible to have 256 colors in the global color table and different transparencies in each frame, requiring clients to either provide per-frame transparency indexes, or for arcane reasons that won't be apparent to client developers, encode some GIFs with local color tables that previously decoded with global tables. /** @class GifCodec */ class GifCodec { // _transparentRGBA - RGB given to transparent pixels (alpha=0) on decode; defaults to null indicating 0x000000, which is fastest /** * GifCodec is a class that both encodes and decodes GIFs. It implements both the `encode()` method expected of an encoder and the `decode()` method expected of a decoder, and it wraps the `omggif` GIF encoder/decoder package. GifCodec serves as this library's default encoder and decoder, but it's possible to wrap other GIF encoders and decoders for use by `gifwrap` as well. GifCodec will not encode GIFs with interlacing. * * Instances of this class are stateless and can be shared across multiple encodings and decodings. * * Its constructor takes one option argument: * * @param {object} options Optionally takes an objection whose only possible property is `transparentRGB`. Images are internally represented in RGBA format, where A is the alpha value of a pixel. When `transparentRGB` is provided, this RGB value (excluding alpha) is assigned to transparent pixels, which are also given alpha value 0x00. (All opaque pixels are given alpha value 0xFF). The RGB color of transparent pixels shouldn't matter for most applications. Defaults to 0x000000. */ constructor(options = {}) { this._transparentRGB = null; // 0x000000 if (typeof options.transparentRGB === 'number' && options.transparentRGB !== 0) { this._transparentRGBA = options.transparentRGB * 256; } this._testInitialBufferSize = 0; // assume no buffer scaling test } /** * Decodes a GIF from a Buffer to yield an instance of Gif. Transparent pixels of the GIF are given alpha values of 0x00, and opaque pixels are given alpha values of 0xFF. The RGB values of transparent pixels default to 0x000000 but can be overridden by the constructor's `transparentRGB` option. * * @param {Buffer} buffer Bytes of an encoded GIF to decode. * @return {Promise} A Promise that resolves to an instance of the Gif class, representing the encoded GIF. * @throws {GifError} Error upon encountered an encoding-related problem with a GIF, so that the caller can distinguish between software errors and problems with GIFs. */ decodeGif(buffer) { try { let reader; try { reader = new Omggif.GifReader(buffer); } catch (err) { throw new GifError(err); } const frameCount = reader.numFrames(); const frames = []; const spec = { width: reader.width, height: reader.height, loops: reader.loopCount() }; spec.usesTransparency = false; for (let i = 0; i < frameCount; ++i) { const frameInfo = this._decodeFrame(reader, i, spec.usesTransparency); frames.push(frameInfo.frame); if (frameInfo.usesTransparency) { spec.usesTransparency = true; } } return Promise.resolve(new Gif(buffer, frames, spec)); } catch (err) { return Promise.reject(err); } } /** * Encodes a GIF from provided frames. Each pixel having an alpha value of 0x00 renders as transparent within the encoding, while all pixels of non-zero alpha value render as opaque. * * @param {GifFrame[]} frames Array of frames to encode * @param {object} spec An optional object that may provide values for `loops` and `colorScope`, as defined for the Gif class. However, `colorSpace` may also take the value Gif.GlobalColorsPreferred (== 0) to indicate that the encoder should attempt to create only a global color table. `loop` defaults to 0, looping indefinitely, and `colorScope` defaults to Gif.GlobalColorsPreferred. * @return {Promise} A Promise that resolves to an instance of the Gif class, representing the encoded GIF. * @throws {GifError} Error upon encountered an encoding-related problem with a GIF, so that the caller can distinguish between software errors and problems with GIFs. */ encodeGif(frames, spec = {}) { try { if (frames === null || frames.length === 0) { throw new GifError("there are no frames"); } const dims = GifUtil.getMaxDimensions(frames); spec = Object.assign({}, spec); // don't munge caller's spec spec.width = dims.maxWidth; spec.height = dims.maxHeight; spec.loops = spec.loops || 0; spec.colorScope = spec.colorScope || Gif.GlobalColorsPreferred; return Promise.resolve(this._encodeGif(frames, spec)); } catch (err) { return Promise.reject(err); } } _decodeFrame(reader, frameIndex, alreadyUsedTransparency) { let info, buffer; try { info = reader.frameInfo(frameIndex); buffer = new Buffer(reader.width * reader.height * 4); reader.decodeAndBlitFrameRGBA(frameIndex, buffer); if (info.width !== reader.width || info.height !== reader.height) { if (info.y) { // skip unused rows buffer = buffer.slice(info.y * reader.width * 4); } if (reader.width > info.width) { // skip scanstride for (let ii = 0; ii < info.height; ++ii) { buffer.copy(buffer, ii * info.width * 4, (info.x + ii * reader.width) * 4, (info.x + ii * reader.width) * 4 + info.width * 4); } } // trim buffer to size buffer = buffer.slice(0, info.width * info.height * 4); } } catch (err) { throw new GifError(err); } let usesTransparency = false; if (this._transparentRGBA === null) { if (!alreadyUsedTransparency) { for (let i = 3; i < buffer.length; i += 4) { if (buffer[i] === 0) { usesTransparency = true; i = buffer.length; } } } } else { for (let i = 3; i < buffer.length; i += 4) { if (buffer[i] === 0) { buffer.writeUInt32BE(this._transparentRGBA, i - 3); usesTransparency = true; // GIF might encode unused index } } } const frame = new GifFrame(info.width, info.height, buffer, { xOffset: info.x, yOffset: info.y, disposalMethod: info.disposal, interlaced: info.interlaced, delayCentisecs: info.delay }); return { frame, usesTransparency }; } _encodeGif(frames, spec) { let colorInfo; if (spec.colorScope === Gif.LocalColorsOnly) { colorInfo = GifUtil.getColorInfo(frames, 0); } else { colorInfo = GifUtil.getColorInfo(frames, 256); if (!colorInfo.colors) { // if global palette impossible if (spec.colorScope === Gif.GlobalColorsOnly) { throw new GifError( "Too many color indexes for global color table"); } spec.colorScope = Gif.LocalColorsOnly } } spec.usesTransparency = colorInfo.usesTransparency; const localPalettes = colorInfo.palettes; if (spec.colorScope === Gif.LocalColorsOnly) { const localSizeEst = 2000; //this._getSizeEstimateLocal(localPalettes, frames); return _encodeLocal(frames, spec, localSizeEst, localPalettes); } const globalSizeEst = 2000; //this._getSizeEstimateGlobal(colorInfo, frames); return _encodeGlobal(frames, spec, globalSizeEst, colorInfo); } _getSizeEstimateGlobal(globalPalette, frames) { if (this._testInitialBufferSize > 0) { return this._testInitialBufferSize; } let sizeEst = PER_GIF_OVERHEAD + 3*256 /* max palette size*/; const pixelBitWidth = _getPixelBitWidth(globalPalette); frames.forEach(frame => { sizeEst += _getFrameSizeEst(frame, pixelBitWidth); }); return sizeEst; // should be the upper limit } _getSizeEstimateLocal(palettes, frames) { if (this._testInitialBufferSize > 0) { return this._testInitialBufferSize; } let sizeEst = PER_GIF_OVERHEAD; for (let i = 0; i < frames.length; ++i ) { const palette = palettes[i]; const pixelBitWidth = _getPixelBitWidth(palette); sizeEst += _getFrameSizeEst(frames[i], pixelBitWidth); } return sizeEst; // should be the upper limit } } exports.GifCodec = GifCodec; function _colorLookupLinear(colors, color) { const index = colors.indexOf(color); return (index === -1 ? null : index); } function _colorLookupBinary(colors, color) { // adapted from https://stackoverflow.com/a/10264318/650894 var lo = 0, hi = colors.length - 1, mid; while (lo <= hi) { mid = Math.floor((lo + hi)/2); if (colors[mid] > color) hi = mid - 1; else if (colors[mid] < color) lo = mid + 1; else return mid; } return null; } function _encodeGlobal(frames, spec, bufferSizeEst, globalPalette) { // would be inefficient for frames to lookup colors in extended palette const extendedGlobalPalette = { colors: globalPalette.colors.slice(), usesTransparency: globalPalette.usesTransparency }; _extendPaletteToPowerOf2(extendedGlobalPalette); const options = { palette: extendedGlobalPalette.colors, loop: spec.loops }; let buffer = new Buffer(bufferSizeEst); let gifWriter; try { gifWriter = new Omggif.GifWriter(buffer, spec.width, spec.height, options); } catch (err) { throw new GifError(err); } for (let i = 0; i < frames.length; ++i) { buffer = _writeFrame(gifWriter, i, frames[i], globalPalette, false); } return new Gif(buffer.slice(0, gifWriter.end()), frames, spec); } function _encodeLocal(frames, spec, bufferSizeEst, localPalettes) { const options = { loop: spec.loops }; let buffer = new Buffer(bufferSizeEst); let gifWriter; try { gifWriter = new Omggif.GifWriter(buffer, spec.width, spec.height, options); } catch (err) { throw new GifError(err); } for (let i = 0; i < frames.length; ++i) { buffer = _writeFrame(gifWriter, i, frames[i], localPalettes[i], true); } return new Gif(buffer.slice(0, gifWriter.end()), frames, spec); } function _extendPaletteToPowerOf2(palette) { const colors = palette.colors; if (palette.usesTransparency) { colors.push(0); } const colorCount = colors.length; let powerOf2 = 2; while (colorCount > powerOf2) { powerOf2 <<= 1; } colors.length = powerOf2; colors.fill(0, colorCount); } function _getFrameSizeEst(frame, pixelBitWidth) { let byteLength = frame.bitmap.width * frame.bitmap.height; byteLength = Math.ceil(byteLength * pixelBitWidth / 8); byteLength += Math.ceil(byteLength / 255); // add block size bytes // assume maximum palete size because it might get extended for power of 2 return (PER_FRAME_OVERHEAD + byteLength + 3 * 256 /* largest palette */); } function _getIndexedImage(frameIndex, frame, palette) { const colors = palette.colors; const colorToIndexFunc = (colors.length <= 8 ? // guess at the break-even _colorLookupLinear : _colorLookupBinary); const colorBuffer = frame.bitmap.data; const indexBuffer = new Buffer(colorBuffer.length/4); let transparentIndex = colors.length; let i = 0, j = 0; while (i < colorBuffer.length) { if (colorBuffer[i + 3] !== 0) { const color = (colorBuffer.readUInt32BE(i, true) >> 8) & 0xFFFFFF; // caller guarantees that the color will be in the palette indexBuffer[j] = colorToIndexFunc(colors, color); } else { indexBuffer[j] = transparentIndex; } i += 4; // skip alpha ++j; } if (palette.usesTransparency) { if (transparentIndex === 256) { throw new GifError(`Frame ${frameIndex} already has 256 colors` + `and so can't use transparency`); } } else { transparentIndex = null; } return { buffer: indexBuffer, transparentIndex }; } function _getPixelBitWidth(palette) { let indexCount = palette.indexCount; let pixelBitWidth = 0; --indexCount; // start at maximum index while (indexCount) { ++pixelBitWidth; indexCount >>= 1; } return (pixelBitWidth > 0 ? pixelBitWidth : 1); } function _writeFrame(gifWriter, frameIndex, frame, palette, isLocalPalette) { if (frame.interlaced) { throw new GifError("writing interlaced GIFs is not supported"); } const frameInfo = _getIndexedImage(frameIndex, frame, palette); const options = { delay: frame.delayCentisecs, disposal: frame.disposalMethod, transparent: frameInfo.transparentIndex }; if (isLocalPalette) { _extendPaletteToPowerOf2(palette); // ok 'cause palette never used again options.palette = palette.colors; } try { let buffer = gifWriter.getOutputBuffer(); let startOfFrame = gifWriter.getOutputBufferPosition(); let endOfFrame; let tryAgain = true; while (tryAgain) { endOfFrame = gifWriter.addFrame(frame.xOffset, frame.yOffset, frame.bitmap.width, frame.bitmap.height, frameInfo.buffer, options); tryAgain = false; if (endOfFrame >= buffer.length - 1) { const biggerBuffer = new Buffer(buffer.length * 1.5); buffer.copy(biggerBuffer); gifWriter.setOutputBuffer(biggerBuffer); gifWriter.setOutputBufferPosition(startOfFrame); buffer = biggerBuffer; tryAgain = true; } } return buffer; } catch (err) { throw new GifError(err); } } }).call(this,require('_process'),require("buffer").Buffer) },{"./gif":66,"./gifframe":68,"./gifutil":69,"_process":133,"buffer":48,"omggif":64}],68:[function(require,module,exports){ 'use strict'; const BitmapImage = require('./bitmapimage'); const { GifError } = require('./gif'); /** @class GifFrame */ class GifFrame extends BitmapImage { // xOffset - x offset of bitmap on GIF (defaults to 0) // yOffset - y offset of bitmap on GIF (defaults to 0) // disposalMethod - pixel disposal method when handling partial images // delayCentisecs - duration of frame in hundredths of a second // interlaced - whether the image is interlaced (defaults to false) /** * GifFrame is a class representing an image frame of a GIF. GIFs contain one or more instances of GifFrame. * * Property | Description * --- | --- * xOffset | x-coord of position within GIF at which to render the image (defaults to 0) * yOffset | y-coord of position within GIF at which to render the image (defaults to 0) * disposalMethod | GIF disposal method; only relevant when the frames aren't all the same size (defaults to 2, disposing to background color) * delayCentisecs | duration of the frame in hundreths of a second * interlaced | boolean indicating whether the frame renders interlaced * * Its constructor supports the following signatures: * * * new GifFrame(bitmap: {width: number, height: number, data: Buffer}, options?) * * new GifFrame(bitmapImage: BitmapImage, options?) * * new GifFrame(width: number, height: number, buffer: Buffer, options?) * * new GifFrame(width: number, height: number, backgroundRGBA?: number, options?) * * new GifFrame(frame: GifFrame) * * See the base class BitmapImage for a discussion of all parameters but `options` and `frame`. `options` is an optional argument providing initial values for the above-listed GifFrame properties. Each property within option is itself optional. * * Provide a `frame` to the constructor to create a clone of the provided frame. The new frame includes a copy of the provided frame's pixel data so that each can subsequently be modified without affecting each other. */ constructor(...args) { super(...args); if (args[0] instanceof GifFrame) { // copy a provided GifFrame const source = args[0]; this.xOffset = source.xOffset; this.yOffset = source.yOffset; this.disposalMethod = source.disposalMethod; this.delayCentisecs = source.delayCentisecs; this.interlaced = source.interlaced; } else { const lastArg = args[args.length - 1]; let options = {}; if (typeof lastArg === 'object' && !(lastArg instanceof BitmapImage)) { options = lastArg; } this.xOffset = options.xOffset || 0; this.yOffset = options.yOffset || 0; this.disposalMethod = (options.disposalMethod !== undefined ? options.disposalMethod : GifFrame.DisposeToBackgroundColor); this.delayCentisecs = options.delayCentisecs || 8; this.interlaced = options.interlaced || false; } } /** * Get a summary of the colors found within the frame. The return value is an object of the following form: * * Property | Description * --- | --- * colors | An array of all the opaque colors found within the frame. Each color is given as an RGB number of the form 0xRRGGBB. The array is sorted by increasing number. Will be an empty array when the image is completely transparent. * usesTransparency | boolean indicating whether there are any transparent pixels within the frame. A pixel is considered transparent if its alpha value is 0x00. * indexCount | The number of color indexes required to represent this palette of colors. It is equal to the number of opaque colors plus one if the image includes transparency. * * @return {object} An object representing a color palette as described above. */ getPalette() { // returns with colors sorted low to high const colorSet = new Set(); const buf = this.bitmap.data; let i = 0; let usesTransparency = false; while (i < buf.length) { if (buf[i + 3] === 0) { usesTransparency = true; } else { // can eliminate the bitshift by starting one byte prior const color = (buf.readUInt32BE(i, true) >> 8) & 0xFFFFFF; colorSet.add(color); } i += 4; // skip alpha } const colors = new Array(colorSet.size); const iter = colorSet.values(); for (i = 0; i < colors.length; ++i) { colors[i] = iter.next().value; } colors.sort((a, b) => (a - b)); let indexCount = colors.length; if (usesTransparency) { ++indexCount; } return { colors, usesTransparency, indexCount }; } } GifFrame.DisposeToAnything = 0; GifFrame.DisposeNothing = 1; GifFrame.DisposeToBackgroundColor = 2; GifFrame.DisposeToPrevious = 3; exports.GifFrame = GifFrame; },{"./bitmapimage":65,"./gif":66}],69:[function(require,module,exports){ (function (Buffer){ 'use strict'; /** @namespace GifUtil */ const fs = require('fs'); const ImageQ = require('image-q'); const BitmapImage = require('./bitmapimage'); const { GifFrame } = require('./gifframe'); const { GifError } = require('./gif'); const { GifCodec } = require('./gifcodec'); const INVALID_SUFFIXES = ['.jpg', '.jpeg', '.png', '.bmp']; const defaultCodec = new GifCodec(); /** * cloneFrames() clones provided frames. It's a utility method for cloning an entire array of frames at once. * * @function cloneFrames * @memberof GifUtil * @param {GifFrame[]} frames An array of GifFrame instances to clone * @return {GifFrame[]} An array of GifFrame clones of the provided frames. */ exports.cloneFrames = function (frames) { let clones = []; frames.forEach(frame => { clones.push(new GifFrame(frame)); }); return clones; } /** * getColorInfo() gets information about the colors used in the provided frames. The method is able to return an array of all colors found across all frames. * * `maxGlobalIndex` controls whether the computation short-circuits to avoid doing work that the caller doesn't need. The method only returns `colors` and `indexCount` for the colors across all frames when the number of indexes required to store the colors and transparency in a GIF (which is the value of `indexCount`) is less than or equal to `maxGlobalIndex`. Such short-circuiting is useful when the caller just needs to determine whether any frame includes transparency. * * @function getColorInfo * @memberof GifUtil * @param {GifFrame[]} frames Frames to examine for color and transparency. * @param {number} maxGlobalIndex Maximum number of color indexes (including one for transparency) allowed among the returned compilation of colors. `colors` and `indexCount` are not returned if the number of color indexes required to accommodate all frames exceeds this number. Returns `colors` and `indexCount` by default. * @returns {object} Object containing at least `palettes` and `usesTransparency`. `palettes` is an array of all the palettes returned by GifFrame#getPalette(). `usesTransparency` indicates whether at least one frame uses transparency. If `maxGlobalIndex` is not exceeded, the object also contains `colors`, an array of all colors (RGB) found across all palettes, sorted by increasing value, and `indexCount` indicating the number of indexes required to store the colors and the transparency in a GIF. * @throws {GifError} When any frame requires more than 256 color indexes. */ exports.getColorInfo = function (frames, maxGlobalIndex) { let usesTransparency = false; const palettes = []; for (let i = 0; i < frames.length; ++i) { let palette = frames[i].getPalette(); if (palette.usesTransparency) { usesTransparency = true; } if (palette.indexCount > 256) { throw new GifError(`Frame ${i} uses more than 256 color indexes`); } palettes.push(palette); } if (maxGlobalIndex === 0) { return { usesTransparency, palettes }; } const globalColorSet = new Set(); palettes.forEach(palette => { palette.colors.forEach(color => { globalColorSet.add(color); }); }); let indexCount = globalColorSet.size; if (usesTransparency) { // odd that GIF requires a color table entry at transparent index ++indexCount; } if (maxGlobalIndex && indexCount > maxGlobalIndex) { return { usesTransparency, palettes }; } const colors = new Array(globalColorSet.size); const iter = globalColorSet.values(); for (let i = 0; i < colors.length; ++i) { colors[i] = iter.next().value; } colors.sort((a, b) => (a - b)); return { colors, indexCount, usesTransparency, palettes }; }; /** * copyAsJimp() returns a Jimp that contains a copy of the provided bitmap image (which may be either a BitmapImage or a GifFrame). Modifying the Jimp does not affect the provided bitmap image. This method serves as a macro for simplifying working with Jimp. * * @function copyAsJimp * @memberof GifUtil * @param {object} Reference to the Jimp package, keeping this library from being dependent on Jimp. * @param {bitmapImageToCopy} Instance of BitmapImage (may be a GifUtil) with which to source the Jimp. * @return {object} An new instance of Jimp containing a copy of the image in bitmapImageToCopy. */ exports.copyAsJimp = function (jimp, bitmapImageToCopy) { return exports.shareAsJimp(jimp, new BitmapImage(bitmapImageToCopy)); }; /** * getMaxDimensions() returns the pixel width and height required to accommodate all of the provided frames, according to the offsets and dimensions of each frame. * * @function getMaxDimensions * @memberof GifUtil * @param {GifFrame[]} frames Frames to measure for their aggregate maximum dimensions. * @return {object} An object of the form {maxWidth, maxHeight} indicating the maximum width and height required to accommodate all frames. */ exports.getMaxDimensions = function (frames) { let maxWidth = 0, maxHeight = 0; frames.forEach(frame => { const width = frame.xOffset + frame.bitmap.width; if (width > maxWidth) { maxWidth = width; } const height = frame.yOffset + frame.bitmap.height; if (height > maxHeight) { maxHeight = height; } }); return { maxWidth, maxHeight }; }; /** * Quantizes colors so that there are at most a given number of color indexes (including transparency) across all provided images. Uses an algorithm by Anthony Dekker. * * The method treats different RGBA combinations as different colors, so if the frame has multiple alpha values or multiple RGB values for an alpha value, the caller may first want to normalize them by converting all transparent pixels to the same RGBA values. * * The method may increase the number of colors if there are fewer than the provided maximum. * * @function quantizeDekker * @memberof GifUtil * @param {BitmapImage|BitmapImage[]} imageOrImages Image or array of images (such as GifFrame instances) to be color-quantized. Quantizing across multiple images ensures color consistency from frame to frame. * @param {number} maxColorIndexes The maximum number of color indexes that will exist in the palette after completing quantization. Defaults to 256. * @param {object} dither (optional) An object configuring the dithering to apply. The properties are as followings, imported from the [`image-q` package](https://github.com/ibezkrovnyi/image-quantization) without explanation: { `ditherAlgorithm`: One of 'FloydSteinberg', 'FalseFloydSteinberg', 'Stucki', 'Atkinson', 'Jarvis', 'Burkes', 'Sierra', 'TwoSierra', 'SierraLite'; `minimumColorDistanceToDither`: (optional) A number defaulting to 0; `serpentine`: (optional) A boolean defaulting to true; `calculateErrorLikeGIMP`: (optional) A boolean defaulting to false. } */ exports.quantizeDekker = function (imageOrImages, maxColorIndexes, dither) { maxColorIndexes = maxColorIndexes || 256; _quantize(imageOrImages, 'NeuQuantFloat', maxColorIndexes, 0, dither); } /** * Quantizes colors so that there are at most a given number of color indexes (including transparency) across all provided images. Uses an algorithm by Leon Sorokin. This quantization method differs from the other two by likely never increasing the number of colors, should there be fewer than the provided maximum. * * The method treats different RGBA combinations as different colors, so if the frame has multiple alpha values or multiple RGB values for an alpha value, the caller may first want to normalize them by converting all transparent pixels to the same RGBA values. * * @function quantizeSorokin * @memberof GifUtil * @param {BitmapImage|BitmapImage[]} imageOrImages Image or array of images (such as GifFrame instances) to be color-quantized. Quantizing across multiple images ensures color consistency from frame to frame. * @param {number} maxColorIndexes The maximum number of color indexes that will exist in the palette after completing quantization. Defaults to 256. * @param {string} histogram (optional) Histogram method: 'top-pop' for global top-population, 'min-pop' for minimum-population threshhold within subregions. Defaults to 'min-pop'. * @param {object} dither (optional) An object configuring the dithering to apply, as explained for `quantizeDekker()`. */ exports.quantizeSorokin = function (imageOrImages, maxColorIndexes, histogram, dither) { maxColorIndexes = maxColorIndexes || 256; histogram = histogram || 'min-pop'; let histogramID; switch (histogram) { case 'min-pop': histogramID = 2; break; case 'top-pop': histogramID = 1; break default: throw new Error(`Invalid quantizeSorokin histogram '${histogram}'`); } _quantize(imageOrImages, 'RGBQuant', maxColorIndexes, histogramID, dither); } /** * Quantizes colors so that there are at most a given number of color indexes (including transparency) across all provided images. Uses an algorithm by Xiaolin Wu. * * The method treats different RGBA combinations as different colors, so if the frame has multiple alpha values or multiple RGB values for an alpha value, the caller may first want to normalize them by converting all transparent pixels to the same RGBA values. * * The method may increase the number of colors if there are fewer than the provided maximum. * * @function quantizeWu * @memberof GifUtil * @param {BitmapImage|BitmapImage[]} imageOrImages Image or array of images (such as GifFrame instances) to be color-quantized. Quantizing across multiple images ensures color consistency from frame to frame. * @param {number} maxColorIndexes The maximum number of color indexes that will exist in the palette after completing quantization. Defaults to 256. * @param {number} significantBits (optional) This is the number of significant high bits in each RGB color channel. Takes integer values from 1 through 8. Higher values correspond to higher quality. Defaults to 5. * @param {object} dither (optional) An object configuring the dithering to apply, as explained for `quantizeDekker()`. */ exports.quantizeWu = function (imageOrImages, maxColorIndexes, significantBits, dither) { maxColorIndexes = maxColorIndexes || 256; significantBits = significantBits || 5; if (significantBits < 1 || significantBits > 8) { throw new Error("Invalid quantization quality"); } _quantize(imageOrImages, 'WuQuant', maxColorIndexes, significantBits, dither); } /** * read() decodes an encoded GIF, whether provided as a filename or as a byte buffer. * * @function read * @memberof GifUtil * @param {string|Buffer} source Source to decode. When a string, it's the GIF filename to load and parse. When a Buffer, it's an encoded GIF to parse. * @param {object} decoder An optional GIF decoder object implementing the `decode` method of class GifCodec. When provided, the method decodes the GIF using this decoder. When not provided, the method uses GifCodec. * @return {Promise} A Promise that resolves to an instance of the Gif class, representing the decoded GIF. */ exports.read = function (source, decoder) { decoder = decoder || defaultCodec; if (Buffer.isBuffer(source)) { return decoder.decodeGif(source); } return _readBinary(source) .then(buffer => { return decoder.decodeGif(buffer); }); }; /** * shareAsJimp() returns a Jimp that shares a bitmap with the provided bitmap image (which may be either a BitmapImage or a GifFrame). Modifying the image in either the Jimp or the BitmapImage affects the other objects. This method serves as a macro for simplifying working with Jimp. * * @function shareAsJimp * @memberof GifUtil * @param {object} Reference to the Jimp package, keeping this library from being dependent on Jimp. * @param {bitmapImageToShare} Instance of BitmapImage (may be a GifUtil) with which to source the Jimp. * @return {object} An new instance of Jimp that shares the image in bitmapImageToShare. */ exports.shareAsJimp = function (jimp, bitmapImageToShare) { const jimpImage = new jimp(bitmapImageToShare.bitmap.width, bitmapImageToShare.bitmap.height, 0); jimpImage.bitmap.data = bitmapImageToShare.bitmap.data; return jimpImage; }; /** * write() encodes a GIF and saves it as a file. * * @function write * @memberof GifUtil * @param {string} path Filename to write GIF out as. Will overwrite an existing file. * @param {GifFrame[]} frames Array of frames to be written into GIF. * @param {object} spec An optional object that may provide values for `loops` and `colorScope`, as defined for the Gif class. However, `colorSpace` may also take the value Gif.GlobalColorsPreferred (== 0) to indicate that the encoder should attempt to create only a global color table. `loop` defaults to 0, looping indefinitely, and `colorScope` defaults to Gif.GlobalColorsPreferred. * @param {object} encoder An optional GIF encoder object implementing the `encode` method of class GifCodec. When provided, the method encodes the GIF using this encoder. When not provided, the method uses GifCodec. * @return {Promise} A Promise that resolves to an instance of the Gif class, representing the encoded GIF. */ exports.write = function (path, frames, spec, encoder) { encoder = encoder || defaultCodec; const matches = path.match(/\.[a-zA-Z]+$/); // prevent accidents if (matches !== null && INVALID_SUFFIXES.includes(matches[0].toLowerCase())) { throw new Error(`GIF '${path}' has an unexpected suffix`); } return encoder.encodeGif(frames, spec) .then(gif => { return _writeBinary(path, gif.buffer) .then(() => { return gif; }); }); }; function _quantize(imageOrImages, method, maxColorIndexes, modifier, dither) { const images = Array.isArray(imageOrImages) ? imageOrImages : [imageOrImages]; const ditherAlgs = [ 'FloydSteinberg', 'FalseFloydSteinberg', 'Stucki', 'Atkinson', 'Jarvis', 'Burkes', 'Sierra', 'TwoSierra', 'SierraLite' ]; if (dither) { if (ditherAlgs.indexOf(dither.ditherAlgorithm) < 0) { throw new Error(`Invalid ditherAlgorithm '${dither.ditherAlgorithm}'`); } if (dither.serpentine === undefined) { dither.serpentine = true; } if (dither.minimumColorDistanceToDither === undefined) { dither.minimumColorDistanceToDither = 0; } if (dither.calculateErrorLikeGIMP === undefined) { dither.calculateErrorLikeGIMP = false; } } const distCalculator = new ImageQ.distance.Euclidean(); const quantizer = new ImageQ.palette[method](distCalculator, maxColorIndexes, modifier); let imageMaker; if (dither) { imageMaker = new ImageQ.image.ErrorDiffusionArray( distCalculator, ImageQ.image.ErrorDiffusionArrayKernel[dither.ditherAlgorithm], dither.serpentine, dither.minimumColorDistanceToDither, dither.calculateErrorLikeGIMP ); } else { imageMaker = new ImageQ.image.NearestColor(distCalculator); } const inputContainers = []; images.forEach(image => { const imageBuf = image.bitmap.data; const inputBuf = new ArrayBuffer(imageBuf.length); const inputArray = new Uint32Array(inputBuf); for (let bi = 0, ai = 0; bi < imageBuf.length; bi += 4, ++ai) { inputArray[ai] = imageBuf.readUInt32LE(bi, true); } const inputContainer = ImageQ.utils.PointContainer.fromUint32Array( inputArray, image.bitmap.width, image.bitmap.height); quantizer.sample(inputContainer); inputContainers.push(inputContainer); }); const limitedPalette = quantizer.quantize(); for (let i = 0; i < images.length; ++i) { const imageBuf = images[i].bitmap.data; const outputContainer = imageMaker.quantize(inputContainers[i], limitedPalette); const outputArray = outputContainer.toUint32Array(); for (let bi = 0, ai = 0; bi < imageBuf.length; bi += 4, ++ai) { imageBuf.writeUInt32LE(outputArray[ai], bi); } } } function _readBinary(path) { // TBD: add support for URLs return new Promise((resolve, reject) => { fs.readFile(path, (err, buffer) => { if (err) { return reject(err); } return resolve(buffer); }); }); } function _writeBinary(path, buffer) { // TBD: add support for URLs return new Promise((resolve, reject) => { fs.writeFile(path, buffer, err => { if (err) { return reject(err); } return resolve(); }); }); } }).call(this,{"isBuffer":require("../../is-buffer/index.js")}) },{"../../is-buffer/index.js":76,"./bitmapimage":65,"./gif":66,"./gifcodec":67,"./gifframe":68,"fs":47,"image-q":74}],70:[function(require,module,exports){ 'use strict'; const BitmapImage = require('./bitmapimage'); const { Gif, GifError } = require('./gif'); const { GifCodec } = require('./gifcodec'); const { GifFrame } = require('./gifframe'); const GifUtil = require('./gifutil'); module.exports = { BitmapImage, Gif, GifCodec, GifFrame, GifUtil, GifError }; },{"./bitmapimage":65,"./gif":66,"./gifcodec":67,"./gifframe":68,"./gifutil":69}],71:[function(require,module,exports){ (function (global){ var win; if (typeof window !== "undefined") { win = window; } else if (typeof global !== "undefined") { win = global; } else if (typeof self !== "undefined"){ win = self; } else { win = {}; } module.exports = win; }).call(this,typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {}) },{}],72:[function(require,module,exports){ var http = require('http') var url = require('url') var https = module.exports for (var key in http) { if (http.hasOwnProperty(key)) https[key] = http[key] } https.request = function (params, cb) { params = validateParams(params) return http.request.call(this, params, cb) } https.get = function (params, cb) { params = validateParams(params) return http.get.call(this, params, cb) } function validateParams (params) { if (typeof params === 'string') { params = url.parse(params) } if (!params.protocol) { params.protocol = 'https:' } if (params.protocol !== 'https:') { throw new Error('Protocol "' + params.protocol + '" not supported. Expected "https:"') } return params } },{"http":156,"url":180}],73:[function(require,module,exports){ exports.read = function (buffer, offset, isLE, mLen, nBytes) { var e, m var eLen = (nBytes * 8) - mLen - 1 var eMax = (1 << eLen) - 1 var eBias = eMax >> 1 var nBits = -7 var i = isLE ? (nBytes - 1) : 0 var d = isLE ? -1 : 1 var s = buffer[offset + i] i += d e = s & ((1 << (-nBits)) - 1) s >>= (-nBits) nBits += eLen for (; nBits > 0; e = (e * 256) + buffer[offset + i], i += d, nBits -= 8) {} m = e & ((1 << (-nBits)) - 1) e >>= (-nBits) nBits += mLen for (; nBits > 0; m = (m * 256) + buffer[offset + i], i += d, nBits -= 8) {} if (e === 0) { e = 1 - eBias } else if (e === eMax) { return m ? NaN : ((s ? -1 : 1) * Infinity) } else { m = m + Math.pow(2, mLen) e = e - eBias } return (s ? -1 : 1) * m * Math.pow(2, e - mLen) } exports.write = function (buffer, value, offset, isLE, mLen, nBytes) { var e, m, c var eLen = (nBytes * 8) - mLen - 1 var eMax = (1 << eLen) - 1 var eBias = eMax >> 1 var rt = (mLen === 23 ? Math.pow(2, -24) - Math.pow(2, -77) : 0) var i = isLE ? 0 : (nBytes - 1) var d = isLE ? 1 : -1 var s = value < 0 || (value === 0 && 1 / value < 0) ? 1 : 0 value = Math.abs(value) if (isNaN(value) || value === Infinity) { m = isNaN(value) ? 1 : 0 e = eMax } else { e = Math.floor(Math.log(value) / Math.LN2) if (value * (c = Math.pow(2, -e)) < 1) { e-- c *= 2 } if (e + eBias >= 1) { value += rt / c } else { value += rt * Math.pow(2, 1 - eBias) } if (value * c >= 2) { e++ c /= 2 } if (e + eBias >= eMax) { m = 0 e = eMax } else if (e + eBias >= 1) { m = ((value * c) - 1) * Math.pow(2, mLen) e = e + eBias } else { m = value * Math.pow(2, eBias - 1) * Math.pow(2, mLen) e = 0 } } for (; mLen >= 8; buffer[offset + i] = m & 0xff, i += d, m /= 256, mLen -= 8) {} e = (e << mLen) | m eLen += mLen for (; eLen > 0; buffer[offset + i] = e & 0xff, i += d, e /= 256, eLen -= 8) {} buffer[offset + i - d] |= s * 128 } },{}],74:[function(require,module,exports){ (function webpackUniversalModuleDefinition(root, factory) { if(typeof exports === 'object' && typeof module === 'object') module.exports = factory(); else if(typeof define === 'function' && define.amd) define("iq", [], factory); else if(typeof exports === 'object') exports["iq"] = factory(); else root["iq"] = factory(); })(this, function() { return /******/ (function(modules) { // webpackBootstrap /******/ // The module cache /******/ var installedModules = {}; /******/ /******/ // The require function /******/ function __webpack_require__(moduleId) { /******/ /******/ // Check if module is in cache /******/ if(installedModules[moduleId]) /******/ return installedModules[moduleId].exports; /******/ /******/ // Create a new module (and put it into the cache) /******/ var module = installedModules[moduleId] = { /******/ exports: {}, /******/ id: moduleId, /******/ loaded: false /******/ }; /******/ /******/ // Execute the module function /******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__); /******/ /******/ // Flag the module as loaded /******/ module.loaded = true; /******/ /******/ // Return the exports of the module /******/ return module.exports; /******/ } /******/ /******/ /******/ // expose the modules object (__webpack_modules__) /******/ __webpack_require__.m = modules; /******/ /******/ // expose the module cache /******/ __webpack_require__.c = installedModules; /******/ /******/ // __webpack_public_path__ /******/ __webpack_require__.p = ""; /******/ /******/ // Load entry module and return exports /******/ return __webpack_require__(0); /******/ }) /************************************************************************/ /******/ ([ /* 0 */ /***/ function(module, exports, __webpack_require__) { "use strict"; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * iq.ts - Image Quantization Library */ var constants = __webpack_require__(1); exports.constants = constants; var conversion = __webpack_require__(3); exports.conversion = conversion; var distance = __webpack_require__(12); exports.distance = distance; var palette = __webpack_require__(20); exports.palette = palette; var image = __webpack_require__(30); exports.image = image; var quality = __webpack_require__(35); exports.quality = quality; var utils = __webpack_require__(37); exports.utils = utils; /***/ }, /* 1 */ /***/ function(module, exports, __webpack_require__) { "use strict"; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * constants.ts - part of Image Quantization Library */ var bt709 = __webpack_require__(2); exports.bt709 = bt709; /***/ }, /* 2 */ /***/ function(module, exports) { /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * constants.ts - part of Image Quantization Library */ "use strict"; /** * sRGB (based on ITU-R Recommendation BT.709) * http://en.wikipedia.org/wiki/SRGB */ var Y; (function (Y) { Y[Y["RED"] = 0.2126] = "RED"; Y[Y["GREEN"] = 0.7152] = "GREEN"; Y[Y["BLUE"] = 0.0722] = "BLUE"; Y[Y["WHITE"] = 1] = "WHITE"; })(Y || (Y = {})); exports.Y = Y; var x; (function (x) { x[x["RED"] = 0.64] = "RED"; x[x["GREEN"] = 0.3] = "GREEN"; x[x["BLUE"] = 0.15] = "BLUE"; x[x["WHITE"] = 0.3127] = "WHITE"; })(x || (x = {})); exports.x = x; var y; (function (y) { y[y["RED"] = 0.33] = "RED"; y[y["GREEN"] = 0.6] = "GREEN"; y[y["BLUE"] = 0.06] = "BLUE"; y[y["WHITE"] = 0.329] = "WHITE"; })(y || (y = {})); exports.y = y; /***/ }, /* 3 */ /***/ function(module, exports, __webpack_require__) { "use strict"; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * iq.ts - Image Quantization Library */ var rgb2xyz_1 = __webpack_require__(4); exports.rgb2xyz = rgb2xyz_1.rgb2xyz; var rgb2hsl_1 = __webpack_require__(5); exports.rgb2hsl = rgb2hsl_1.rgb2hsl; var rgb2lab_1 = __webpack_require__(7); exports.rgb2lab = rgb2lab_1.rgb2lab; var lab2xyz_1 = __webpack_require__(9); exports.lab2xyz = lab2xyz_1.lab2xyz; var lab2rgb_1 = __webpack_require__(10); exports.lab2rgb = lab2rgb_1.lab2rgb; var xyz2lab_1 = __webpack_require__(8); exports.xyz2lab = xyz2lab_1.xyz2lab; var xyz2rgb_1 = __webpack_require__(11); exports.xyz2rgb = xyz2rgb_1.xyz2rgb; /***/ }, /* 4 */ /***/ function(module, exports) { "use strict"; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * rgb2xyz.ts - part of Image Quantization Library */ function correctGamma(n) { return n > 0.04045 ? Math.pow((n + 0.055) / 1.055, 2.4) : n / 12.92; } function rgb2xyz(r, g, b) { // gamma correction, see https://en.wikipedia.org/wiki/SRGB#The_reverse_transformation r = correctGamma(r / 255); g = correctGamma(g / 255); b = correctGamma(b / 255); // Observer. = 2°, Illuminant = D65 return { x: r * 0.4124 + g * 0.3576 + b * 0.1805, y: r * 0.2126 + g * 0.7152 + b * 0.0722, z: r * 0.0193 + g * 0.1192 + b * 0.9505 }; } exports.rgb2xyz = rgb2xyz; /***/ }, /* 5 */ /***/ function(module, exports, __webpack_require__) { "use strict"; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * rgb2hsl.ts - part of Image Quantization Library */ var arithmetic_1 = __webpack_require__(6); /** * Calculate HSL from RGB * Hue is in degrees [0..360] * Lightness: [0..1] * Saturation: [0..1] * http://web.archive.org/web/20060914040436/http://local.wasp.uwa.edu.au/~pbourke/colour/hsl/ */ function rgb2hsl(r, g, b) { var min = arithmetic_1.min3(r, g, b), max = arithmetic_1.max3(r, g, b), delta = max - min, l = (min + max) / 510; var s = 0; if (l > 0 && l < 1) s = delta / (l < 0.5 ? (max + min) : (510 - max - min)); var h = 0; if (delta > 0) { if (max === r) { h = (g - b) / delta; } else if (max === g) { h = (2 + (b - r) / delta); } else { h = (4 + (r - g) / delta); } h *= 60; if (h < 0) h += 360; } return { h: h, s: s, l: l }; } exports.rgb2hsl = rgb2hsl; /***/ }, /* 6 */ /***/ function(module, exports) { "use strict"; function degrees2radians(n) { return n * (Math.PI / 180); } exports.degrees2radians = degrees2radians; function max3(a, b, c) { var m = a; (m < b) && (m = b); (m < c) && (m = c); return m; } exports.max3 = max3; function min3(a, b, c) { var m = a; (m > b) && (m = b); (m > c) && (m = c); return m; } exports.min3 = min3; function intInRange(value, low, high) { if (value > high) value = high; if (value < low) value = low; return value | 0; } exports.intInRange = intInRange; function inRange0to255Rounded(n) { n = Math.round(n); if (n > 255) n = 255; else if (n < 0) n = 0; return n; } exports.inRange0to255Rounded = inRange0to255Rounded; function inRange0to255(n) { if (n > 255) n = 255; else if (n < 0) n = 0; return n; } exports.inRange0to255 = inRange0to255; function stableSort(arrayToSort, callback) { var type = typeof arrayToSort[0]; var sorted; if (type === "number" || type === "string") { var ord_1 = Object.create(null); for (var i = 0, l = arrayToSort.length; i < l; i++) { var val = arrayToSort[i]; if (ord_1[val] || ord_1[val] === 0) continue; ord_1[val] = i; } sorted = arrayToSort.sort(function (a, b) { return callback(a, b) || ord_1[a] - ord_1[b]; }); } else { var ord2_1 = arrayToSort.slice(0); sorted = arrayToSort.sort(function (a, b) { return callback(a, b) || ord2_1.indexOf(a) - ord2_1.indexOf(b); }); } return sorted; } exports.stableSort = stableSort; /***/ }, /* 7 */ /***/ function(module, exports, __webpack_require__) { "use strict"; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * rgb2lab.ts - part of Image Quantization Library */ var rgb2xyz_1 = __webpack_require__(4); var xyz2lab_1 = __webpack_require__(8); function rgb2lab(r, g, b) { var xyz = rgb2xyz_1.rgb2xyz(r, g, b); return xyz2lab_1.xyz2lab(xyz.x, xyz.y, xyz.z); } exports.rgb2lab = rgb2lab; /***/ }, /* 8 */ /***/ function(module, exports) { "use strict"; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * xyz2lab.ts - part of Image Quantization Library */ var refX = 0.95047, //ref_X = 95.047 Observer= 2°, Illuminant= D65 refY = 1.00000, //ref_Y = 100.000 refZ = 1.08883; //ref_Z = 108.883 function pivot(n) { return n > 0.008856 ? Math.pow(n, 1 / 3) : (7.787 * n + 16 / 116); } function xyz2lab(x, y, z) { x = pivot(x / refX); y = pivot(y / refY); z = pivot(z / refZ); if ((116 * y) - 16 < 0) throw new Error("xxx"); return { L: Math.max(0, (116 * y) - 16), a: 500 * (x - y), b: 200 * (y - z) }; } exports.xyz2lab = xyz2lab; /***/ }, /* 9 */ /***/ function(module, exports) { "use strict"; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * lab2xyz.ts - part of Image Quantization Library */ var refX = 0.95047, //ref_X = 95.047 Observer= 2°, Illuminant = D65 refY = 1.00000, //ref_Y = 100.000 refZ = 1.08883; //ref_Z = 108.883 function pivot(n) { return n > 0.206893034 ? Math.pow(n, 3) : (n - 16 / 116) / 7.787; } function lab2xyz(L, a, b) { var y = (L + 16) / 116, x = a / 500 + y, z = y - b / 200; return { x: refX * pivot(x), y: refY * pivot(y), z: refZ * pivot(z) }; } exports.lab2xyz = lab2xyz; /***/ }, /* 10 */ /***/ function(module, exports, __webpack_require__) { "use strict"; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * lab2rgb.ts - part of Image Quantization Library */ var lab2xyz_1 = __webpack_require__(9); var xyz2rgb_1 = __webpack_require__(11); function lab2rgb(L, a, b) { var xyz = lab2xyz_1.lab2xyz(L, a, b); return xyz2rgb_1.xyz2rgb(xyz.x, xyz.y, xyz.z); } exports.lab2rgb = lab2rgb; /***/ }, /* 11 */ /***/ function(module, exports, __webpack_require__) { "use strict"; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * xyz2rgb.ts - part of Image Quantization Library */ var arithmetic_1 = __webpack_require__(6); // gamma correction, see https://en.wikipedia.org/wiki/SRGB#The_reverse_transformation function correctGamma(n) { return n > 0.0031308 ? 1.055 * Math.pow(n, 1 / 2.4) - 0.055 : 12.92 * n; } function xyz2rgb(x, y, z) { // Observer. = 2°, Illuminant = D65 var r = correctGamma(x * 3.2406 + y * -1.5372 + z * -0.4986), g = correctGamma(x * -0.9689 + y * 1.8758 + z * 0.0415), b = correctGamma(x * 0.0557 + y * -0.2040 + z * 1.0570); return { r: arithmetic_1.inRange0to255Rounded(r * 255), g: arithmetic_1.inRange0to255Rounded(g * 255), b: arithmetic_1.inRange0to255Rounded(b * 255) }; } exports.xyz2rgb = xyz2rgb; /***/ }, /* 12 */ /***/ function(module, exports, __webpack_require__) { "use strict"; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * iq.ts - Image Quantization Library */ var abstractDistanceCalculator_1 = __webpack_require__(13); exports.AbstractDistanceCalculator = abstractDistanceCalculator_1.AbstractDistanceCalculator; var cie94_1 = __webpack_require__(14); exports.CIE94Textiles = cie94_1.CIE94Textiles; exports.CIE94GraphicArts = cie94_1.CIE94GraphicArts; var ciede2000_1 = __webpack_require__(15); exports.CIEDE2000 = ciede2000_1.CIEDE2000; var cmetric_1 = __webpack_require__(16); exports.CMETRIC = cmetric_1.CMETRIC; var euclidean_1 = __webpack_require__(17); exports.AbstractEuclidean = euclidean_1.AbstractEuclidean; exports.Euclidean = euclidean_1.Euclidean; exports.EuclideanRgbQuantWOAlpha = euclidean_1.EuclideanRgbQuantWOAlpha; exports.EuclideanRgbQuantWithAlpha = euclidean_1.EuclideanRgbQuantWithAlpha; var manhattan_1 = __webpack_require__(18); exports.AbstractManhattan = manhattan_1.AbstractManhattan; exports.Manhattan = manhattan_1.Manhattan; exports.ManhattanSRGB = manhattan_1.ManhattanSRGB; exports.ManhattanNommyde = manhattan_1.ManhattanNommyde; var pngQuant_1 = __webpack_require__(19); exports.PNGQUANT = pngQuant_1.PNGQUANT; /***/ }, /* 13 */ /***/ function(module, exports) { "use strict"; var AbstractDistanceCalculator = (function () { function AbstractDistanceCalculator() { this._setDefaults(); // set default maximal color component deltas (255 - 0 = 255) this.setWhitePoint(255, 255, 255, 255); } AbstractDistanceCalculator.prototype.setWhitePoint = function (r, g, b, a) { this._whitePoint = { r: (r > 0) ? 255 / r : 0, g: (g > 0) ? 255 / g : 0, b: (b > 0) ? 255 / b : 0, a: (a > 0) ? 255 / a : 0 }; this._maxDistance = this.calculateRaw(r, g, b, a, 0, 0, 0, 0); }; AbstractDistanceCalculator.prototype.calculateNormalized = function (colorA, colorB) { return this.calculateRaw(colorA.r, colorA.g, colorA.b, colorA.a, colorB.r, colorB.g, colorB.b, colorB.a) / this._maxDistance; }; AbstractDistanceCalculator.prototype._setDefaults = function () { }; return AbstractDistanceCalculator; }()); exports.AbstractDistanceCalculator = AbstractDistanceCalculator; /***/ }, /* 14 */ /***/ function(module, exports, __webpack_require__) { "use strict"; var __extends = (this && this.__extends) || function (d, b) { for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p]; function __() { this.constructor = d; } d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __()); }; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * cie94.ts - part of Image Quantization Library */ var abstractDistanceCalculator_1 = __webpack_require__(13); var rgb2lab_1 = __webpack_require__(7); var arithmetic_1 = __webpack_require__(6); /** * CIE94 method of delta-e * http://en.wikipedia.org/wiki/Color_difference#CIE94 */ var AbstractCIE94 = (function (_super) { __extends(AbstractCIE94, _super); function AbstractCIE94() { _super.apply(this, arguments); } AbstractCIE94.prototype.calculateRaw = function (r1, g1, b1, a1, r2, g2, b2, a2) { var lab1 = rgb2lab_1.rgb2lab(arithmetic_1.inRange0to255(r1 * this._whitePoint.r), arithmetic_1.inRange0to255(g1 * this._whitePoint.g), arithmetic_1.inRange0to255(b1 * this._whitePoint.b)), lab2 = rgb2lab_1.rgb2lab(arithmetic_1.inRange0to255(r2 * this._whitePoint.r), arithmetic_1.inRange0to255(g2 * this._whitePoint.g), arithmetic_1.inRange0to255(b2 * this._whitePoint.b)); var dL = lab1.L - lab2.L, dA = lab1.a - lab2.a, dB = lab1.b - lab2.b, c1 = Math.sqrt(lab1.a * lab1.a + lab1.b * lab1.b), c2 = Math.sqrt(lab2.a * lab2.a + lab2.b * lab2.b), dC = c1 - c2; var deltaH = dA * dA + dB * dB - dC * dC; deltaH = deltaH < 0 ? 0 : Math.sqrt(deltaH); var dAlpha = (a2 - a1) * this._whitePoint.a * this._kA; // TODO: add alpha channel support return Math.sqrt(Math.pow(dL / this._Kl, 2) + Math.pow(dC / (1.0 + this._K1 * c1), 2) + Math.pow(deltaH / (1.0 + this._K2 * c1), 2) + Math.pow(dAlpha, 2)); }; return AbstractCIE94; }(abstractDistanceCalculator_1.AbstractDistanceCalculator)); exports.AbstractCIE94 = AbstractCIE94; var CIE94Textiles = (function (_super) { __extends(CIE94Textiles, _super); function CIE94Textiles() { _super.apply(this, arguments); } CIE94Textiles.prototype._setDefaults = function () { this._Kl = 2.0; this._K1 = 0.048; this._K2 = 0.014; this._kA = 0.25 * 50 / 255; }; return CIE94Textiles; }(AbstractCIE94)); exports.CIE94Textiles = CIE94Textiles; var CIE94GraphicArts = (function (_super) { __extends(CIE94GraphicArts, _super); function CIE94GraphicArts() { _super.apply(this, arguments); } CIE94GraphicArts.prototype._setDefaults = function () { this._Kl = 1.0; this._K1 = 0.045; this._K2 = 0.015; this._kA = 0.25 * 100 / 255; }; return CIE94GraphicArts; }(AbstractCIE94)); exports.CIE94GraphicArts = CIE94GraphicArts; /***/ }, /* 15 */ /***/ function(module, exports, __webpack_require__) { "use strict"; var __extends = (this && this.__extends) || function (d, b) { for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p]; function __() { this.constructor = d; } d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __()); }; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * ciede2000.ts - part of Image Quantization Library */ var abstractDistanceCalculator_1 = __webpack_require__(13); var rgb2lab_1 = __webpack_require__(7); var arithmetic_1 = __webpack_require__(6); /** * CIEDE2000 algorithm - Adapted from Sharma et al's MATLAB implementation at * http://www.ece.rochester.edu/~gsharma/ciede2000/ */ var CIEDE2000 = (function (_super) { __extends(CIEDE2000, _super); function CIEDE2000() { _super.apply(this, arguments); } CIEDE2000.prototype.calculateRaw = function (r1, g1, b1, a1, r2, g2, b2, a2) { var lab1 = rgb2lab_1.rgb2lab(arithmetic_1.inRange0to255(r1 * this._whitePoint.r), arithmetic_1.inRange0to255(g1 * this._whitePoint.g), arithmetic_1.inRange0to255(b1 * this._whitePoint.b)), lab2 = rgb2lab_1.rgb2lab(arithmetic_1.inRange0to255(r2 * this._whitePoint.r), arithmetic_1.inRange0to255(g2 * this._whitePoint.g), arithmetic_1.inRange0to255(b2 * this._whitePoint.b)), dA = (a2 - a1) * this._whitePoint.a * CIEDE2000._kA, dE2 = this.calculateRawInLab(lab1, lab2); return Math.sqrt(dE2 + dA * dA); }; CIEDE2000.prototype.calculateRawInLab = function (Lab1, Lab2) { // Get L,a,b values for color 1 var L1 = Lab1.L, a1 = Lab1.a, b1 = Lab1.b; // Get L,a,b values for color 2 var L2 = Lab2.L, a2 = Lab2.a, b2 = Lab2.b; // Calculate Cprime1, Cprime2, Cabbar var C1 = Math.sqrt(a1 * a1 + b1 * b1), C2 = Math.sqrt(a2 * a2 + b2 * b2), pow_a_C1_C2_to_7 = Math.pow((C1 + C2) / 2.0, 7.0), G = 0.5 * (1.0 - Math.sqrt(pow_a_C1_C2_to_7 / (pow_a_C1_C2_to_7 + CIEDE2000._pow25to7))), //25^7 a1p = (1.0 + G) * a1, a2p = (1.0 + G) * a2, C1p = Math.sqrt(a1p * a1p + b1 * b1), C2p = Math.sqrt(a2p * a2p + b2 * b2), C1pC2p = C1p * C2p, // Angles in Degree. h1p = CIEDE2000._calculatehp(b1, a1p), h2p = CIEDE2000._calculatehp(b2, a2p), h_bar = Math.abs(h1p - h2p), dLp = L2 - L1, dCp = C2p - C1p, dHp = CIEDE2000._calculate_dHp(C1pC2p, h_bar, h2p, h1p), ahp = CIEDE2000._calculate_ahp(C1pC2p, h_bar, h1p, h2p), T = CIEDE2000._calculateT(ahp), aCp = (C1p + C2p) / 2.0, aLp_minus_50_square = Math.pow((L1 + L2) / 2.0 - 50.0, 2.0), S_L = 1.0 + (.015 * aLp_minus_50_square) / Math.sqrt(20.0 + aLp_minus_50_square), S_C = 1.0 + .045 * aCp, S_H = 1.0 + .015 * T * aCp, R_T = CIEDE2000._calculateRT(ahp, aCp), dLpSL = dLp / S_L, // S_L * kL, where kL is 1.0 dCpSC = dCp / S_C, // S_C * kC, where kC is 1.0 dHpSH = dHp / S_H; // S_H * kH, where kH is 1.0 return Math.pow(dLpSL, 2) + Math.pow(dCpSC, 2) + Math.pow(dHpSH, 2) + R_T * dCpSC * dHpSH; }; CIEDE2000._calculatehp = function (b, ap) { var hp = Math.atan2(b, ap); if (hp >= 0) return hp; return hp + CIEDE2000._deg360InRad; }; CIEDE2000._calculateRT = function (ahp, aCp) { var aCp_to_7 = Math.pow(aCp, 7.0), R_C = 2.0 * Math.sqrt(aCp_to_7 / (aCp_to_7 + CIEDE2000._pow25to7)), // 25^7 delta_theta = CIEDE2000._deg30InRad * Math.exp(-Math.pow((ahp - CIEDE2000._deg275InRad) / CIEDE2000._deg25InRad, 2.0)); return -Math.sin(2.0 * delta_theta) * R_C; }; CIEDE2000._calculateT = function (ahp) { return 1.0 - .17 * Math.cos(ahp - CIEDE2000._deg30InRad) + .24 * Math.cos(ahp * 2.0) + .32 * Math.cos(ahp * 3.0 + CIEDE2000._deg6InRad) - .2 * Math.cos(ahp * 4.0 - CIEDE2000._deg63InRad); }; CIEDE2000._calculate_ahp = function (C1pC2p, h_bar, h1p, h2p) { var hpSum = h1p + h2p; if (C1pC2p == 0) return hpSum; if (h_bar <= CIEDE2000._deg180InRad) return hpSum / 2.0; if (hpSum < CIEDE2000._deg360InRad) return (hpSum + CIEDE2000._deg360InRad) / 2.0; return (hpSum - CIEDE2000._deg360InRad) / 2.0; }; CIEDE2000._calculate_dHp = function (C1pC2p, h_bar, h2p, h1p) { var dhp; if (C1pC2p == 0) { dhp = 0; } else if (h_bar <= CIEDE2000._deg180InRad) { dhp = h2p - h1p; } else if (h2p <= h1p) { dhp = h2p - h1p + CIEDE2000._deg360InRad; } else { dhp = h2p - h1p - CIEDE2000._deg360InRad; } return 2.0 * Math.sqrt(C1pC2p) * Math.sin(dhp / 2.0); }; /** * Weight in distance: 0.25 * Max DeltaE: 100 * Max DeltaA: 255 */ CIEDE2000._kA = 0.25 * 100 / 255; CIEDE2000._pow25to7 = Math.pow(25, 7); CIEDE2000._deg360InRad = arithmetic_1.degrees2radians(360); CIEDE2000._deg180InRad = arithmetic_1.degrees2radians(180); CIEDE2000._deg30InRad = arithmetic_1.degrees2radians(30); CIEDE2000._deg6InRad = arithmetic_1.degrees2radians(6); CIEDE2000._deg63InRad = arithmetic_1.degrees2radians(63); CIEDE2000._deg275InRad = arithmetic_1.degrees2radians(275); CIEDE2000._deg25InRad = arithmetic_1.degrees2radians(25); return CIEDE2000; }(abstractDistanceCalculator_1.AbstractDistanceCalculator)); exports.CIEDE2000 = CIEDE2000; /***/ }, /* 16 */ /***/ function(module, exports, __webpack_require__) { "use strict"; var __extends = (this && this.__extends) || function (d, b) { for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p]; function __() { this.constructor = d; } d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __()); }; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * cmetric.ts - part of Image Quantization Library */ var abstractDistanceCalculator_1 = __webpack_require__(13); /** * TODO: Name it: http://www.compuphase.com/cmetric.htm */ var CMETRIC = (function (_super) { __extends(CMETRIC, _super); function CMETRIC() { _super.apply(this, arguments); } CMETRIC.prototype.calculateRaw = function (r1, g1, b1, a1, r2, g2, b2, a2) { var rmean = (r1 + r2) / 2 * this._whitePoint.r, r = (r1 - r2) * this._whitePoint.r, g = (g1 - g2) * this._whitePoint.g, b = (b1 - b2) * this._whitePoint.b, dE = ((((512 + rmean) * r * r) >> 8) + 4 * g * g + (((767 - rmean) * b * b) >> 8)), dA = (a2 - a1) * this._whitePoint.a; return Math.sqrt(dE + dA * dA); }; return CMETRIC; }(abstractDistanceCalculator_1.AbstractDistanceCalculator)); exports.CMETRIC = CMETRIC; /***/ }, /* 17 */ /***/ function(module, exports, __webpack_require__) { "use strict"; var __extends = (this && this.__extends) || function (d, b) { for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p]; function __() { this.constructor = d; } d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __()); }; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * euclidean.ts - part of Image Quantization Library */ var abstractDistanceCalculator_1 = __webpack_require__(13); var bt709_1 = __webpack_require__(2); /** * Euclidean color distance */ var AbstractEuclidean = (function (_super) { __extends(AbstractEuclidean, _super); function AbstractEuclidean() { _super.apply(this, arguments); } AbstractEuclidean.prototype.calculateRaw = function (r1, g1, b1, a1, r2, g2, b2, a2) { var dR = r2 - r1, dG = g2 - g1, dB = b2 - b1, dA = a2 - a1; return Math.sqrt(this._kR * dR * dR + this._kG * dG * dG + this._kB * dB * dB + this._kA * dA * dA); }; return AbstractEuclidean; }(abstractDistanceCalculator_1.AbstractDistanceCalculator)); exports.AbstractEuclidean = AbstractEuclidean; var Euclidean = (function (_super) { __extends(Euclidean, _super); function Euclidean() { _super.apply(this, arguments); } Euclidean.prototype._setDefaults = function () { this._kR = 1; this._kG = 1; this._kB = 1; this._kA = 1; }; return Euclidean; }(AbstractEuclidean)); exports.Euclidean = Euclidean; /** * Euclidean color distance (RgbQuant modification w Alpha) */ var EuclideanRgbQuantWithAlpha = (function (_super) { __extends(EuclideanRgbQuantWithAlpha, _super); function EuclideanRgbQuantWithAlpha() { _super.apply(this, arguments); } EuclideanRgbQuantWithAlpha.prototype._setDefaults = function () { this._kR = bt709_1.Y.RED; this._kG = bt709_1.Y.GREEN; this._kB = bt709_1.Y.BLUE; // TODO: what is the best coefficient below? this._kA = 1; }; return EuclideanRgbQuantWithAlpha; }(AbstractEuclidean)); exports.EuclideanRgbQuantWithAlpha = EuclideanRgbQuantWithAlpha; /** * Euclidean color distance (RgbQuant modification w/o Alpha) */ var EuclideanRgbQuantWOAlpha = (function (_super) { __extends(EuclideanRgbQuantWOAlpha, _super); function EuclideanRgbQuantWOAlpha() { _super.apply(this, arguments); } EuclideanRgbQuantWOAlpha.prototype._setDefaults = function () { this._kR = bt709_1.Y.RED; this._kG = bt709_1.Y.GREEN; this._kB = bt709_1.Y.BLUE; this._kA = 0; }; return EuclideanRgbQuantWOAlpha; }(AbstractEuclidean)); exports.EuclideanRgbQuantWOAlpha = EuclideanRgbQuantWOAlpha; /***/ }, /* 18 */ /***/ function(module, exports, __webpack_require__) { "use strict"; var __extends = (this && this.__extends) || function (d, b) { for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p]; function __() { this.constructor = d; } d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __()); }; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * manhattanNeuQuant.ts - part of Image Quantization Library */ var abstractDistanceCalculator_1 = __webpack_require__(13); var bt709_1 = __webpack_require__(2); /** * Manhattan distance (NeuQuant modification) - w/o sRGB coefficients */ var AbstractManhattan = (function (_super) { __extends(AbstractManhattan, _super); function AbstractManhattan() { _super.apply(this, arguments); } AbstractManhattan.prototype.calculateRaw = function (r1, g1, b1, a1, r2, g2, b2, a2) { var dR = r2 - r1, dG = g2 - g1, dB = b2 - b1, dA = a2 - a1; if (dR < 0) dR = 0 - dR; if (dG < 0) dG = 0 - dG; if (dB < 0) dB = 0 - dB; if (dA < 0) dA = 0 - dA; return this._kR * dR + this._kG * dG + this._kB * dB + this._kA * dA; }; return AbstractManhattan; }(abstractDistanceCalculator_1.AbstractDistanceCalculator)); exports.AbstractManhattan = AbstractManhattan; var Manhattan = (function (_super) { __extends(Manhattan, _super); function Manhattan() { _super.apply(this, arguments); } Manhattan.prototype._setDefaults = function () { this._kR = 1; this._kG = 1; this._kB = 1; this._kA = 1; }; return Manhattan; }(AbstractManhattan)); exports.Manhattan = Manhattan; /** * Manhattan distance (Nommyde modification) * https://github.com/igor-bezkrovny/image-quantization/issues/4#issuecomment-235155320 */ var ManhattanNommyde = (function (_super) { __extends(ManhattanNommyde, _super); function ManhattanNommyde() { _super.apply(this, arguments); } ManhattanNommyde.prototype._setDefaults = function () { this._kR = 0.4984; this._kG = 0.8625; this._kB = 0.2979; // TODO: what is the best coefficient below? this._kA = 1; }; return ManhattanNommyde; }(AbstractManhattan)); exports.ManhattanNommyde = ManhattanNommyde; /** * Manhattan distance (sRGB coefficients) */ var ManhattanSRGB = (function (_super) { __extends(ManhattanSRGB, _super); function ManhattanSRGB() { _super.apply(this, arguments); } ManhattanSRGB.prototype._setDefaults = function () { this._kR = bt709_1.Y.RED; this._kG = bt709_1.Y.GREEN; this._kB = bt709_1.Y.BLUE; // TODO: what is the best coefficient below? this._kA = 1; }; return ManhattanSRGB; }(AbstractManhattan)); exports.ManhattanSRGB = ManhattanSRGB; /***/ }, /* 19 */ /***/ function(module, exports, __webpack_require__) { "use strict"; var __extends = (this && this.__extends) || function (d, b) { for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p]; function __() { this.constructor = d; } d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __()); }; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * pngQuant.ts - part of Image Quantization Library */ var abstractDistanceCalculator_1 = __webpack_require__(13); /** * TODO: check quality of this distance equation * TODO: ask author for usage rights * taken from: * {@link http://stackoverflow.com/questions/4754506/color-similarity-distance-in-rgba-color-space/8796867#8796867} * {@link https://github.com/pornel/pngquant/blob/cc39b47799a7ff2ef17b529f9415ff6e6b213b8f/lib/pam.h#L148} */ var PNGQUANT = (function (_super) { __extends(PNGQUANT, _super); function PNGQUANT() { _super.apply(this, arguments); } /** * Author's comments * px_b.rgb = px.rgb + 0*(1-px.a) // blend px on black * px_b.a = px.a + 1*(1-px.a) * px_w.rgb = px.rgb + 1*(1-px.a) // blend px on white * px_w.a = px.a + 1*(1-px.a) * px_b.rgb = px.rgb // difference same as in opaque RGB * px_b.a = 1 * px_w.rgb = px.rgb - px.a // difference simplifies to formula below * px_w.a = 1 * (px.rgb - px.a) - (py.rgb - py.a) * (px.rgb - py.rgb) + (py.a - px.a) * */ PNGQUANT.prototype.calculateRaw = function (r1, g1, b1, a1, r2, g2, b2, a2) { var alphas = (a2 - a1) * this._whitePoint.a; return this._colordifference_ch(r1 * this._whitePoint.r, r2 * this._whitePoint.r, alphas) + this._colordifference_ch(g1 * this._whitePoint.g, g2 * this._whitePoint.g, alphas) + this._colordifference_ch(b1 * this._whitePoint.b, b2 * this._whitePoint.b, alphas); }; PNGQUANT.prototype._colordifference_ch = function (x, y, alphas) { // maximum of channel blended on white, and blended on black // premultiplied alpha and backgrounds 0/1 shorten the formula var black = x - y, white = black + alphas; return black * black + white * white; }; return PNGQUANT; }(abstractDistanceCalculator_1.AbstractDistanceCalculator)); exports.PNGQUANT = PNGQUANT; /***/ }, /* 20 */ /***/ function(module, exports, __webpack_require__) { "use strict"; var neuquant_1 = __webpack_require__(21); exports.NeuQuant = neuquant_1.NeuQuant; var neuquantFloat_1 = __webpack_require__(25); exports.NeuQuantFloat = neuquantFloat_1.NeuQuantFloat; var rgbquant_1 = __webpack_require__(26); exports.RGBQuant = rgbquant_1.RGBQuant; var colorHistogram_1 = __webpack_require__(27); exports.ColorHistogram = colorHistogram_1.ColorHistogram; var wuQuant_1 = __webpack_require__(29); exports.WuQuant = wuQuant_1.WuQuant; exports.WuColorCube = wuQuant_1.WuColorCube; /***/ }, /* 21 */ /***/ function(module, exports, __webpack_require__) { /* * NeuQuant Neural-Net Quantization Algorithm * ------------------------------------------ * * Copyright (c) 1994 Anthony Dekker * * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. See * "Kohonen neural networks for optimal colour quantization" in "Network: * Computation in Neural Systems" Vol. 5 (1994) pp 351-367. for a discussion of * the algorithm. * * Any party obtaining a copy of these files from the author, directly or * indirectly, is granted, free of charge, a full and unrestricted irrevocable, * world-wide, paid up, royalty-free, nonexclusive right and license to deal in * this software and documentation files (the "Software"), including without * limitation the rights to use, copy, modify, merge, publish, distribute, * sublicense, and/or sell copies of the Software, and to permit persons who * receive copies from any such party to do so, with the only requirement being * that this copyright notice remain intact. */ "use strict"; /** * @preserve TypeScript port: * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * neuquant.ts - part of Image Quantization Library */ var palette_1 = __webpack_require__(22); var point_1 = __webpack_require__(24); // bias for colour values var networkBiasShift = 3; var Neuron = (function () { function Neuron(defaultValue) { this.r = this.g = this.b = this.a = defaultValue; } /** * There is a fix in original NEUQUANT by Anthony Dekker (http://members.ozemail.com.au/~dekker/NEUQUANT.HTML) * @example * r = Math.min(255, (neuron.r + (1 << (networkBiasShift - 1))) >> networkBiasShift); */ Neuron.prototype.toPoint = function () { return point_1.Point.createByRGBA(this.r >> networkBiasShift, this.g >> networkBiasShift, this.b >> networkBiasShift, this.a >> networkBiasShift); }; Neuron.prototype.subtract = function (r, g, b, a) { this.r -= r | 0; this.g -= g | 0; this.b -= b | 0; this.a -= a | 0; }; return Neuron; }()); var NeuQuant = (function () { function NeuQuant(colorDistanceCalculator, colors) { if (colors === void 0) { colors = 256; } this._distance = colorDistanceCalculator; this._pointArray = []; this._sampleFactor = 1; this._networkSize = colors; this._distance.setWhitePoint(255 << networkBiasShift, 255 << networkBiasShift, 255 << networkBiasShift, 255 << networkBiasShift); } NeuQuant.prototype.sample = function (pointBuffer) { this._pointArray = this._pointArray.concat(pointBuffer.getPointArray()); }; NeuQuant.prototype.quantize = function () { this._init(); this._learn(); return this._buildPalette(); }; NeuQuant.prototype._init = function () { this._freq = []; this._bias = []; this._radPower = []; this._network = []; for (var i = 0; i < this._networkSize; i++) { this._network[i] = new Neuron((i << (networkBiasShift + 8)) / this._networkSize | 0); // 1/this._networkSize this._freq[i] = NeuQuant._initialBias / this._networkSize | 0; this._bias[i] = 0; } }; /** * Main Learning Loop */ NeuQuant.prototype._learn = function () { var sampleFactor = this._sampleFactor; var pointsNumber = this._pointArray.length; if (pointsNumber < NeuQuant._minpicturebytes) sampleFactor = 1; var alphadec = 30 + (sampleFactor - 1) / 3 | 0, pointsToSample = pointsNumber / sampleFactor | 0; var delta = pointsToSample / NeuQuant._nCycles | 0, alpha = NeuQuant._initAlpha, radius = (this._networkSize >> 3) * NeuQuant._radiusBias; var rad = radius >> NeuQuant._radiusBiasShift; if (rad <= 1) rad = 0; for (var i = 0; i < rad; i++) { this._radPower[i] = alpha * (((rad * rad - i * i) * NeuQuant._radBias) / (rad * rad)) >>> 0; } var step; if (pointsNumber < NeuQuant._minpicturebytes) { step = 1; } else if (pointsNumber % NeuQuant._prime1 != 0) { step = NeuQuant._prime1; } else if ((pointsNumber % NeuQuant._prime2) != 0) { step = NeuQuant._prime2; } else if ((pointsNumber % NeuQuant._prime3) != 0) { step = NeuQuant._prime3; } else { step = NeuQuant._prime4; } for (var i = 0, pointIndex = 0; i < pointsToSample;) { var point = this._pointArray[pointIndex], b = point.b << networkBiasShift, g = point.g << networkBiasShift, r = point.r << networkBiasShift, a = point.a << networkBiasShift, neuronIndex = this._contest(b, g, r, a); this._alterSingle(alpha, neuronIndex, b, g, r, a); if (rad !== 0) this._alterNeighbour(rad, neuronIndex, b, g, r, a); /* alter neighbours */ pointIndex += step; if (pointIndex >= pointsNumber) pointIndex -= pointsNumber; i++; if (delta === 0) delta = 1; if (i % delta === 0) { alpha -= (alpha / alphadec) | 0; radius -= (radius / NeuQuant._radiusDecrease) | 0; rad = radius >> NeuQuant._radiusBiasShift; if (rad <= 1) rad = 0; for (var j = 0; j < rad; j++) this._radPower[j] = alpha * (((rad * rad - j * j) * NeuQuant._radBias) / (rad * rad)) >>> 0; } } }; NeuQuant.prototype._buildPalette = function () { var palette = new palette_1.Palette(); this._network.forEach(function (neuron) { palette.add(neuron.toPoint()); }); palette.sort(); return palette; }; /** * Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|] */ NeuQuant.prototype._alterNeighbour = function (rad, i, b, g, r, al) { var lo = i - rad; if (lo < -1) lo = -1; var hi = i + rad; if (hi > this._networkSize) hi = this._networkSize; var j = i + 1, k = i - 1, m = 1; while (j < hi || k > lo) { var a = this._radPower[m++] / NeuQuant._alphaRadBias; if (j < hi) { var p = this._network[j++]; p.subtract(a * (p.r - r), a * (p.g - g), a * (p.b - b), a * (p.a - al)); } if (k > lo) { var p = this._network[k--]; p.subtract(a * (p.r - r), a * (p.g - g), a * (p.b - b), a * (p.a - al)); } } }; /** * Move neuron i towards biased (b,g,r) by factor alpha */ NeuQuant.prototype._alterSingle = function (alpha, i, b, g, r, a) { alpha /= NeuQuant._initAlpha; /* alter hit neuron */ var n = this._network[i]; n.subtract(alpha * (n.r - r), alpha * (n.g - g), alpha * (n.b - b), alpha * (n.a - a)); }; /** * Search for biased BGR values * description: * finds closest neuron (min dist) and updates freq * finds best neuron (min dist-bias) and returns position * for frequently chosen neurons, freq[i] is high and bias[i] is negative * bias[i] = _gamma*((1/this._networkSize)-freq[i]) * * Original distance equation: * dist = abs(dR) + abs(dG) + abs(dB) */ NeuQuant.prototype._contest = function (b, g, r, a) { var multiplier = (255 * 4) << networkBiasShift; var bestd = ~(1 << 31), bestbiasd = bestd, bestpos = -1, bestbiaspos = bestpos; for (var i = 0; i < this._networkSize; i++) { var n = this._network[i], dist = this._distance.calculateNormalized(n, { r: r, g: g, b: b, a: a }) * multiplier | 0; if (dist < bestd) { bestd = dist; bestpos = i; } var biasdist = dist - ((this._bias[i]) >> (NeuQuant._initialBiasShift - networkBiasShift)); if (biasdist < bestbiasd) { bestbiasd = biasdist; bestbiaspos = i; } var betafreq = (this._freq[i] >> NeuQuant._betaShift); this._freq[i] -= betafreq; this._bias[i] += (betafreq << NeuQuant._gammaShift); } this._freq[bestpos] += NeuQuant._beta; this._bias[bestpos] -= NeuQuant._betaGamma; return bestbiaspos; }; /* four primes near 500 - assume no image has a length so large that it is divisible by all four primes */ NeuQuant._prime1 = 499; NeuQuant._prime2 = 491; NeuQuant._prime3 = 487; NeuQuant._prime4 = 503; NeuQuant._minpicturebytes = NeuQuant._prime4; // no. of learning cycles NeuQuant._nCycles = 100; // defs for freq and bias NeuQuant._initialBiasShift = 16; // bias for fractions NeuQuant._initialBias = (1 << NeuQuant._initialBiasShift); NeuQuant._gammaShift = 10; // gamma = 1024 // TODO: why gamma is never used? //private static _gamma : number = (1 << NeuQuant._gammaShift); NeuQuant._betaShift = 10; NeuQuant._beta = (NeuQuant._initialBias >> NeuQuant._betaShift); // beta = 1/1024 NeuQuant._betaGamma = (NeuQuant._initialBias << (NeuQuant._gammaShift - NeuQuant._betaShift)); /* * for 256 cols, radius starts */ NeuQuant._radiusBiasShift = 6; // at 32.0 biased by 6 bits NeuQuant._radiusBias = 1 << NeuQuant._radiusBiasShift; // and decreases by a factor of 1/30 each cycle NeuQuant._radiusDecrease = 30; /* defs for decreasing alpha factor */ // alpha starts at 1.0 NeuQuant._alphaBiasShift = 10; // biased by 10 bits NeuQuant._initAlpha = (1 << NeuQuant._alphaBiasShift); /* radBias and alphaRadBias used for radpower calculation */ NeuQuant._radBiasShift = 8; NeuQuant._radBias = 1 << NeuQuant._radBiasShift; NeuQuant._alphaRadBiasShift = NeuQuant._alphaBiasShift + NeuQuant._radBiasShift; NeuQuant._alphaRadBias = 1 << NeuQuant._alphaRadBiasShift; return NeuQuant; }()); exports.NeuQuant = NeuQuant; /***/ }, /* 22 */ /***/ function(module, exports, __webpack_require__) { /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * palette.ts - part of Image Quantization Library */ "use strict"; var pointContainer_1 = __webpack_require__(23); var rgb2hsl_1 = __webpack_require__(5); // TODO: make paletteArray via pointBuffer, so, export will be available via pointBuffer.exportXXX var hueGroups = 10; function hueGroup(hue, segmentsNumber) { var maxHue = 360, seg = maxHue / segmentsNumber, half = seg / 2; for (var i = 1, mid = seg - half; i < segmentsNumber; i++, mid += seg) { if (hue >= mid && hue < mid + seg) return i; } return 0; } exports.hueGroup = hueGroup; var Palette = (function () { function Palette() { this._pointArray = []; this._i32idx = {}; this._pointContainer = new pointContainer_1.PointContainer(); this._pointContainer.setHeight(1); this._pointArray = this._pointContainer.getPointArray(); } Palette.prototype.add = function (color) { this._pointArray.push(color); this._pointContainer.setWidth(this._pointArray.length); }; Palette.prototype.has = function (color) { for (var i = this._pointArray.length - 1; i >= 0; i--) { if (color.uint32 === this._pointArray[i].uint32) return true; } return false; }; // TOTRY: use HUSL - http://boronine.com/husl/ http://www.husl-colors.org/ https://github.com/husl-colors/husl Palette.prototype.getNearestColor = function (colorDistanceCalculator, color) { return this._pointArray[this.getNearestIndex(colorDistanceCalculator, color) | 0]; }; Palette.prototype.getPointContainer = function () { return this._pointContainer; }; // TOTRY: use HUSL - http://boronine.com/husl/ /* public nearestIndexByUint32(i32) { var idx : number = this._nearestPointFromCache("" + i32); if (idx >= 0) return idx; var min = 1000, rgb = [ (i32 & 0xff), (i32 >>> 8) & 0xff, (i32 >>> 16) & 0xff, (i32 >>> 24) & 0xff ], len = this._pointArray.length; idx = 0; for (var i = 0; i < len; i++) { var dist = Utils.distEuclidean(rgb, this._pointArray[i].rgba); if (dist < min) { min = dist; idx = i; } } this._i32idx[i32] = idx; return idx; } */ Palette.prototype._nearestPointFromCache = function (key) { return typeof this._i32idx[key] === "number" ? this._i32idx[key] : -1; }; Palette.prototype.getNearestIndex = function (colorDistanceCalculator, point) { var idx = this._nearestPointFromCache("" + point.uint32); if (idx >= 0) return idx; var minimalDistance = Number.MAX_VALUE; idx = 0; for (var i = 0, l = this._pointArray.length; i < l; i++) { var p = this._pointArray[i], distance = colorDistanceCalculator.calculateRaw(point.r, point.g, point.b, point.a, p.r, p.g, p.b, p.a); if (distance < minimalDistance) { minimalDistance = distance; idx = i; } } this._i32idx[point.uint32] = idx; return idx; }; /* public reduce(histogram : ColorHistogram, colors : number) { if (this._pointArray.length > colors) { var idxi32 = histogram.getImportanceSortedColorsIDXI32(); // quantize histogram to existing palette var keep = [], uniqueColors = 0, idx, pruned = false; for (var i = 0, len = idxi32.length; i < len; i++) { // palette length reached, unset all remaining colors (sparse palette) if (uniqueColors >= colors) { this.prunePal(keep); pruned = true; break; } else { idx = this.nearestIndexByUint32(idxi32[i]); if (keep.indexOf(idx) < 0) { keep.push(idx); uniqueColors++; } } } if (!pruned) { this.prunePal(keep); } } } // TODO: check usage, not tested! public prunePal(keep : number[]) { var colors = this._pointArray.length; for (var colorIndex = colors - 1; colorIndex >= 0; colorIndex--) { if (keep.indexOf(colorIndex) < 0) { if(colorIndex + 1 < colors) { this._pointArray[ colorIndex ] = this._pointArray [ colors - 1 ]; } --colors; //this._pointArray[colorIndex] = null; } } console.log("colors pruned: " + (this._pointArray.length - colors)); this._pointArray.length = colors; this._i32idx = {}; } */ // TODO: group very low lum and very high lum colors // TODO: pass custom sort order // TODO: sort criteria function should be placed to HueStats class Palette.prototype.sort = function () { this._i32idx = {}; this._pointArray.sort(function (a, b) { var hslA = rgb2hsl_1.rgb2hsl(a.r, a.g, a.b), hslB = rgb2hsl_1.rgb2hsl(b.r, b.g, b.b); // sort all grays + whites together var hueA = (a.r === a.g && a.g === a.b) ? 0 : 1 + hueGroup(hslA.h, hueGroups), hueB = (b.r === b.g && b.g === b.b) ? 0 : 1 + hueGroup(hslB.h, hueGroups); /* var hueA = (a.r === a.g && a.g === a.b) ? 0 : 1 + Utils.hueGroup(hslA.h, hueGroups); var hueB = (b.r === b.g && b.g === b.b) ? 0 : 1 + Utils.hueGroup(hslB.h, hueGroups); */ var hueDiff = hueB - hueA; if (hueDiff) return -hueDiff; /* var lumDiff = Utils.lumGroup(+hslB.l.toFixed(2)) - Utils.lumGroup(+hslA.l.toFixed(2)); if (lumDiff) return -lumDiff; */ var lA = a.getLuminosity(true), lB = b.getLuminosity(true); if (lB - lA !== 0) return lB - lA; var satDiff = ((hslB.s * 100) | 0) - ((hslA.s * 100) | 0); if (satDiff) return -satDiff; return 0; }); }; return Palette; }()); exports.Palette = Palette; /***/ }, /* 23 */ /***/ function(module, exports, __webpack_require__) { "use strict"; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * pointContainer.ts - part of Image Quantization Library */ var point_1 = __webpack_require__(24); /** * v8 optimizations done. * fromXXX methods are static to move out polymorphic code from class instance itself. */ var PointContainer = (function () { function PointContainer() { this._width = 0; this._height = 0; this._pointArray = []; } PointContainer.prototype.getWidth = function () { return this._width; }; PointContainer.prototype.getHeight = function () { return this._height; }; PointContainer.prototype.setWidth = function (width) { this._width = width; }; PointContainer.prototype.setHeight = function (height) { this._height = height; }; PointContainer.prototype.getPointArray = function () { return this._pointArray; }; PointContainer.prototype.clone = function () { var clone = new PointContainer(); clone._width = this._width; clone._height = this._height; for (var i = 0, l = this._pointArray.length; i < l; i++) { clone._pointArray[i] = point_1.Point.createByUint32(this._pointArray[i].uint32 | 0); // "| 0" is added for v8 optimization } return clone; }; PointContainer.prototype.toUint32Array = function () { var l = this._pointArray.length, uint32Array = new Uint32Array(l); for (var i = 0; i < l; i++) { uint32Array[i] = this._pointArray[i].uint32; } return uint32Array; }; PointContainer.prototype.toUint8Array = function () { return new Uint8Array(this.toUint32Array().buffer); }; PointContainer.fromHTMLImageElement = function (img) { var width = img.naturalWidth, height = img.naturalHeight; var canvas = document.createElement("canvas"); canvas.width = width; canvas.height = height; var ctx = canvas.getContext("2d"); ctx.drawImage(img, 0, 0, width, height, 0, 0, width, height); return PointContainer.fromHTMLCanvasElement(canvas); }; PointContainer.fromHTMLCanvasElement = function (canvas) { var width = canvas.width, height = canvas.height; var ctx = canvas.getContext("2d"), imgData = ctx.getImageData(0, 0, width, height); return PointContainer.fromImageData(imgData); }; PointContainer.fromNodeCanvas = function (canvas) { return PointContainer.fromHTMLCanvasElement(canvas); }; PointContainer.fromImageData = function (imageData) { var width = imageData.width, height = imageData.height; return PointContainer.fromCanvasPixelArray(imageData.data, width, height); /* var buf8; if (Utils.typeOf(imageData.data) == "CanvasPixelArray") buf8 = new Uint8Array(imageData.data); else buf8 = imageData.data; this.fromUint32Array(new Uint32Array(buf8.buffer), width, height); */ }; PointContainer.fromArray = function (byteArray, width, height) { var uint8array = new Uint8Array(byteArray); return PointContainer.fromUint8Array(uint8array, width, height); }; PointContainer.fromCanvasPixelArray = function (data, width, height) { return PointContainer.fromArray(data, width, height); }; PointContainer.fromUint8Array = function (uint8array, width, height) { return PointContainer.fromUint32Array(new Uint32Array(uint8array.buffer), width, height); }; PointContainer.fromUint32Array = function (uint32array, width, height) { var container = new PointContainer(); container._width = width; container._height = height; for (var i = 0, l = uint32array.length; i < l; i++) { container._pointArray[i] = point_1.Point.createByUint32(uint32array[i] | 0); // "| 0" is added for v8 optimization } return container; }; return PointContainer; }()); exports.PointContainer = PointContainer; /***/ }, /* 24 */ /***/ function(module, exports, __webpack_require__) { "use strict"; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * point.ts - part of Image Quantization Library */ var bt709_1 = __webpack_require__(2); /** * v8 optimized class * 1) "constructor" should have initialization with worst types * 2) "set" should have |0 / >>> 0 */ var Point = (function () { function Point() { this.uint32 = -1 >>> 0; this.r = this.g = this.b = this.a = 0; this.rgba = new Array(4); /*[ this.r , this.g , this.b , this.a ]*/ this.rgba[0] = 0; this.rgba[1] = 0; this.rgba[2] = 0; this.rgba[3] = 0; /* this.Lab = { L : 0.0, a : 0.0, b : 0.0 }; */ } Point.createByQuadruplet = function (quadruplet) { var point = new Point(); point.r = quadruplet[0] | 0; point.g = quadruplet[1] | 0; point.b = quadruplet[2] | 0; point.a = quadruplet[3] | 0; point._loadUINT32(); point._loadQuadruplet(); //point._loadLab(); return point; }; Point.createByRGBA = function (red, green, blue, alpha) { var point = new Point(); point.r = red | 0; point.g = green | 0; point.b = blue | 0; point.a = alpha | 0; point._loadUINT32(); point._loadQuadruplet(); //point._loadLab(); return point; }; Point.createByUint32 = function (uint32) { var point = new Point(); point.uint32 = uint32 >>> 0; point._loadRGBA(); point._loadQuadruplet(); //point._loadLab(); return point; }; Point.prototype.from = function (point) { this.r = point.r; this.g = point.g; this.b = point.b; this.a = point.a; this.uint32 = point.uint32; this.rgba[0] = point.r; this.rgba[1] = point.g; this.rgba[2] = point.b; this.rgba[3] = point.a; /* this.Lab.L = point.Lab.L; this.Lab.a = point.Lab.a; this.Lab.b = point.Lab.b; */ }; /* * TODO: Luminance from RGB: Luminance (standard for certain colour spaces): (0.2126*R + 0.7152*G + 0.0722*B) [1] Luminance (perceived option 1): (0.299*R + 0.587*G + 0.114*B) [2] Luminance (perceived option 2, slower to calculate): sqrt( 0.241*R^2 + 0.691*G^2 + 0.068*B^2 ) ? sqrt( 0.299*R^2 + 0.587*G^2 + 0.114*B^2 ) (thanks to @MatthewHerbst) [http://alienryderflex.com/hsp.html] */ Point.prototype.getLuminosity = function (useAlphaChannel) { var r = this.r, g = this.g, b = this.b; if (useAlphaChannel) { r = Math.min(255, 255 - this.a + this.a * r / 255); g = Math.min(255, 255 - this.a + this.a * g / 255); b = Math.min(255, 255 - this.a + this.a * b / 255); } //var luma = this.r * Point._RED_COEFFICIENT + this.g * Point._GREEN_COEFFICIENT + this.b * Point._BLUE_COEFFICIENT; /* if(useAlphaChannel) { luma = (luma * (255 - this.a)) / 255; } */ return r * bt709_1.Y.RED + g * bt709_1.Y.GREEN + b * bt709_1.Y.BLUE; }; Point.prototype._loadUINT32 = function () { this.uint32 = (this.a << 24 | this.b << 16 | this.g << 8 | this.r) >>> 0; }; Point.prototype._loadRGBA = function () { this.r = this.uint32 & 0xff; this.g = (this.uint32 >>> 8) & 0xff; this.b = (this.uint32 >>> 16) & 0xff; this.a = (this.uint32 >>> 24) & 0xff; }; Point.prototype._loadQuadruplet = function () { this.rgba[0] = this.r; this.rgba[1] = this.g; this.rgba[2] = this.b; this.rgba[3] = this.a; /* var xyz = rgb2xyz(this.r, this.g, this.b); var lab = xyz2lab(xyz.x, xyz.y, xyz.z); this.lab.l = lab.l; this.lab.a = lab.a; this.lab.b = lab.b; */ }; return Point; }()); exports.Point = Point; /***/ }, /* 25 */ /***/ function(module, exports, __webpack_require__) { "use strict"; /* * NeuQuantFloat Neural-Net Quantization Algorithm * ------------------------------------------ * * Copyright (c) 1994 Anthony Dekker * * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. See * "Kohonen neural networks for optimal colour quantization" in "Network: * Computation in Neural Systems" Vol. 5 (1994) pp 351-367. for a discussion of * the algorithm. * * Any party obtaining a copy of these files from the author, directly or * indirectly, is granted, free of charge, a full and unrestricted irrevocable, * world-wide, paid up, royalty-free, nonexclusive right and license to deal in * this software and documentation files (the "Software"), including without * limitation the rights to use, copy, modify, merge, publish, distribute, * sublicense, and/or sell copies of the Software, and to permit persons who * receive copies from any such party to do so, with the only requirement being * that this copyright notice remain intact. */ /** * @preserve TypeScript port: * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * neuquant.ts - part of Image Quantization Library */ var palette_1 = __webpack_require__(22); var point_1 = __webpack_require__(24); // bias for colour values var networkBiasShift = 3; var NeuronFloat = (function () { function NeuronFloat(defaultValue) { this.r = this.g = this.b = this.a = defaultValue; } /** * There is a fix in original NEUQUANT by Anthony Dekker (http://members.ozemail.com.au/~dekker/NEUQUANT.HTML) * @example * r = Math.min(255, (neuron.r + (1 << (networkBiasShift - 1))) >> networkBiasShift); */ NeuronFloat.prototype.toPoint = function () { return point_1.Point.createByRGBA(this.r >> networkBiasShift, this.g >> networkBiasShift, this.b >> networkBiasShift, this.a >> networkBiasShift); }; NeuronFloat.prototype.subtract = function (r, g, b, a) { this.r -= r; this.g -= g; this.b -= b; this.a -= a; }; return NeuronFloat; }()); var NeuQuantFloat = (function () { function NeuQuantFloat(colorDistanceCalculator, colors) { if (colors === void 0) { colors = 256; } this._distance = colorDistanceCalculator; this._pointArray = []; this._sampleFactor = 1; this._networkSize = colors; this._distance.setWhitePoint(255 << networkBiasShift, 255 << networkBiasShift, 255 << networkBiasShift, 255 << networkBiasShift); } NeuQuantFloat.prototype.sample = function (pointBuffer) { this._pointArray = this._pointArray.concat(pointBuffer.getPointArray()); }; NeuQuantFloat.prototype.quantize = function () { this._init(); this._learn(); return this._buildPalette(); }; NeuQuantFloat.prototype._init = function () { this._freq = []; this._bias = []; this._radPower = []; this._network = []; for (var i = 0; i < this._networkSize; i++) { this._network[i] = new NeuronFloat((i << (networkBiasShift + 8)) / this._networkSize); // 1/this._networkSize this._freq[i] = NeuQuantFloat._initialBias / this._networkSize; this._bias[i] = 0; } }; /** * Main Learning Loop */ NeuQuantFloat.prototype._learn = function () { var sampleFactor = this._sampleFactor; var pointsNumber = this._pointArray.length; if (pointsNumber < NeuQuantFloat._minpicturebytes) sampleFactor = 1; var alphadec = 30 + (sampleFactor - 1) / 3, pointsToSample = pointsNumber / sampleFactor; var delta = pointsToSample / NeuQuantFloat._nCycles | 0, alpha = NeuQuantFloat._initAlpha, radius = (this._networkSize >> 3) * NeuQuantFloat._radiusBias; var rad = radius >> NeuQuantFloat._radiusBiasShift; if (rad <= 1) rad = 0; for (var i = 0; i < rad; i++) { this._radPower[i] = alpha * (((rad * rad - i * i) * NeuQuantFloat._radBias) / (rad * rad)); } var step; if (pointsNumber < NeuQuantFloat._minpicturebytes) { step = 1; } else if (pointsNumber % NeuQuantFloat._prime1 != 0) { step = NeuQuantFloat._prime1; } else if ((pointsNumber % NeuQuantFloat._prime2) != 0) { step = NeuQuantFloat._prime2; } else if ((pointsNumber % NeuQuantFloat._prime3) != 0) { step = NeuQuantFloat._prime3; } else { step = NeuQuantFloat._prime4; } for (var i = 0, pointIndex = 0; i < pointsToSample;) { var point = this._pointArray[pointIndex], b = point.b << networkBiasShift, g = point.g << networkBiasShift, r = point.r << networkBiasShift, a = point.a << networkBiasShift, neuronIndex = this._contest(b, g, r, a); this._alterSingle(alpha, neuronIndex, b, g, r, a); if (rad != 0) this._alterNeighbour(rad, neuronIndex, b, g, r, a); /* alter neighbours */ pointIndex += step; if (pointIndex >= pointsNumber) pointIndex -= pointsNumber; i++; if (delta == 0) delta = 1; if (i % delta == 0) { alpha -= (alpha / alphadec); radius -= (radius / NeuQuantFloat._radiusDecrease); rad = radius >> NeuQuantFloat._radiusBiasShift; if (rad <= 1) rad = 0; for (var j = 0; j < rad; j++) this._radPower[j] = alpha * (((rad * rad - j * j) * NeuQuantFloat._radBias) / (rad * rad)); } } }; NeuQuantFloat.prototype._buildPalette = function () { var palette = new palette_1.Palette(); this._network.forEach(function (neuron) { palette.add(neuron.toPoint()); }); palette.sort(); return palette; }; /** * Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|] */ NeuQuantFloat.prototype._alterNeighbour = function (rad, i, b, g, r, al) { var lo = i - rad; if (lo < -1) lo = -1; var hi = i + rad; if (hi > this._networkSize) hi = this._networkSize; var j = i + 1, k = i - 1, m = 1; while (j < hi || k > lo) { var a = this._radPower[m++] / NeuQuantFloat._alphaRadBias; if (j < hi) { var p = this._network[j++]; p.subtract(a * (p.r - r), a * (p.g - g), a * (p.b - b), a * (p.a - al)); } if (k > lo) { var p = this._network[k--]; p.subtract(a * (p.r - r), a * (p.g - g), a * (p.b - b), a * (p.a - al)); } } }; /** * Move neuron i towards biased (b,g,r) by factor alpha */ NeuQuantFloat.prototype._alterSingle = function (alpha, i, b, g, r, a) { alpha /= NeuQuantFloat._initAlpha; /* alter hit neuron */ var n = this._network[i]; n.subtract(alpha * (n.r - r), alpha * (n.g - g), alpha * (n.b - b), alpha * (n.a - a)); }; /** * Search for biased BGR values * description: * finds closest neuron (min dist) and updates freq * finds best neuron (min dist-bias) and returns position * for frequently chosen neurons, freq[i] is high and bias[i] is negative * bias[i] = _gamma*((1/this._networkSize)-freq[i]) * * Original distance equation: * dist = abs(dR) + abs(dG) + abs(dB) */ NeuQuantFloat.prototype._contest = function (b, g, r, al) { var multiplier = (255 * 4) << networkBiasShift; var bestd = ~(1 << 31), bestbiasd = bestd, bestpos = -1, bestbiaspos = bestpos; for (var i = 0; i < this._networkSize; i++) { var n = this._network[i], dist = this._distance.calculateNormalized(n, { r: r, g: g, b: b, a: al }) * multiplier; if (dist < bestd) { bestd = dist; bestpos = i; } var biasdist = dist - ((this._bias[i]) >> (NeuQuantFloat._initialBiasShift - networkBiasShift)); if (biasdist < bestbiasd) { bestbiasd = biasdist; bestbiaspos = i; } var betafreq = (this._freq[i] >> NeuQuantFloat._betaShift); this._freq[i] -= betafreq; this._bias[i] += (betafreq << NeuQuantFloat._gammaShift); } this._freq[bestpos] += NeuQuantFloat._beta; this._bias[bestpos] -= NeuQuantFloat._betaGamma; return bestbiaspos; }; /* four primes near 500 - assume no image has a length so large that it is divisible by all four primes */ NeuQuantFloat._prime1 = 499; NeuQuantFloat._prime2 = 491; NeuQuantFloat._prime3 = 487; NeuQuantFloat._prime4 = 503; NeuQuantFloat._minpicturebytes = NeuQuantFloat._prime4; // no. of learning cycles NeuQuantFloat._nCycles = 100; // defs for freq and bias NeuQuantFloat._initialBiasShift = 16; // bias for fractions NeuQuantFloat._initialBias = (1 << NeuQuantFloat._initialBiasShift); NeuQuantFloat._gammaShift = 10; // gamma = 1024 // TODO: why gamma is never used? //private static _gamma : number = (1 << NeuQuantFloat._gammaShift); NeuQuantFloat._betaShift = 10; NeuQuantFloat._beta = (NeuQuantFloat._initialBias >> NeuQuantFloat._betaShift); // beta = 1/1024 NeuQuantFloat._betaGamma = (NeuQuantFloat._initialBias << (NeuQuantFloat._gammaShift - NeuQuantFloat._betaShift)); /* * for 256 cols, radius starts */ NeuQuantFloat._radiusBiasShift = 6; // at 32.0 biased by 6 bits NeuQuantFloat._radiusBias = 1 << NeuQuantFloat._radiusBiasShift; // and decreases by a factor of 1/30 each cycle NeuQuantFloat._radiusDecrease = 30; /* defs for decreasing alpha factor */ // alpha starts at 1.0 NeuQuantFloat._alphaBiasShift = 10; // biased by 10 bits NeuQuantFloat._initAlpha = (1 << NeuQuantFloat._alphaBiasShift); /* radBias and alphaRadBias used for radpower calculation */ NeuQuantFloat._radBiasShift = 8; NeuQuantFloat._radBias = 1 << NeuQuantFloat._radBiasShift; NeuQuantFloat._alphaRadBiasShift = NeuQuantFloat._alphaBiasShift + NeuQuantFloat._radBiasShift; NeuQuantFloat._alphaRadBias = 1 << NeuQuantFloat._alphaRadBiasShift; return NeuQuantFloat; }()); exports.NeuQuantFloat = NeuQuantFloat; /***/ }, /* 26 */ /***/ function(module, exports, __webpack_require__) { /* * Copyright (c) 2015, Leon Sorokin * All rights reserved. (MIT Licensed) * * RgbQuant.js - an image quantization lib */ "use strict"; /** * @preserve TypeScript port: * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * rgbquant.ts - part of Image Quantization Library */ var palette_1 = __webpack_require__(22); var point_1 = __webpack_require__(24); var colorHistogram_1 = __webpack_require__(27); var arithmetic_1 = __webpack_require__(6); var RemovedColor = (function () { function RemovedColor(index, color, distance) { this.index = index; this.color = color; this.distance = distance; } return RemovedColor; }()); // TODO: make input/output image and input/output palettes with instances of class Point only! var RGBQuant = (function () { function RGBQuant(colorDistanceCalculator, colors, method) { if (colors === void 0) { colors = 256; } if (method === void 0) { method = 2; } this._distance = colorDistanceCalculator; // desired final palette size this._colors = colors; // histogram to accumulate this._histogram = new colorHistogram_1.ColorHistogram(method, colors); this._initialDistance = 0.01; this._distanceIncrement = 0.005; } // gathers histogram info RGBQuant.prototype.sample = function (image) { /* var pointArray = image.getPointArray(), max = [0, 0, 0, 0], min = [255, 255, 255, 255]; for (var i = 0, l = pointArray.length; i < l; i++) { var color = pointArray[i]; for (var componentIndex = 0; componentIndex < 4; componentIndex++) { if (max[componentIndex] < color.rgba[componentIndex]) max[componentIndex] = color.rgba[componentIndex]; if (min[componentIndex] > color.rgba[componentIndex]) min[componentIndex] = color.rgba[componentIndex]; } } var rd = max[0] - min[0], gd = max[1] - min[1], bd = max[2] - min[2], ad = max[3] - min[3]; this._distance.setWhitePoint(rd, gd, bd, ad); this._initialDistance = (Math.sqrt(rd * rd + gd * gd + bd * bd + ad * ad) / Math.sqrt(255 * 255 + 255 * 255 + 255 * 255)) * 0.01; */ this._histogram.sample(image); }; // reduces histogram to palette, remaps & memoizes reduced colors RGBQuant.prototype.quantize = function () { var idxi32 = this._histogram.getImportanceSortedColorsIDXI32(); if (idxi32.length === 0) { throw new Error("No colors in image"); } var palette = this._buildPalette(idxi32); palette.sort(); return palette; }; // reduces similar colors from an importance-sorted Uint32 rgba array RGBQuant.prototype._buildPalette = function (idxi32) { // reduce histogram to create initial palette // build full rgb palette var palette = new palette_1.Palette(), colorArray = palette.getPointContainer().getPointArray(), usageArray = new Array(idxi32.length); for (var i = 0; i < idxi32.length; i++) { colorArray.push(point_1.Point.createByUint32(idxi32[i])); usageArray[i] = 1; } var len = colorArray.length, memDist = []; var palLen = len, thold = this._initialDistance; // palette already at or below desired length while (palLen > this._colors) { memDist.length = 0; // iterate palette for (var i = 0; i < len; i++) { if (usageArray[i] === 0) continue; var pxi = colorArray[i]; //if (!pxi) continue; for (var j = i + 1; j < len; j++) { if (usageArray[j] === 0) continue; var pxj = colorArray[j]; //if (!pxj) continue; var dist = this._distance.calculateNormalized(pxi, pxj); if (dist < thold) { // store index,rgb,dist memDist.push(new RemovedColor(j, pxj, dist)); usageArray[j] = 0; palLen--; } } } // palette reduction pass // console.log("palette length: " + palLen); // if palette is still much larger than target, increment by larger initDist thold += (palLen > this._colors * 3) ? this._initialDistance : this._distanceIncrement; } // if palette is over-reduced, re-add removed colors with largest distances from last round if (palLen < this._colors) { // sort descending arithmetic_1.stableSort(memDist, function (a, b) { return b.distance - a.distance; }); var k = 0; while (palLen < this._colors && k < memDist.length) { var removedColor = memDist[k]; // re-inject rgb into final palette usageArray[removedColor.index] = 1; palLen++; k++; } } var colors = colorArray.length; for (var colorIndex = colors - 1; colorIndex >= 0; colorIndex--) { if (usageArray[colorIndex] === 0) { if (colorIndex !== colors - 1) { colorArray[colorIndex] = colorArray[colors - 1]; } --colors; } } colorArray.length = colors; return palette; }; return RGBQuant; }()); exports.RGBQuant = RGBQuant; /***/ }, /* 27 */ /***/ function(module, exports, __webpack_require__) { /* * Copyright (c) 2015, Leon Sorokin * All rights reserved. (MIT Licensed) * * ColorHistogram.js - an image quantization lib */ "use strict"; /** * @preserve TypeScript port: * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * colorHistogram.ts - part of Image Quantization Library */ var hueStatistics_1 = __webpack_require__(28); var arithmetic_1 = __webpack_require__(6); var ColorHistogram = (function () { function ColorHistogram(method, colors) { // 1 = by global population, 2 = subregion population threshold this._method = method; // if > 0, enables hues stats and min-color retention per group this._minHueCols = colors << 2; //opts.minHueCols || 0; // # of highest-frequency colors to start with for palette reduction this._initColors = colors << 2; // HueStatistics instance this._hueStats = new hueStatistics_1.HueStatistics(ColorHistogram._hueGroups, this._minHueCols); this._histogram = Object.create(null); } ColorHistogram.prototype.sample = function (pointBuffer) { switch (this._method) { case 1: this._colorStats1D(pointBuffer); break; case 2: this._colorStats2D(pointBuffer); break; } }; ColorHistogram.prototype.getImportanceSortedColorsIDXI32 = function () { var _this = this; // TODO: fix typing issue in stableSort func var sorted = arithmetic_1.stableSort(Object.keys(this._histogram), function (a, b) { return _this._histogram[b] - _this._histogram[a]; }); if (sorted.length === 0) { return []; } var idxi32; switch (this._method) { case 1: var initialColorsLimit = Math.min(sorted.length, this._initColors), last = sorted[initialColorsLimit - 1], freq = this._histogram[last]; idxi32 = sorted.slice(0, initialColorsLimit); // add any cut off colors with same freq as last var pos = initialColorsLimit, len = sorted.length; while (pos < len && this._histogram[sorted[pos]] == freq) idxi32.push(sorted[pos++]); // inject min huegroup colors this._hueStats.injectIntoArray(idxi32); break; case 2: idxi32 = sorted; break; default: // TODO: rethink errors throw new Error("Incorrect method"); } // int32-ify values return idxi32.map(function (v) { return +v; }); }; // global top-population ColorHistogram.prototype._colorStats1D = function (pointBuffer) { var histG = this._histogram, pointArray = pointBuffer.getPointArray(), len = pointArray.length; for (var i = 0; i < len; i++) { var col = pointArray[i].uint32; // collect hue stats this._hueStats.check(col); if (col in histG) histG[col]++; else histG[col] = 1; } }; // population threshold within subregions // FIXME: this can over-reduce (few/no colors same?), need a way to keep // important colors that dont ever reach local thresholds (gradients?) ColorHistogram.prototype._colorStats2D = function (pointBuffer) { var _this = this; var width = pointBuffer.getWidth(), height = pointBuffer.getHeight(), pointArray = pointBuffer.getPointArray(); var boxW = ColorHistogram._boxSize[0], boxH = ColorHistogram._boxSize[1], area = boxW * boxH, boxes = this._makeBoxes(width, height, boxW, boxH), histG = this._histogram; boxes.forEach(function (box) { var effc = Math.round((box.w * box.h) / area) * ColorHistogram._boxPixels; if (effc < 2) effc = 2; var histL = {}; _this._iterateBox(box, width, function (i) { var col = pointArray[i].uint32; // collect hue stats _this._hueStats.check(col); if (col in histG) histG[col]++; else if (col in histL) { if (++histL[col] >= effc) histG[col] = histL[col]; } else histL[col] = 1; }); }); // inject min huegroup colors this._hueStats.injectIntoDictionary(histG); }; // iterates @bbox within a parent rect of width @wid; calls @fn, passing index within parent ColorHistogram.prototype._iterateBox = function (bbox, wid, fn) { var b = bbox, i0 = b.y * wid + b.x, i1 = (b.y + b.h - 1) * wid + (b.x + b.w - 1), incr = wid - b.w + 1; var cnt = 0, i = i0; do { fn.call(this, i); i += (++cnt % b.w == 0) ? incr : 1; } while (i <= i1); }; /** * partitions a rectangle of width x height into * array of boxes stepX x stepY (or less) */ ColorHistogram.prototype._makeBoxes = function (width, height, stepX, stepY) { var wrem = width % stepX, hrem = height % stepY, xend = width - wrem, yend = height - hrem, boxesArray = []; for (var y = 0; y < height; y += stepY) for (var x = 0; x < width; x += stepX) boxesArray.push({ x: x, y: y, w: (x == xend ? wrem : stepX), h: (y == yend ? hrem : stepY) }); return boxesArray; }; ColorHistogram._boxSize = [64, 64]; ColorHistogram._boxPixels = 2; ColorHistogram._hueGroups = 10; return ColorHistogram; }()); exports.ColorHistogram = ColorHistogram; /***/ }, /* 28 */ /***/ function(module, exports, __webpack_require__) { "use strict"; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * hueStatistics.ts - part of Image Quantization Library */ var rgb2hsl_1 = __webpack_require__(5); var palette_1 = __webpack_require__(22); var HueGroup = (function () { function HueGroup() { this.num = 0; this.cols = []; } return HueGroup; }()); var HueStatistics = (function () { function HueStatistics(numGroups, minCols) { this._numGroups = numGroups; this._minCols = minCols; this._stats = []; for (var i = 0; i <= numGroups; i++) { this._stats[i] = new HueGroup(); } this._groupsFull = 0; } HueStatistics.prototype.check = function (i32) { if (this._groupsFull == this._numGroups + 1) { this.check = function () { }; } var r = (i32 & 0xff), g = (i32 >>> 8) & 0xff, b = (i32 >>> 16) & 0xff, hg = (r == g && g == b) ? 0 : 1 + palette_1.hueGroup(rgb2hsl_1.rgb2hsl(r, g, b).h, this._numGroups), gr = this._stats[hg], min = this._minCols; gr.num++; if (gr.num > min) return; if (gr.num == min) this._groupsFull++; if (gr.num <= min) this._stats[hg].cols.push(i32); }; HueStatistics.prototype.injectIntoDictionary = function (histG) { for (var i = 0; i <= this._numGroups; i++) { if (this._stats[i].num <= this._minCols) { this._stats[i].cols.forEach(function (col) { if (!histG[col]) histG[col] = 1; else histG[col]++; }); } } }; HueStatistics.prototype.injectIntoArray = function (histG) { for (var i = 0; i <= this._numGroups; i++) { if (this._stats[i].num <= this._minCols) { this._stats[i].cols.forEach(function (col) { if (histG.indexOf(col) == -1) histG.push(col); }); } } }; return HueStatistics; }()); exports.HueStatistics = HueStatistics; /***/ }, /* 29 */ /***/ function(module, exports, __webpack_require__) { "use strict"; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * wuQuant.ts - part of Image Quantization Library */ var palette_1 = __webpack_require__(22); var point_1 = __webpack_require__(24); function createArray1D(dimension1) { var a = []; for (var k = 0; k < dimension1; k++) { a[k] = 0; } return a; } function createArray4D(dimension1, dimension2, dimension3, dimension4) { var a = new Array(dimension1); for (var i = 0; i < dimension1; i++) { a[i] = new Array(dimension2); for (var j = 0; j < dimension2; j++) { a[i][j] = new Array(dimension3); for (var k = 0; k < dimension3; k++) { a[i][j][k] = new Array(dimension4); for (var l = 0; l < dimension4; l++) { a[i][j][k][l] = 0; } } } } return a; } function createArray3D(dimension1, dimension2, dimension3) { var a = new Array(dimension1); for (var i = 0; i < dimension1; i++) { a[i] = new Array(dimension2); for (var j = 0; j < dimension2; j++) { a[i][j] = new Array(dimension3); for (var k = 0; k < dimension3; k++) { a[i][j][k] = 0; } } } return a; } function fillArray3D(a, dimension1, dimension2, dimension3, value) { for (var i = 0; i < dimension1; i++) { a[i] = []; for (var j = 0; j < dimension2; j++) { a[i][j] = []; for (var k = 0; k < dimension3; k++) { a[i][j][k] = value; } } } } function fillArray1D(a, dimension1, value) { for (var i = 0; i < dimension1; i++) { a[i] = value; } } var WuColorCube = (function () { function WuColorCube() { } return WuColorCube; }()); exports.WuColorCube = WuColorCube; var WuQuant = (function () { function WuQuant(colorDistanceCalculator, colors, significantBitsPerChannel) { if (colors === void 0) { colors = 256; } if (significantBitsPerChannel === void 0) { significantBitsPerChannel = 5; } this._distance = colorDistanceCalculator; this._setQuality(significantBitsPerChannel); this._initialize(colors); } WuQuant.prototype.sample = function (image) { var pointArray = image.getPointArray(); for (var i = 0, l = pointArray.length; i < l; i++) { this._addColor(pointArray[i]); } this._pixels = this._pixels.concat(pointArray); }; WuQuant.prototype.quantize = function () { this._preparePalette(); var palette = new palette_1.Palette(); // generates palette for (var paletteIndex = 0; paletteIndex < this._colors; paletteIndex++) { if (this._sums[paletteIndex] > 0) { var sum = this._sums[paletteIndex], r = this._reds[paletteIndex] / sum, g = this._greens[paletteIndex] / sum, b = this._blues[paletteIndex] / sum, a = this._alphas[paletteIndex] / sum; var color = point_1.Point.createByRGBA(r | 0, g | 0, b | 0, a | 0); palette.add(color); } } palette.sort(); return palette; }; WuQuant.prototype._preparePalette = function () { // preprocess the colors this._calculateMoments(); var next = 0, volumeVariance = createArray1D(this._colors); // processes the cubes for (var cubeIndex = 1; cubeIndex < this._colors; ++cubeIndex) { // if cut is possible; make it if (this._cut(this._cubes[next], this._cubes[cubeIndex])) { volumeVariance[next] = this._cubes[next].volume > 1 ? this._calculateVariance(this._cubes[next]) : 0.0; volumeVariance[cubeIndex] = this._cubes[cubeIndex].volume > 1 ? this._calculateVariance(this._cubes[cubeIndex]) : 0.0; } else { // the cut was not possible, revert the index volumeVariance[next] = 0.0; cubeIndex--; } next = 0; var temp = volumeVariance[0]; for (var index = 1; index <= cubeIndex; ++index) { if (volumeVariance[index] > temp) { temp = volumeVariance[index]; next = index; } } if (temp <= 0.0) { this._colors = cubeIndex + 1; break; } } var lookupRed = [], lookupGreen = [], lookupBlue = [], lookupAlpha = []; // precalculates lookup tables for (var k = 0; k < this._colors; ++k) { var weight = WuQuant._volume(this._cubes[k], this._weights); if (weight > 0) { lookupRed[k] = (WuQuant._volume(this._cubes[k], this._momentsRed) / weight) | 0; lookupGreen[k] = (WuQuant._volume(this._cubes[k], this._momentsGreen) / weight) | 0; lookupBlue[k] = (WuQuant._volume(this._cubes[k], this._momentsBlue) / weight) | 0; lookupAlpha[k] = (WuQuant._volume(this._cubes[k], this._momentsAlpha) / weight) | 0; } else { lookupRed[k] = 0; lookupGreen[k] = 0; lookupBlue[k] = 0; lookupAlpha[k] = 0; } } this._reds = createArray1D(this._colors + 1); this._greens = createArray1D(this._colors + 1); this._blues = createArray1D(this._colors + 1); this._alphas = createArray1D(this._colors + 1); this._sums = createArray1D(this._colors + 1); // scans and adds colors for (var index = 0, l = this._pixels.length; index < l; index++) { var color = this._pixels[index]; var match = -1; var bestMatch = match, bestDistance = Number.MAX_VALUE; for (var lookup = 0; lookup < this._colors; lookup++) { var foundRed = lookupRed[lookup], foundGreen = lookupGreen[lookup], foundBlue = lookupBlue[lookup], foundAlpha = lookupAlpha[lookup]; var distance = this._distance.calculateRaw(foundRed, foundGreen, foundBlue, foundAlpha, color.r, color.g, color.b, color.a); //var distance = this._distance.calculateRaw(Utils.Point.createByRGBA(foundRed, foundGreen, foundBlue, foundAlpha), color); //deltaRed = color.r - foundRed, //deltaGreen = color.g - foundGreen, //deltaBlue = color.b - foundBlue, //deltaAlpha = color.a - foundAlpha, //distance = deltaRed * deltaRed + deltaGreen * deltaGreen + deltaBlue * deltaBlue + deltaAlpha * deltaAlpha; if (distance < bestDistance) { bestDistance = distance; bestMatch = lookup; } } this._reds[bestMatch] += color.r; this._greens[bestMatch] += color.g; this._blues[bestMatch] += color.b; this._alphas[bestMatch] += color.a; this._sums[bestMatch]++; } }; WuQuant.prototype._addColor = function (color) { var bitsToRemove = 8 - this._significantBitsPerChannel, indexRed = (color.r >> bitsToRemove) + 1, indexGreen = (color.g >> bitsToRemove) + 1, indexBlue = (color.b >> bitsToRemove) + 1, indexAlpha = (color.a >> bitsToRemove) + 1; //if(color.a > 10) { this._weights[indexAlpha][indexRed][indexGreen][indexBlue]++; this._momentsRed[indexAlpha][indexRed][indexGreen][indexBlue] += color.r; this._momentsGreen[indexAlpha][indexRed][indexGreen][indexBlue] += color.g; this._momentsBlue[indexAlpha][indexRed][indexGreen][indexBlue] += color.b; this._momentsAlpha[indexAlpha][indexRed][indexGreen][indexBlue] += color.a; this._moments[indexAlpha][indexRed][indexGreen][indexBlue] += this._table[color.r] + this._table[color.g] + this._table[color.b] + this._table[color.a]; // } }; /** * Converts the histogram to a series of _moments. */ WuQuant.prototype._calculateMoments = function () { var area = [], areaRed = [], areaGreen = [], areaBlue = [], areaAlpha = [], area2 = []; var xarea = createArray3D(this._sideSize, this._sideSize, this._sideSize), xareaRed = createArray3D(this._sideSize, this._sideSize, this._sideSize), xareaGreen = createArray3D(this._sideSize, this._sideSize, this._sideSize), xareaBlue = createArray3D(this._sideSize, this._sideSize, this._sideSize), xareaAlpha = createArray3D(this._sideSize, this._sideSize, this._sideSize), xarea2 = createArray3D(this._sideSize, this._sideSize, this._sideSize); for (var alphaIndex = 1; alphaIndex <= this._alphaMaxSideIndex; ++alphaIndex) { fillArray3D(xarea, this._sideSize, this._sideSize, this._sideSize, 0); fillArray3D(xareaRed, this._sideSize, this._sideSize, this._sideSize, 0); fillArray3D(xareaGreen, this._sideSize, this._sideSize, this._sideSize, 0); fillArray3D(xareaBlue, this._sideSize, this._sideSize, this._sideSize, 0); fillArray3D(xareaAlpha, this._sideSize, this._sideSize, this._sideSize, 0); fillArray3D(xarea2, this._sideSize, this._sideSize, this._sideSize, 0); for (var redIndex = 1; redIndex <= this._maxSideIndex; ++redIndex) { fillArray1D(area, this._sideSize, 0); fillArray1D(areaRed, this._sideSize, 0); fillArray1D(areaGreen, this._sideSize, 0); fillArray1D(areaBlue, this._sideSize, 0); fillArray1D(areaAlpha, this._sideSize, 0); fillArray1D(area2, this._sideSize, 0); for (var greenIndex = 1; greenIndex <= this._maxSideIndex; ++greenIndex) { var line = 0, lineRed = 0, lineGreen = 0, lineBlue = 0, lineAlpha = 0, line2 = 0.0; for (var blueIndex = 1; blueIndex <= this._maxSideIndex; ++blueIndex) { line += this._weights[alphaIndex][redIndex][greenIndex][blueIndex]; lineRed += this._momentsRed[alphaIndex][redIndex][greenIndex][blueIndex]; lineGreen += this._momentsGreen[alphaIndex][redIndex][greenIndex][blueIndex]; lineBlue += this._momentsBlue[alphaIndex][redIndex][greenIndex][blueIndex]; lineAlpha += this._momentsAlpha[alphaIndex][redIndex][greenIndex][blueIndex]; line2 += this._moments[alphaIndex][redIndex][greenIndex][blueIndex]; area[blueIndex] += line; areaRed[blueIndex] += lineRed; areaGreen[blueIndex] += lineGreen; areaBlue[blueIndex] += lineBlue; areaAlpha[blueIndex] += lineAlpha; area2[blueIndex] += line2; xarea[redIndex][greenIndex][blueIndex] = xarea[redIndex - 1][greenIndex][blueIndex] + area[blueIndex]; xareaRed[redIndex][greenIndex][blueIndex] = xareaRed[redIndex - 1][greenIndex][blueIndex] + areaRed[blueIndex]; xareaGreen[redIndex][greenIndex][blueIndex] = xareaGreen[redIndex - 1][greenIndex][blueIndex] + areaGreen[blueIndex]; xareaBlue[redIndex][greenIndex][blueIndex] = xareaBlue[redIndex - 1][greenIndex][blueIndex] + areaBlue[blueIndex]; xareaAlpha[redIndex][greenIndex][blueIndex] = xareaAlpha[redIndex - 1][greenIndex][blueIndex] + areaAlpha[blueIndex]; xarea2[redIndex][greenIndex][blueIndex] = xarea2[redIndex - 1][greenIndex][blueIndex] + area2[blueIndex]; this._weights[alphaIndex][redIndex][greenIndex][blueIndex] = this._weights[alphaIndex - 1][redIndex][greenIndex][blueIndex] + xarea[redIndex][greenIndex][blueIndex]; this._momentsRed[alphaIndex][redIndex][greenIndex][blueIndex] = this._momentsRed[alphaIndex - 1][redIndex][greenIndex][blueIndex] + xareaRed[redIndex][greenIndex][blueIndex]; this._momentsGreen[alphaIndex][redIndex][greenIndex][blueIndex] = this._momentsGreen[alphaIndex - 1][redIndex][greenIndex][blueIndex] + xareaGreen[redIndex][greenIndex][blueIndex]; this._momentsBlue[alphaIndex][redIndex][greenIndex][blueIndex] = this._momentsBlue[alphaIndex - 1][redIndex][greenIndex][blueIndex] + xareaBlue[redIndex][greenIndex][blueIndex]; this._momentsAlpha[alphaIndex][redIndex][greenIndex][blueIndex] = this._momentsAlpha[alphaIndex - 1][redIndex][greenIndex][blueIndex] + xareaAlpha[redIndex][greenIndex][blueIndex]; this._moments[alphaIndex][redIndex][greenIndex][blueIndex] = this._moments[alphaIndex - 1][redIndex][greenIndex][blueIndex] + xarea2[redIndex][greenIndex][blueIndex]; } } } } }; /** * Computes the volume of the cube in a specific moment. */ WuQuant._volumeFloat = function (cube, moment) { return (moment[cube.alphaMaximum][cube.redMaximum][cube.greenMaximum][cube.blueMaximum] - moment[cube.alphaMaximum][cube.redMaximum][cube.greenMinimum][cube.blueMaximum] - moment[cube.alphaMaximum][cube.redMinimum][cube.greenMaximum][cube.blueMaximum] + moment[cube.alphaMaximum][cube.redMinimum][cube.greenMinimum][cube.blueMaximum] - moment[cube.alphaMinimum][cube.redMaximum][cube.greenMaximum][cube.blueMaximum] + moment[cube.alphaMinimum][cube.redMaximum][cube.greenMinimum][cube.blueMaximum] + moment[cube.alphaMinimum][cube.redMinimum][cube.greenMaximum][cube.blueMaximum] - moment[cube.alphaMinimum][cube.redMinimum][cube.greenMinimum][cube.blueMaximum]) - (moment[cube.alphaMaximum][cube.redMaximum][cube.greenMaximum][cube.blueMinimum] - moment[cube.alphaMinimum][cube.redMaximum][cube.greenMaximum][cube.blueMinimum] - moment[cube.alphaMaximum][cube.redMaximum][cube.greenMinimum][cube.blueMinimum] + moment[cube.alphaMinimum][cube.redMaximum][cube.greenMinimum][cube.blueMinimum] - moment[cube.alphaMaximum][cube.redMinimum][cube.greenMaximum][cube.blueMinimum] + moment[cube.alphaMinimum][cube.redMinimum][cube.greenMaximum][cube.blueMinimum] + moment[cube.alphaMaximum][cube.redMinimum][cube.greenMinimum][cube.blueMinimum] - moment[cube.alphaMinimum][cube.redMinimum][cube.greenMinimum][cube.blueMinimum]); }; /** * Computes the volume of the cube in a specific moment. */ WuQuant._volume = function (cube, moment) { return WuQuant._volumeFloat(cube, moment) | 0; }; /** * Splits the cube in given position][and color direction. */ WuQuant._top = function (cube, direction, position, moment) { var result; switch (direction) { case WuQuant.alpha: result = (moment[position][cube.redMaximum][cube.greenMaximum][cube.blueMaximum] - moment[position][cube.redMaximum][cube.greenMinimum][cube.blueMaximum] - moment[position][cube.redMinimum][cube.greenMaximum][cube.blueMaximum] + moment[position][cube.redMinimum][cube.greenMinimum][cube.blueMaximum]) - (moment[position][cube.redMaximum][cube.greenMaximum][cube.blueMinimum] - moment[position][cube.redMaximum][cube.greenMinimum][cube.blueMinimum] - moment[position][cube.redMinimum][cube.greenMaximum][cube.blueMinimum] + moment[position][cube.redMinimum][cube.greenMinimum][cube.blueMinimum]); break; case WuQuant.red: result = (moment[cube.alphaMaximum][position][cube.greenMaximum][cube.blueMaximum] - moment[cube.alphaMaximum][position][cube.greenMinimum][cube.blueMaximum] - moment[cube.alphaMinimum][position][cube.greenMaximum][cube.blueMaximum] + moment[cube.alphaMinimum][position][cube.greenMinimum][cube.blueMaximum]) - (moment[cube.alphaMaximum][position][cube.greenMaximum][cube.blueMinimum] - moment[cube.alphaMaximum][position][cube.greenMinimum][cube.blueMinimum] - moment[cube.alphaMinimum][position][cube.greenMaximum][cube.blueMinimum] + moment[cube.alphaMinimum][position][cube.greenMinimum][cube.blueMinimum]); break; case WuQuant.green: result = (moment[cube.alphaMaximum][cube.redMaximum][position][cube.blueMaximum] - moment[cube.alphaMaximum][cube.redMinimum][position][cube.blueMaximum] - moment[cube.alphaMinimum][cube.redMaximum][position][cube.blueMaximum] + moment[cube.alphaMinimum][cube.redMinimum][position][cube.blueMaximum]) - (moment[cube.alphaMaximum][cube.redMaximum][position][cube.blueMinimum] - moment[cube.alphaMaximum][cube.redMinimum][position][cube.blueMinimum] - moment[cube.alphaMinimum][cube.redMaximum][position][cube.blueMinimum] + moment[cube.alphaMinimum][cube.redMinimum][position][cube.blueMinimum]); break; case WuQuant.blue: result = (moment[cube.alphaMaximum][cube.redMaximum][cube.greenMaximum][position] - moment[cube.alphaMaximum][cube.redMaximum][cube.greenMinimum][position] - moment[cube.alphaMaximum][cube.redMinimum][cube.greenMaximum][position] + moment[cube.alphaMaximum][cube.redMinimum][cube.greenMinimum][position]) - (moment[cube.alphaMinimum][cube.redMaximum][cube.greenMaximum][position] - moment[cube.alphaMinimum][cube.redMaximum][cube.greenMinimum][position] - moment[cube.alphaMinimum][cube.redMinimum][cube.greenMaximum][position] + moment[cube.alphaMinimum][cube.redMinimum][cube.greenMinimum][position]); break; default: throw new Error("impossible"); } return result | 0; }; /** * Splits the cube in a given color direction at its minimum. */ WuQuant._bottom = function (cube, direction, moment) { switch (direction) { case WuQuant.alpha: return (-moment[cube.alphaMinimum][cube.redMaximum][cube.greenMaximum][cube.blueMaximum] + moment[cube.alphaMinimum][cube.redMaximum][cube.greenMinimum][cube.blueMaximum] + moment[cube.alphaMinimum][cube.redMinimum][cube.greenMaximum][cube.blueMaximum] - moment[cube.alphaMinimum][cube.redMinimum][cube.greenMinimum][cube.blueMaximum]) - (-moment[cube.alphaMinimum][cube.redMaximum][cube.greenMaximum][cube.blueMinimum] + moment[cube.alphaMinimum][cube.redMaximum][cube.greenMinimum][cube.blueMinimum] + moment[cube.alphaMinimum][cube.redMinimum][cube.greenMaximum][cube.blueMinimum] - moment[cube.alphaMinimum][cube.redMinimum][cube.greenMinimum][cube.blueMinimum]); case WuQuant.red: return (-moment[cube.alphaMaximum][cube.redMinimum][cube.greenMaximum][cube.blueMaximum] + moment[cube.alphaMaximum][cube.redMinimum][cube.greenMinimum][cube.blueMaximum] + moment[cube.alphaMinimum][cube.redMinimum][cube.greenMaximum][cube.blueMaximum] - moment[cube.alphaMinimum][cube.redMinimum][cube.greenMinimum][cube.blueMaximum]) - (-moment[cube.alphaMaximum][cube.redMinimum][cube.greenMaximum][cube.blueMinimum] + moment[cube.alphaMaximum][cube.redMinimum][cube.greenMinimum][cube.blueMinimum] + moment[cube.alphaMinimum][cube.redMinimum][cube.greenMaximum][cube.blueMinimum] - moment[cube.alphaMinimum][cube.redMinimum][cube.greenMinimum][cube.blueMinimum]); case WuQuant.green: return (-moment[cube.alphaMaximum][cube.redMaximum][cube.greenMinimum][cube.blueMaximum] + moment[cube.alphaMaximum][cube.redMinimum][cube.greenMinimum][cube.blueMaximum] + moment[cube.alphaMinimum][cube.redMaximum][cube.greenMinimum][cube.blueMaximum] - moment[cube.alphaMinimum][cube.redMinimum][cube.greenMinimum][cube.blueMaximum]) - (-moment[cube.alphaMaximum][cube.redMaximum][cube.greenMinimum][cube.blueMinimum] + moment[cube.alphaMaximum][cube.redMinimum][cube.greenMinimum][cube.blueMinimum] + moment[cube.alphaMinimum][cube.redMaximum][cube.greenMinimum][cube.blueMinimum] - moment[cube.alphaMinimum][cube.redMinimum][cube.greenMinimum][cube.blueMinimum]); case WuQuant.blue: return (-moment[cube.alphaMaximum][cube.redMaximum][cube.greenMaximum][cube.blueMinimum] + moment[cube.alphaMaximum][cube.redMaximum][cube.greenMinimum][cube.blueMinimum] + moment[cube.alphaMaximum][cube.redMinimum][cube.greenMaximum][cube.blueMinimum] - moment[cube.alphaMaximum][cube.redMinimum][cube.greenMinimum][cube.blueMinimum]) - (-moment[cube.alphaMinimum][cube.redMaximum][cube.greenMaximum][cube.blueMinimum] + moment[cube.alphaMinimum][cube.redMaximum][cube.greenMinimum][cube.blueMinimum] + moment[cube.alphaMinimum][cube.redMinimum][cube.greenMaximum][cube.blueMinimum] - moment[cube.alphaMinimum][cube.redMinimum][cube.greenMinimum][cube.blueMinimum]); default: // TODO: why here is return 0, and in this._top there is no default at all (now it is throw error)? return 0; } }; /** * Calculates statistical variance for a given cube. */ WuQuant.prototype._calculateVariance = function (cube) { var volumeRed = WuQuant._volume(cube, this._momentsRed), volumeGreen = WuQuant._volume(cube, this._momentsGreen), volumeBlue = WuQuant._volume(cube, this._momentsBlue), volumeAlpha = WuQuant._volume(cube, this._momentsAlpha), volumeMoment = WuQuant._volumeFloat(cube, this._moments), volumeWeight = WuQuant._volume(cube, this._weights), distance = volumeRed * volumeRed + volumeGreen * volumeGreen + volumeBlue * volumeBlue + volumeAlpha * volumeAlpha; return volumeMoment - (distance / volumeWeight); }; /** * Finds the optimal (maximal) position for the cut. */ WuQuant.prototype._maximize = function (cube, direction, first, last, wholeRed, wholeGreen, wholeBlue, wholeAlpha, wholeWeight) { var bottomRed = WuQuant._bottom(cube, direction, this._momentsRed) | 0, bottomGreen = WuQuant._bottom(cube, direction, this._momentsGreen) | 0, bottomBlue = WuQuant._bottom(cube, direction, this._momentsBlue) | 0, bottomAlpha = WuQuant._bottom(cube, direction, this._momentsAlpha) | 0, bottomWeight = WuQuant._bottom(cube, direction, this._weights) | 0; var result = 0.0, cutPosition = -1; for (var position = first; position < last; ++position) { // determines the cube cut at a certain position var halfRed = bottomRed + WuQuant._top(cube, direction, position, this._momentsRed), halfGreen = bottomGreen + WuQuant._top(cube, direction, position, this._momentsGreen), halfBlue = bottomBlue + WuQuant._top(cube, direction, position, this._momentsBlue), halfAlpha = bottomAlpha + WuQuant._top(cube, direction, position, this._momentsAlpha), halfWeight = bottomWeight + WuQuant._top(cube, direction, position, this._weights); // the cube cannot be cut at bottom (this would lead to empty cube) if (halfWeight != 0) { var halfDistance = halfRed * halfRed + halfGreen * halfGreen + halfBlue * halfBlue + halfAlpha * halfAlpha, temp = halfDistance / halfWeight; halfRed = wholeRed - halfRed; halfGreen = wholeGreen - halfGreen; halfBlue = wholeBlue - halfBlue; halfAlpha = wholeAlpha - halfAlpha; halfWeight = wholeWeight - halfWeight; if (halfWeight != 0) { halfDistance = halfRed * halfRed + halfGreen * halfGreen + halfBlue * halfBlue + halfAlpha * halfAlpha; temp += halfDistance / halfWeight; if (temp > result) { result = temp; cutPosition = position; } } } } return { max: result, position: cutPosition }; }; // Cuts a cube with another one. WuQuant.prototype._cut = function (first, second) { var direction; var wholeRed = WuQuant._volume(first, this._momentsRed), wholeGreen = WuQuant._volume(first, this._momentsGreen), wholeBlue = WuQuant._volume(first, this._momentsBlue), wholeAlpha = WuQuant._volume(first, this._momentsAlpha), wholeWeight = WuQuant._volume(first, this._weights), red = this._maximize(first, WuQuant.red, first.redMinimum + 1, first.redMaximum, wholeRed, wholeGreen, wholeBlue, wholeAlpha, wholeWeight), green = this._maximize(first, WuQuant.green, first.greenMinimum + 1, first.greenMaximum, wholeRed, wholeGreen, wholeBlue, wholeAlpha, wholeWeight), blue = this._maximize(first, WuQuant.blue, first.blueMinimum + 1, first.blueMaximum, wholeRed, wholeGreen, wholeBlue, wholeAlpha, wholeWeight), alpha = this._maximize(first, WuQuant.alpha, first.alphaMinimum + 1, first.alphaMaximum, wholeRed, wholeGreen, wholeBlue, wholeAlpha, wholeWeight); if (alpha.max >= red.max && alpha.max >= green.max && alpha.max >= blue.max) { direction = WuQuant.alpha; // cannot split empty cube if (alpha.position < 0) return false; } else { if (red.max >= alpha.max && red.max >= green.max && red.max >= blue.max) { direction = WuQuant.red; } else if (green.max >= alpha.max && green.max >= red.max && green.max >= blue.max) { direction = WuQuant.green; } else { direction = WuQuant.blue; } } second.redMaximum = first.redMaximum; second.greenMaximum = first.greenMaximum; second.blueMaximum = first.blueMaximum; second.alphaMaximum = first.alphaMaximum; // cuts in a certain direction switch (direction) { case WuQuant.red: second.redMinimum = first.redMaximum = red.position; second.greenMinimum = first.greenMinimum; second.blueMinimum = first.blueMinimum; second.alphaMinimum = first.alphaMinimum; break; case WuQuant.green: second.greenMinimum = first.greenMaximum = green.position; second.redMinimum = first.redMinimum; second.blueMinimum = first.blueMinimum; second.alphaMinimum = first.alphaMinimum; break; case WuQuant.blue: second.blueMinimum = first.blueMaximum = blue.position; second.redMinimum = first.redMinimum; second.greenMinimum = first.greenMinimum; second.alphaMinimum = first.alphaMinimum; break; case WuQuant.alpha: second.alphaMinimum = first.alphaMaximum = alpha.position; second.blueMinimum = first.blueMinimum; second.redMinimum = first.redMinimum; second.greenMinimum = first.greenMinimum; break; } // determines the volumes after cut first.volume = (first.redMaximum - first.redMinimum) * (first.greenMaximum - first.greenMinimum) * (first.blueMaximum - first.blueMinimum) * (first.alphaMaximum - first.alphaMinimum); second.volume = (second.redMaximum - second.redMinimum) * (second.greenMaximum - second.greenMinimum) * (second.blueMaximum - second.blueMinimum) * (second.alphaMaximum - second.alphaMinimum); // the cut was successful return true; }; WuQuant.prototype._initialize = function (colors) { this._colors = colors; // creates all the _cubes this._cubes = []; // initializes all the _cubes for (var cubeIndex = 0; cubeIndex < colors; cubeIndex++) { this._cubes[cubeIndex] = new WuColorCube(); } // resets the reference minimums this._cubes[0].redMinimum = 0; this._cubes[0].greenMinimum = 0; this._cubes[0].blueMinimum = 0; this._cubes[0].alphaMinimum = 0; // resets the reference maximums this._cubes[0].redMaximum = this._maxSideIndex; this._cubes[0].greenMaximum = this._maxSideIndex; this._cubes[0].blueMaximum = this._maxSideIndex; this._cubes[0].alphaMaximum = this._alphaMaxSideIndex; this._weights = createArray4D(this._alphaSideSize, this._sideSize, this._sideSize, this._sideSize); this._momentsRed = createArray4D(this._alphaSideSize, this._sideSize, this._sideSize, this._sideSize); this._momentsGreen = createArray4D(this._alphaSideSize, this._sideSize, this._sideSize, this._sideSize); this._momentsBlue = createArray4D(this._alphaSideSize, this._sideSize, this._sideSize, this._sideSize); this._momentsAlpha = createArray4D(this._alphaSideSize, this._sideSize, this._sideSize, this._sideSize); this._moments = createArray4D(this._alphaSideSize, this._sideSize, this._sideSize, this._sideSize); this._table = []; for (var tableIndex = 0; tableIndex < 256; ++tableIndex) { this._table[tableIndex] = tableIndex * tableIndex; } this._pixels = []; }; WuQuant.prototype._setQuality = function (significantBitsPerChannel) { if (significantBitsPerChannel === void 0) { significantBitsPerChannel = 5; } this._significantBitsPerChannel = significantBitsPerChannel; this._maxSideIndex = 1 << this._significantBitsPerChannel; this._alphaMaxSideIndex = this._maxSideIndex; this._sideSize = this._maxSideIndex + 1; this._alphaSideSize = this._alphaMaxSideIndex + 1; }; WuQuant.alpha = 3; WuQuant.red = 2; WuQuant.green = 1; WuQuant.blue = 0; return WuQuant; }()); exports.WuQuant = WuQuant; /***/ }, /* 30 */ /***/ function(module, exports, __webpack_require__) { "use strict"; var nearestColor_1 = __webpack_require__(31); exports.NearestColor = nearestColor_1.NearestColor; var array_1 = __webpack_require__(32); exports.ErrorDiffusionArray = array_1.ErrorDiffusionArray; exports.ErrorDiffusionArrayKernel = array_1.ErrorDiffusionArrayKernel; var riemersma_1 = __webpack_require__(33); exports.ErrorDiffusionRiemersma = riemersma_1.ErrorDiffusionRiemersma; /***/ }, /* 31 */ /***/ function(module, exports) { "use strict"; var NearestColor = (function () { function NearestColor(colorDistanceCalculator) { this._distance = colorDistanceCalculator; } NearestColor.prototype.quantize = function (pointBuffer, palette) { var pointArray = pointBuffer.getPointArray(), width = pointBuffer.getWidth(), height = pointBuffer.getHeight(); for (var y = 0; y < height; y++) { for (var x = 0, idx = y * width; x < width; x++, idx++) { // Image pixel var point = pointArray[idx]; // Reduced pixel point.from(palette.getNearestColor(this._distance, point)); } } return pointBuffer; }; return NearestColor; }()); exports.NearestColor = NearestColor; /***/ }, /* 32 */ /***/ function(module, exports, __webpack_require__) { "use strict"; var point_1 = __webpack_require__(24); var arithmetic_1 = __webpack_require__(6); // TODO: is it the best name for this enum "kernel"? (function (ErrorDiffusionArrayKernel) { ErrorDiffusionArrayKernel[ErrorDiffusionArrayKernel["FloydSteinberg"] = 0] = "FloydSteinberg"; ErrorDiffusionArrayKernel[ErrorDiffusionArrayKernel["FalseFloydSteinberg"] = 1] = "FalseFloydSteinberg"; ErrorDiffusionArrayKernel[ErrorDiffusionArrayKernel["Stucki"] = 2] = "Stucki"; ErrorDiffusionArrayKernel[ErrorDiffusionArrayKernel["Atkinson"] = 3] = "Atkinson"; ErrorDiffusionArrayKernel[ErrorDiffusionArrayKernel["Jarvis"] = 4] = "Jarvis"; ErrorDiffusionArrayKernel[ErrorDiffusionArrayKernel["Burkes"] = 5] = "Burkes"; ErrorDiffusionArrayKernel[ErrorDiffusionArrayKernel["Sierra"] = 6] = "Sierra"; ErrorDiffusionArrayKernel[ErrorDiffusionArrayKernel["TwoSierra"] = 7] = "TwoSierra"; ErrorDiffusionArrayKernel[ErrorDiffusionArrayKernel["SierraLite"] = 8] = "SierraLite"; })(exports.ErrorDiffusionArrayKernel || (exports.ErrorDiffusionArrayKernel = {})); var ErrorDiffusionArrayKernel = exports.ErrorDiffusionArrayKernel; // http://www.tannerhelland.com/4660/dithering-eleven-algorithms-source-code/ var ErrorDiffusionArray = (function () { function ErrorDiffusionArray(colorDistanceCalculator, kernel, serpentine, minimumColorDistanceToDither, calculateErrorLikeGIMP) { if (serpentine === void 0) { serpentine = true; } if (minimumColorDistanceToDither === void 0) { minimumColorDistanceToDither = 0; } if (calculateErrorLikeGIMP === void 0) { calculateErrorLikeGIMP = false; } this._setKernel(kernel); this._distance = colorDistanceCalculator; this._minColorDistance = minimumColorDistanceToDither; this._serpentine = serpentine; this._calculateErrorLikeGIMP = calculateErrorLikeGIMP; } // adapted from http://jsbin.com/iXofIji/2/edit by PAEz // fixed version. it doesn't use image pixels as error storage, also it doesn't have 0.3 + 0.3 + 0.3 + 0.3 = 0 error ErrorDiffusionArray.prototype.quantize = function (pointBuffer, palette) { var pointArray = pointBuffer.getPointArray(), originalPoint = new point_1.Point(), width = pointBuffer.getWidth(), height = pointBuffer.getHeight(), errorLines = []; var dir = 1, maxErrorLines = 1; // initial error lines (number is taken from dithering kernel) for (var i = 0; i < this._kernel.length; i++) { var kernelErrorLines = this._kernel[i][2] + 1; if (maxErrorLines < kernelErrorLines) maxErrorLines = kernelErrorLines; } for (var i = 0; i < maxErrorLines; i++) { this._fillErrorLine(errorLines[i] = [], width); } for (var y = 0; y < height; y++) { // always serpentine if (this._serpentine) dir = dir * -1; var lni = y * width, xStart = dir == 1 ? 0 : width - 1, xEnd = dir == 1 ? width : -1; // cyclic shift with erasing this._fillErrorLine(errorLines[0], width); // TODO: why it is needed to cast types here? errorLines.push(errorLines.shift()); var errorLine = errorLines[0]; for (var x = xStart, idx = lni + xStart; x !== xEnd; x += dir, idx += dir) { // Image pixel var point = pointArray[idx], //originalPoint = new Utils.Point(), error = errorLine[x]; originalPoint.from(point); var correctedPoint = point_1.Point.createByRGBA(arithmetic_1.inRange0to255Rounded(point.r + error[0]), arithmetic_1.inRange0to255Rounded(point.g + error[1]), arithmetic_1.inRange0to255Rounded(point.b + error[2]), arithmetic_1.inRange0to255Rounded(point.a + error[3])); // Reduced pixel var palettePoint = palette.getNearestColor(this._distance, correctedPoint); point.from(palettePoint); // dithering strength if (this._minColorDistance) { var dist = this._distance.calculateNormalized(point, palettePoint); if (dist < this._minColorDistance) continue; } // Component distance var er = void 0, eg = void 0, eb = void 0, ea = void 0; if (this._calculateErrorLikeGIMP) { er = correctedPoint.r - palettePoint.r; eg = correctedPoint.g - palettePoint.g; eb = correctedPoint.b - palettePoint.b; ea = correctedPoint.a - palettePoint.a; } else { er = originalPoint.r - palettePoint.r; eg = originalPoint.g - palettePoint.g; eb = originalPoint.b - palettePoint.b; ea = originalPoint.a - palettePoint.a; } var dStart = dir == 1 ? 0 : this._kernel.length - 1, dEnd = dir == 1 ? this._kernel.length : -1; for (var i = dStart; i !== dEnd; i += dir) { var x1 = this._kernel[i][1] * dir, y1 = this._kernel[i][2]; if (x1 + x >= 0 && x1 + x < width && y1 + y >= 0 && y1 + y < height) { var d = this._kernel[i][0], e = errorLines[y1][x1 + x]; e[0] = e[0] + er * d; e[1] = e[1] + eg * d; e[2] = e[2] + eb * d; e[3] = e[3] + ea * d; } } } } return pointBuffer; }; ErrorDiffusionArray.prototype._fillErrorLine = function (errorLine, width) { // shrink if (errorLine.length > width) { errorLine.length = width; } // reuse existing arrays var l = errorLine.length; for (var i = 0; i < l; i++) { var error = errorLine[i]; error[0] = error[1] = error[2] = error[3] = 0; } // create missing arrays for (var i = l; i < width; i++) { errorLine[i] = [0.0, 0.0, 0.0, 0.0]; } }; ErrorDiffusionArray.prototype._setKernel = function (kernel) { switch (kernel) { case ErrorDiffusionArrayKernel.FloydSteinberg: this._kernel = [ [7 / 16, 1, 0], [3 / 16, -1, 1], [5 / 16, 0, 1], [1 / 16, 1, 1] ]; break; case ErrorDiffusionArrayKernel.FalseFloydSteinberg: this._kernel = [ [3 / 8, 1, 0], [3 / 8, 0, 1], [2 / 8, 1, 1] ]; break; case ErrorDiffusionArrayKernel.Stucki: this._kernel = [ [8 / 42, 1, 0], [4 / 42, 2, 0], [2 / 42, -2, 1], [4 / 42, -1, 1], [8 / 42, 0, 1], [4 / 42, 1, 1], [2 / 42, 2, 1], [1 / 42, -2, 2], [2 / 42, -1, 2], [4 / 42, 0, 2], [2 / 42, 1, 2], [1 / 42, 2, 2] ]; break; case ErrorDiffusionArrayKernel.Atkinson: this._kernel = [ [1 / 8, 1, 0], [1 / 8, 2, 0], [1 / 8, -1, 1], [1 / 8, 0, 1], [1 / 8, 1, 1], [1 / 8, 0, 2] ]; break; case ErrorDiffusionArrayKernel.Jarvis: this._kernel = [ [7 / 48, 1, 0], [5 / 48, 2, 0], [3 / 48, -2, 1], [5 / 48, -1, 1], [7 / 48, 0, 1], [5 / 48, 1, 1], [3 / 48, 2, 1], [1 / 48, -2, 2], [3 / 48, -1, 2], [5 / 48, 0, 2], [3 / 48, 1, 2], [1 / 48, 2, 2] ]; break; case ErrorDiffusionArrayKernel.Burkes: this._kernel = [ [8 / 32, 1, 0], [4 / 32, 2, 0], [2 / 32, -2, 1], [4 / 32, -1, 1], [8 / 32, 0, 1], [4 / 32, 1, 1], [2 / 32, 2, 1], ]; break; case ErrorDiffusionArrayKernel.Sierra: this._kernel = [ [5 / 32, 1, 0], [3 / 32, 2, 0], [2 / 32, -2, 1], [4 / 32, -1, 1], [5 / 32, 0, 1], [4 / 32, 1, 1], [2 / 32, 2, 1], [2 / 32, -1, 2], [3 / 32, 0, 2], [2 / 32, 1, 2] ]; break; case ErrorDiffusionArrayKernel.TwoSierra: this._kernel = [ [4 / 16, 1, 0], [3 / 16, 2, 0], [1 / 16, -2, 1], [2 / 16, -1, 1], [3 / 16, 0, 1], [2 / 16, 1, 1], [1 / 16, 2, 1] ]; break; case ErrorDiffusionArrayKernel.SierraLite: this._kernel = [ [2 / 4, 1, 0], [1 / 4, -1, 1], [1 / 4, 0, 1] ]; break; default: throw new Error("ErrorDiffusionArray: unknown kernel = " + kernel); } }; return ErrorDiffusionArray; }()); exports.ErrorDiffusionArray = ErrorDiffusionArray; /***/ }, /* 33 */ /***/ function(module, exports, __webpack_require__) { "use strict"; var hilbertCurve_1 = __webpack_require__(34); var point_1 = __webpack_require__(24); var arithmetic_1 = __webpack_require__(6); var ErrorDiffusionRiemersma = (function () { function ErrorDiffusionRiemersma(colorDistanceCalculator, errorQueueSize, errorPropagation) { if (errorQueueSize === void 0) { errorQueueSize = 16; } if (errorPropagation === void 0) { errorPropagation = 1; } this._distance = colorDistanceCalculator; this._errorPropagation = errorPropagation; this._errorQueueSize = errorQueueSize; this._max = this._errorQueueSize; this._createWeights(); } ErrorDiffusionRiemersma.prototype.quantize = function (pointBuffer, palette) { var _this = this; var curve = new hilbertCurve_1.HilbertCurveBase(), pointArray = pointBuffer.getPointArray(), width = pointBuffer.getWidth(), height = pointBuffer.getHeight(), errorQueue = []; var head = 0; for (var i = 0; i < this._errorQueueSize; i++) { errorQueue[i] = { r: 0, g: 0, b: 0, a: 0 }; } curve.walk(width, height, function (x, y) { var p = pointArray[x + y * width]; var r = p.r, g = p.g, b = p.b, a = p.a; for (var i = 0; i < _this._errorQueueSize; i++) { var weight = _this._weights[i], e = errorQueue[(i + head) % _this._errorQueueSize]; r += e.r * weight; g += e.g * weight; b += e.b * weight; a += e.a * weight; } var correctedPoint = point_1.Point.createByRGBA(arithmetic_1.inRange0to255Rounded(r), arithmetic_1.inRange0to255Rounded(g), arithmetic_1.inRange0to255Rounded(b), arithmetic_1.inRange0to255Rounded(a)); var quantizedPoint = palette.getNearestColor(_this._distance, correctedPoint); // update head and calculate tail head = (head + 1) % _this._errorQueueSize; var tail = (head + _this._errorQueueSize - 1) % _this._errorQueueSize; // update error with new value errorQueue[tail].r = p.r - quantizedPoint.r; errorQueue[tail].g = p.g - quantizedPoint.g; errorQueue[tail].b = p.b - quantizedPoint.b; errorQueue[tail].a = p.a - quantizedPoint.a; // update point p.from(quantizedPoint); }); return pointBuffer; }; ErrorDiffusionRiemersma.prototype._createWeights = function () { this._weights = []; var multiplier = Math.exp(Math.log(this._max) / (this._errorQueueSize - 1)); for (var i = 0, next = 1; i < this._errorQueueSize; i++) { this._weights[i] = (((next + 0.5) | 0) / this._max) * this._errorPropagation; next *= multiplier; } }; return ErrorDiffusionRiemersma; }()); exports.ErrorDiffusionRiemersma = ErrorDiffusionRiemersma; /***/ }, /* 34 */ /***/ function(module, exports) { "use strict"; var Direction; (function (Direction) { Direction[Direction["NONE"] = 0] = "NONE"; Direction[Direction["UP"] = 1] = "UP"; Direction[Direction["LEFT"] = 2] = "LEFT"; Direction[Direction["RIGHT"] = 3] = "RIGHT"; Direction[Direction["DOWN"] = 4] = "DOWN"; })(Direction || (Direction = {})); // Check code against double-entrance into walk (walk=> callback => walk) var HilbertCurveBase = (function () { function HilbertCurveBase() { } HilbertCurveBase.prototype.walk = function (width, height, visitorCallback) { this._x = 0; this._y = 0; this._d = 0; this._width = width; this._height = height; this._callback = visitorCallback; var maxBound = Math.max(width, height); this._level = (Math.log(maxBound) / Math.log(2) + 1) | 0; this._walkHilbert(Direction.UP); this._visit(Direction.NONE); }; HilbertCurveBase.prototype._walkHilbert = function (direction) { if (this._level < 1) return; this._level--; switch (direction) { case Direction.LEFT: this._walkHilbert(Direction.UP); this._visit(Direction.RIGHT); this._walkHilbert(Direction.LEFT); this._visit(Direction.DOWN); this._walkHilbert(Direction.LEFT); this._visit(Direction.LEFT); this._walkHilbert(Direction.DOWN); break; case Direction.RIGHT: this._walkHilbert(Direction.DOWN); this._visit(Direction.LEFT); this._walkHilbert(Direction.RIGHT); this._visit(Direction.UP); this._walkHilbert(Direction.RIGHT); this._visit(Direction.RIGHT); this._walkHilbert(Direction.UP); break; case Direction.UP: this._walkHilbert(Direction.LEFT); this._visit(Direction.DOWN); this._walkHilbert(Direction.UP); this._visit(Direction.RIGHT); this._walkHilbert(Direction.UP); this._visit(Direction.UP); this._walkHilbert(Direction.RIGHT); break; case Direction.DOWN: this._walkHilbert(Direction.RIGHT); this._visit(Direction.UP); this._walkHilbert(Direction.DOWN); this._visit(Direction.LEFT); this._walkHilbert(Direction.DOWN); this._visit(Direction.DOWN); this._walkHilbert(Direction.LEFT); break; default: break; } this._level++; }; HilbertCurveBase.prototype._visit = function (direction) { if (this._x >= 0 && this._x < this._width && this._y >= 0 && this._y < this._height) { this._callback(this._x, this._y, this._d); this._d++; } switch (direction) { case Direction.LEFT: this._x--; break; case Direction.RIGHT: this._x++; break; case Direction.UP: this._y--; break; case Direction.DOWN: this._y++; break; } }; return HilbertCurveBase; }()); exports.HilbertCurveBase = HilbertCurveBase; /***/ }, /* 35 */ /***/ function(module, exports, __webpack_require__) { "use strict"; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * iq.ts - Image Quantization Library */ var ssim_1 = __webpack_require__(36); exports.SSIM = ssim_1.SSIM; /***/ }, /* 36 */ /***/ function(module, exports, __webpack_require__) { "use strict"; var bt709_1 = __webpack_require__(2); // based on https://github.com/rhys-e/structural-similarity // http://en.wikipedia.org/wiki/Structural_similarity var K1 = 0.01, K2 = 0.03; var SSIM = (function () { function SSIM() { } SSIM.prototype.compare = function (image1, image2) { if (image1.getHeight() !== image2.getHeight() || image1.getWidth() !== image2.getWidth()) { throw new Error("Images have different sizes!"); } var bitsPerComponent = 8, L = (1 << bitsPerComponent) - 1, c1 = Math.pow((K1 * L), 2), c2 = Math.pow((K2 * L), 2); var numWindows = 0, mssim = 0.0; //calculate ssim for each window this._iterate(image1, image2, function (lumaValues1, lumaValues2, averageLumaValue1, averageLumaValue2) { //calculate variance and covariance var sigxy = 0.0, sigsqx = 0.0, sigsqy = 0.0; for (var i = 0; i < lumaValues1.length; i++) { sigsqx += Math.pow((lumaValues1[i] - averageLumaValue1), 2); sigsqy += Math.pow((lumaValues2[i] - averageLumaValue2), 2); sigxy += (lumaValues1[i] - averageLumaValue1) * (lumaValues2[i] - averageLumaValue2); } var numPixelsInWin = lumaValues1.length - 1; sigsqx /= numPixelsInWin; sigsqy /= numPixelsInWin; sigxy /= numPixelsInWin; //perform ssim calculation on window var numerator = (2 * averageLumaValue1 * averageLumaValue2 + c1) * (2 * sigxy + c2), denominator = (Math.pow(averageLumaValue1, 2) + Math.pow(averageLumaValue2, 2) + c1) * (sigsqx + sigsqy + c2), ssim = numerator / denominator; mssim += ssim; numWindows++; }); return mssim / numWindows; }; SSIM.prototype._iterate = function (image1, image2, callback) { var windowSize = 8, width = image1.getWidth(), height = image1.getHeight(); for (var y = 0; y < height; y += windowSize) { for (var x = 0; x < width; x += windowSize) { // avoid out-of-width/height var windowWidth = Math.min(windowSize, width - x), windowHeight = Math.min(windowSize, height - y); var lumaValues1 = this._calculateLumaValuesForWindow(image1, x, y, windowWidth, windowHeight), lumaValues2 = this._calculateLumaValuesForWindow(image2, x, y, windowWidth, windowHeight), averageLuma1 = this._calculateAverageLuma(lumaValues1), averageLuma2 = this._calculateAverageLuma(lumaValues2); callback(lumaValues1, lumaValues2, averageLuma1, averageLuma2); } } }; SSIM.prototype._calculateLumaValuesForWindow = function (image, x, y, width, height) { var pointArray = image.getPointArray(), lumaValues = []; var counter = 0; for (var j = y; j < y + height; j++) { var offset = j * image.getWidth(); for (var i = x; i < x + width; i++) { var point = pointArray[offset + i]; lumaValues[counter] = point.r * bt709_1.Y.RED + point.g * bt709_1.Y.GREEN + point.b * bt709_1.Y.BLUE; counter++; } } return lumaValues; }; SSIM.prototype._calculateAverageLuma = function (lumaValues) { var sumLuma = 0.0; for (var i = 0; i < lumaValues.length; i++) { sumLuma += lumaValues[i]; } return sumLuma / lumaValues.length; }; return SSIM; }()); exports.SSIM = SSIM; /***/ }, /* 37 */ /***/ function(module, exports, __webpack_require__) { "use strict"; /** * @preserve * Copyright 2015-2016 Igor Bezkrovnyi * All rights reserved. (MIT Licensed) * * iq.ts - Image Quantization Library */ var arithmetic = __webpack_require__(6); exports.arithmetic = arithmetic; var hueStatistics_1 = __webpack_require__(28); exports.HueStatistics = hueStatistics_1.HueStatistics; var palette_1 = __webpack_require__(22); exports.Palette = palette_1.Palette; var point_1 = __webpack_require__(24); exports.Point = point_1.Point; var pointContainer_1 = __webpack_require__(23); exports.PointContainer = pointContainer_1.PointContainer; /***/ } /******/ ]) }); ; },{}],75:[function(require,module,exports){ if (typeof Object.create === 'function') { // implementation from standard node.js 'util' module module.exports = function inherits(ctor, superCtor) { if (superCtor) { ctor.super_ = superCtor ctor.prototype = Object.create(superCtor.prototype, { constructor: { value: ctor, enumerable: false, writable: true, configurable: true } }) } }; } else { // old school shim for old browsers module.exports = function inherits(ctor, superCtor) { if (superCtor) { ctor.super_ = superCtor var TempCtor = function () {} TempCtor.prototype = superCtor.prototype ctor.prototype = new TempCtor() ctor.prototype.constructor = ctor } } } },{}],76:[function(require,module,exports){ /*! * Determine if an object is a Buffer * * @author Feross Aboukhadijeh * @license MIT */ // The _isBuffer check is for Safari 5-7 support, because it's missing // Object.prototype.constructor. Remove this eventually module.exports = function (obj) { return obj != null && (isBuffer(obj) || isSlowBuffer(obj) || !!obj._isBuffer) } function isBuffer (obj) { return !!obj.constructor && typeof obj.constructor.isBuffer === 'function' && obj.constructor.isBuffer(obj) } // For Node v0.10 support. Remove this eventually. function isSlowBuffer (obj) { return typeof obj.readFloatLE === 'function' && typeof obj.slice === 'function' && isBuffer(obj.slice(0, 0)) } },{}],77:[function(require,module,exports){ 'use strict'; var fnToStr = Function.prototype.toString; var constructorRegex = /^\s*class\b/; var isES6ClassFn = function isES6ClassFunction(value) { try { var fnStr = fnToStr.call(value); return constructorRegex.test(fnStr); } catch (e) { return false; // not a function } }; var tryFunctionObject = function tryFunctionToStr(value) { try { if (isES6ClassFn(value)) { return false; } fnToStr.call(value); return true; } catch (e) { return false; } }; var toStr = Object.prototype.toString; var fnClass = '[object Function]'; var genClass = '[object GeneratorFunction]'; var hasToStringTag = typeof Symbol === 'function' && typeof Symbol.toStringTag === 'symbol'; module.exports = function isCallable(value) { if (!value) { return false; } if (typeof value !== 'function' && typeof value !== 'object') { return false; } if (typeof value === 'function' && !value.prototype) { return true; } if (hasToStringTag) { return tryFunctionObject(value); } if (isES6ClassFn(value)) { return false; } var strClass = toStr.call(value); return strClass === fnClass || strClass === genClass; }; },{}],78:[function(require,module,exports){ module.exports = isFunction var toString = Object.prototype.toString function isFunction (fn) { var string = toString.call(fn) return string === '[object Function]' || (typeof fn === 'function' && string !== '[object RegExp]') || (typeof window !== 'undefined' && // IE8 and below (fn === window.setTimeout || fn === window.alert || fn === window.confirm || fn === window.prompt)) }; },{}],79:[function(require,module,exports){ var toString = {}.toString; module.exports = Array.isArray || function (arr) { return toString.call(arr) == '[object Array]'; }; },{}],80:[function(require,module,exports){ var encode = require('./lib/encoder'), decode = require('./lib/decoder'); module.exports = { encode: encode, decode: decode }; },{"./lib/decoder":81,"./lib/encoder":82}],81:[function(require,module,exports){ (function (Buffer){ /* -*- tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- / /* vim: set shiftwidth=2 tabstop=2 autoindent cindent expandtab: */ /* Copyright 2011 notmasteryet Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ // - The JPEG specification can be found in the ITU CCITT Recommendation T.81 // (www.w3.org/Graphics/JPEG/itu-t81.pdf) // - The JFIF specification can be found in the JPEG File Interchange Format // (www.w3.org/Graphics/JPEG/jfif3.pdf) // - The Adobe Application-Specific JPEG markers in the Supporting the DCT Filters // in PostScript Level 2, Technical Note #5116 // (partners.adobe.com/public/developer/en/ps/sdk/5116.DCT_Filter.pdf) var JpegImage = (function jpegImage() { "use strict"; var dctZigZag = new Int32Array([ 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63 ]); var dctCos1 = 4017 // cos(pi/16) var dctSin1 = 799 // sin(pi/16) var dctCos3 = 3406 // cos(3*pi/16) var dctSin3 = 2276 // sin(3*pi/16) var dctCos6 = 1567 // cos(6*pi/16) var dctSin6 = 3784 // sin(6*pi/16) var dctSqrt2 = 5793 // sqrt(2) var dctSqrt1d2 = 2896 // sqrt(2) / 2 function constructor() { } function buildHuffmanTable(codeLengths, values) { var k = 0, code = [], i, j, length = 16; while (length > 0 && !codeLengths[length - 1]) length--; code.push({children: [], index: 0}); var p = code[0], q; for (i = 0; i < length; i++) { for (j = 0; j < codeLengths[i]; j++) { p = code.pop(); p.children[p.index] = values[k]; while (p.index > 0) { if (code.length === 0) throw new Error('Could not recreate Huffman Table'); p = code.pop(); } p.index++; code.push(p); while (code.length <= i) { code.push(q = {children: [], index: 0}); p.children[p.index] = q.children; p = q; } k++; } if (i + 1 < length) { // p here points to last code code.push(q = {children: [], index: 0}); p.children[p.index] = q.children; p = q; } } return code[0].children; } function decodeScan(data, offset, frame, components, resetInterval, spectralStart, spectralEnd, successivePrev, successive, opts) { var precision = frame.precision; var samplesPerLine = frame.samplesPerLine; var scanLines = frame.scanLines; var mcusPerLine = frame.mcusPerLine; var progressive = frame.progressive; var maxH = frame.maxH, maxV = frame.maxV; var startOffset = offset, bitsData = 0, bitsCount = 0; function readBit() { if (bitsCount > 0) { bitsCount--; return (bitsData >> bitsCount) & 1; } bitsData = data[offset++]; if (bitsData == 0xFF) { var nextByte = data[offset++]; if (nextByte) { throw new Error("unexpected marker: " + ((bitsData << 8) | nextByte).toString(16)); } // unstuff 0 } bitsCount = 7; return bitsData >>> 7; } function decodeHuffman(tree) { var node = tree, bit; while ((bit = readBit()) !== null) { node = node[bit]; if (typeof node === 'number') return node; if (typeof node !== 'object') throw new Error("invalid huffman sequence"); } return null; } function receive(length) { var n = 0; while (length > 0) { var bit = readBit(); if (bit === null) return; n = (n << 1) | bit; length--; } return n; } function receiveAndExtend(length) { var n = receive(length); if (n >= 1 << (length - 1)) return n; return n + (-1 << length) + 1; } function decodeBaseline(component, zz) { var t = decodeHuffman(component.huffmanTableDC); var diff = t === 0 ? 0 : receiveAndExtend(t); zz[0]= (component.pred += diff); var k = 1; while (k < 64) { var rs = decodeHuffman(component.huffmanTableAC); var s = rs & 15, r = rs >> 4; if (s === 0) { if (r < 15) break; k += 16; continue; } k += r; var z = dctZigZag[k]; zz[z] = receiveAndExtend(s); k++; } } function decodeDCFirst(component, zz) { var t = decodeHuffman(component.huffmanTableDC); var diff = t === 0 ? 0 : (receiveAndExtend(t) << successive); zz[0] = (component.pred += diff); } function decodeDCSuccessive(component, zz) { zz[0] |= readBit() << successive; } var eobrun = 0; function decodeACFirst(component, zz) { if (eobrun > 0) { eobrun--; return; } var k = spectralStart, e = spectralEnd; while (k <= e) { var rs = decodeHuffman(component.huffmanTableAC); var s = rs & 15, r = rs >> 4; if (s === 0) { if (r < 15) { eobrun = receive(r) + (1 << r) - 1; break; } k += 16; continue; } k += r; var z = dctZigZag[k]; zz[z] = receiveAndExtend(s) * (1 << successive); k++; } } var successiveACState = 0, successiveACNextValue; function decodeACSuccessive(component, zz) { var k = spectralStart, e = spectralEnd, r = 0; while (k <= e) { var z = dctZigZag[k]; var direction = zz[z] < 0 ? -1 : 1; switch (successiveACState) { case 0: // initial state var rs = decodeHuffman(component.huffmanTableAC); var s = rs & 15, r = rs >> 4; if (s === 0) { if (r < 15) { eobrun = receive(r) + (1 << r); successiveACState = 4; } else { r = 16; successiveACState = 1; } } else { if (s !== 1) throw new Error("invalid ACn encoding"); successiveACNextValue = receiveAndExtend(s); successiveACState = r ? 2 : 3; } continue; case 1: // skipping r zero items case 2: if (zz[z]) zz[z] += (readBit() << successive) * direction; else { r--; if (r === 0) successiveACState = successiveACState == 2 ? 3 : 0; } break; case 3: // set value for a zero item if (zz[z]) zz[z] += (readBit() << successive) * direction; else { zz[z] = successiveACNextValue << successive; successiveACState = 0; } break; case 4: // eob if (zz[z]) zz[z] += (readBit() << successive) * direction; break; } k++; } if (successiveACState === 4) { eobrun--; if (eobrun === 0) successiveACState = 0; } } function decodeMcu(component, decode, mcu, row, col) { var mcuRow = (mcu / mcusPerLine) | 0; var mcuCol = mcu % mcusPerLine; var blockRow = mcuRow * component.v + row; var blockCol = mcuCol * component.h + col; // If the block is missing and we're in tolerant mode, just skip it. if (component.blocks[blockRow] === undefined && opts.tolerantDecoding) return; decode(component, component.blocks[blockRow][blockCol]); } function decodeBlock(component, decode, mcu) { var blockRow = (mcu / component.blocksPerLine) | 0; var blockCol = mcu % component.blocksPerLine; // If the block is missing and we're in tolerant mode, just skip it. if (component.blocks[blockRow] === undefined && opts.tolerantDecoding) return; decode(component, component.blocks[blockRow][blockCol]); } var componentsLength = components.length; var component, i, j, k, n; var decodeFn; if (progressive) { if (spectralStart === 0) decodeFn = successivePrev === 0 ? decodeDCFirst : decodeDCSuccessive; else decodeFn = successivePrev === 0 ? decodeACFirst : decodeACSuccessive; } else { decodeFn = decodeBaseline; } var mcu = 0, marker; var mcuExpected; if (componentsLength == 1) { mcuExpected = components[0].blocksPerLine * components[0].blocksPerColumn; } else { mcuExpected = mcusPerLine * frame.mcusPerColumn; } if (!resetInterval) resetInterval = mcuExpected; var h, v; while (mcu < mcuExpected) { // reset interval stuff for (i = 0; i < componentsLength; i++) components[i].pred = 0; eobrun = 0; if (componentsLength == 1) { component = components[0]; for (n = 0; n < resetInterval; n++) { decodeBlock(component, decodeFn, mcu); mcu++; } } else { for (n = 0; n < resetInterval; n++) { for (i = 0; i < componentsLength; i++) { component = components[i]; h = component.h; v = component.v; for (j = 0; j < v; j++) { for (k = 0; k < h; k++) { decodeMcu(component, decodeFn, mcu, j, k); } } } mcu++; // If we've reached our expected MCU's, stop decoding if (mcu === mcuExpected) break; } } if (mcu === mcuExpected) { // Skip trailing bytes at the end of the scan - until we reach the next marker do { if (data[offset] === 0xFF) { if (data[offset + 1] !== 0x00) { break; } } offset += 1; } while (offset < data.length - 2); } // find marker bitsCount = 0; marker = (data[offset] << 8) | data[offset + 1]; if (marker < 0xFF00) { throw new Error("marker was not found"); } if (marker >= 0xFFD0 && marker <= 0xFFD7) { // RSTx offset += 2; } else break; } return offset - startOffset; } function buildComponentData(frame, component) { var lines = []; var blocksPerLine = component.blocksPerLine; var blocksPerColumn = component.blocksPerColumn; var samplesPerLine = blocksPerLine << 3; // Only 1 used per invocation of this function and garbage collected after invocation, so no need to account for its memory footprint. var R = new Int32Array(64), r = new Uint8Array(64); // A port of poppler's IDCT method which in turn is taken from: // Christoph Loeffler, Adriaan Ligtenberg, George S. Moschytz, // "Practical Fast 1-D DCT Algorithms with 11 Multiplications", // IEEE Intl. Conf. on Acoustics, Speech & Signal Processing, 1989, // 988-991. function quantizeAndInverse(zz, dataOut, dataIn) { var qt = component.quantizationTable; var v0, v1, v2, v3, v4, v5, v6, v7, t; var p = dataIn; var i; // dequant for (i = 0; i < 64; i++) p[i] = zz[i] * qt[i]; // inverse DCT on rows for (i = 0; i < 8; ++i) { var row = 8 * i; // check for all-zero AC coefficients if (p[1 + row] == 0 && p[2 + row] == 0 && p[3 + row] == 0 && p[4 + row] == 0 && p[5 + row] == 0 && p[6 + row] == 0 && p[7 + row] == 0) { t = (dctSqrt2 * p[0 + row] + 512) >> 10; p[0 + row] = t; p[1 + row] = t; p[2 + row] = t; p[3 + row] = t; p[4 + row] = t; p[5 + row] = t; p[6 + row] = t; p[7 + row] = t; continue; } // stage 4 v0 = (dctSqrt2 * p[0 + row] + 128) >> 8; v1 = (dctSqrt2 * p[4 + row] + 128) >> 8; v2 = p[2 + row]; v3 = p[6 + row]; v4 = (dctSqrt1d2 * (p[1 + row] - p[7 + row]) + 128) >> 8; v7 = (dctSqrt1d2 * (p[1 + row] + p[7 + row]) + 128) >> 8; v5 = p[3 + row] << 4; v6 = p[5 + row] << 4; // stage 3 t = (v0 - v1+ 1) >> 1; v0 = (v0 + v1 + 1) >> 1; v1 = t; t = (v2 * dctSin6 + v3 * dctCos6 + 128) >> 8; v2 = (v2 * dctCos6 - v3 * dctSin6 + 128) >> 8; v3 = t; t = (v4 - v6 + 1) >> 1; v4 = (v4 + v6 + 1) >> 1; v6 = t; t = (v7 + v5 + 1) >> 1; v5 = (v7 - v5 + 1) >> 1; v7 = t; // stage 2 t = (v0 - v3 + 1) >> 1; v0 = (v0 + v3 + 1) >> 1; v3 = t; t = (v1 - v2 + 1) >> 1; v1 = (v1 + v2 + 1) >> 1; v2 = t; t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12; v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12; v7 = t; t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12; v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12; v6 = t; // stage 1 p[0 + row] = v0 + v7; p[7 + row] = v0 - v7; p[1 + row] = v1 + v6; p[6 + row] = v1 - v6; p[2 + row] = v2 + v5; p[5 + row] = v2 - v5; p[3 + row] = v3 + v4; p[4 + row] = v3 - v4; } // inverse DCT on columns for (i = 0; i < 8; ++i) { var col = i; // check for all-zero AC coefficients if (p[1*8 + col] == 0 && p[2*8 + col] == 0 && p[3*8 + col] == 0 && p[4*8 + col] == 0 && p[5*8 + col] == 0 && p[6*8 + col] == 0 && p[7*8 + col] == 0) { t = (dctSqrt2 * dataIn[i+0] + 8192) >> 14; p[0*8 + col] = t; p[1*8 + col] = t; p[2*8 + col] = t; p[3*8 + col] = t; p[4*8 + col] = t; p[5*8 + col] = t; p[6*8 + col] = t; p[7*8 + col] = t; continue; } // stage 4 v0 = (dctSqrt2 * p[0*8 + col] + 2048) >> 12; v1 = (dctSqrt2 * p[4*8 + col] + 2048) >> 12; v2 = p[2*8 + col]; v3 = p[6*8 + col]; v4 = (dctSqrt1d2 * (p[1*8 + col] - p[7*8 + col]) + 2048) >> 12; v7 = (dctSqrt1d2 * (p[1*8 + col] + p[7*8 + col]) + 2048) >> 12; v5 = p[3*8 + col]; v6 = p[5*8 + col]; // stage 3 t = (v0 - v1 + 1) >> 1; v0 = (v0 + v1 + 1) >> 1; v1 = t; t = (v2 * dctSin6 + v3 * dctCos6 + 2048) >> 12; v2 = (v2 * dctCos6 - v3 * dctSin6 + 2048) >> 12; v3 = t; t = (v4 - v6 + 1) >> 1; v4 = (v4 + v6 + 1) >> 1; v6 = t; t = (v7 + v5 + 1) >> 1; v5 = (v7 - v5 + 1) >> 1; v7 = t; // stage 2 t = (v0 - v3 + 1) >> 1; v0 = (v0 + v3 + 1) >> 1; v3 = t; t = (v1 - v2 + 1) >> 1; v1 = (v1 + v2 + 1) >> 1; v2 = t; t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12; v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12; v7 = t; t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12; v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12; v6 = t; // stage 1 p[0*8 + col] = v0 + v7; p[7*8 + col] = v0 - v7; p[1*8 + col] = v1 + v6; p[6*8 + col] = v1 - v6; p[2*8 + col] = v2 + v5; p[5*8 + col] = v2 - v5; p[3*8 + col] = v3 + v4; p[4*8 + col] = v3 - v4; } // convert to 8-bit integers for (i = 0; i < 64; ++i) { var sample = 128 + ((p[i] + 8) >> 4); dataOut[i] = sample < 0 ? 0 : sample > 0xFF ? 0xFF : sample; } } requestMemoryAllocation(samplesPerLine * blocksPerColumn * 8); var i, j; for (var blockRow = 0; blockRow < blocksPerColumn; blockRow++) { var scanLine = blockRow << 3; for (i = 0; i < 8; i++) lines.push(new Uint8Array(samplesPerLine)); for (var blockCol = 0; blockCol < blocksPerLine; blockCol++) { quantizeAndInverse(component.blocks[blockRow][blockCol], r, R); var offset = 0, sample = blockCol << 3; for (j = 0; j < 8; j++) { var line = lines[scanLine + j]; for (i = 0; i < 8; i++) line[sample + i] = r[offset++]; } } } return lines; } function clampTo8bit(a) { return a < 0 ? 0 : a > 255 ? 255 : a; } constructor.prototype = { load: function load(path) { var xhr = new XMLHttpRequest(); xhr.open("GET", path, true); xhr.responseType = "arraybuffer"; xhr.onload = (function() { // TODO catch parse error var data = new Uint8Array(xhr.response || xhr.mozResponseArrayBuffer); this.parse(data); if (this.onload) this.onload(); }).bind(this); xhr.send(null); }, parse: function parse(data) { var maxResolutionInPixels = this.opts.maxResolutionInMP * 1000 * 1000; var offset = 0, length = data.length; function readUint16() { var value = (data[offset] << 8) | data[offset + 1]; offset += 2; return value; } function readDataBlock() { var length = readUint16(); var array = data.subarray(offset, offset + length - 2); offset += array.length; return array; } function prepareComponents(frame) { var maxH = 0, maxV = 0; var component, componentId; for (componentId in frame.components) { if (frame.components.hasOwnProperty(componentId)) { component = frame.components[componentId]; if (maxH < component.h) maxH = component.h; if (maxV < component.v) maxV = component.v; } } var mcusPerLine = Math.ceil(frame.samplesPerLine / 8 / maxH); var mcusPerColumn = Math.ceil(frame.scanLines / 8 / maxV); for (componentId in frame.components) { if (frame.components.hasOwnProperty(componentId)) { component = frame.components[componentId]; var blocksPerLine = Math.ceil(Math.ceil(frame.samplesPerLine / 8) * component.h / maxH); var blocksPerColumn = Math.ceil(Math.ceil(frame.scanLines / 8) * component.v / maxV); var blocksPerLineForMcu = mcusPerLine * component.h; var blocksPerColumnForMcu = mcusPerColumn * component.v; var blocksToAllocate = blocksPerColumnForMcu * blocksPerLineForMcu; var blocks = []; // Each block is a Int32Array of length 64 (4 x 64 = 256 bytes) requestMemoryAllocation(blocksToAllocate * 256); for (var i = 0; i < blocksPerColumnForMcu; i++) { var row = []; for (var j = 0; j < blocksPerLineForMcu; j++) row.push(new Int32Array(64)); blocks.push(row); } component.blocksPerLine = blocksPerLine; component.blocksPerColumn = blocksPerColumn; component.blocks = blocks; } } frame.maxH = maxH; frame.maxV = maxV; frame.mcusPerLine = mcusPerLine; frame.mcusPerColumn = mcusPerColumn; } var jfif = null; var adobe = null; var pixels = null; var frame, resetInterval; var quantizationTables = [], frames = []; var huffmanTablesAC = [], huffmanTablesDC = []; var fileMarker = readUint16(); this.comments = []; if (fileMarker != 0xFFD8) { // SOI (Start of Image) throw new Error("SOI not found"); } fileMarker = readUint16(); while (fileMarker != 0xFFD9) { // EOI (End of image) var i, j, l; switch(fileMarker) { case 0xFF00: break; case 0xFFE0: // APP0 (Application Specific) case 0xFFE1: // APP1 case 0xFFE2: // APP2 case 0xFFE3: // APP3 case 0xFFE4: // APP4 case 0xFFE5: // APP5 case 0xFFE6: // APP6 case 0xFFE7: // APP7 case 0xFFE8: // APP8 case 0xFFE9: // APP9 case 0xFFEA: // APP10 case 0xFFEB: // APP11 case 0xFFEC: // APP12 case 0xFFED: // APP13 case 0xFFEE: // APP14 case 0xFFEF: // APP15 case 0xFFFE: // COM (Comment) var appData = readDataBlock(); if (fileMarker === 0xFFFE) { var comment = String.fromCharCode.apply(null, appData); this.comments.push(comment); } if (fileMarker === 0xFFE0) { if (appData[0] === 0x4A && appData[1] === 0x46 && appData[2] === 0x49 && appData[3] === 0x46 && appData[4] === 0) { // 'JFIF\x00' jfif = { version: { major: appData[5], minor: appData[6] }, densityUnits: appData[7], xDensity: (appData[8] << 8) | appData[9], yDensity: (appData[10] << 8) | appData[11], thumbWidth: appData[12], thumbHeight: appData[13], thumbData: appData.subarray(14, 14 + 3 * appData[12] * appData[13]) }; } } // TODO APP1 - Exif if (fileMarker === 0xFFE1) { if (appData[0] === 0x45 && appData[1] === 0x78 && appData[2] === 0x69 && appData[3] === 0x66 && appData[4] === 0) { // 'EXIF\x00' this.exifBuffer = appData.subarray(5, appData.length); } } if (fileMarker === 0xFFEE) { if (appData[0] === 0x41 && appData[1] === 0x64 && appData[2] === 0x6F && appData[3] === 0x62 && appData[4] === 0x65 && appData[5] === 0) { // 'Adobe\x00' adobe = { version: appData[6], flags0: (appData[7] << 8) | appData[8], flags1: (appData[9] << 8) | appData[10], transformCode: appData[11] }; } } break; case 0xFFDB: // DQT (Define Quantization Tables) var quantizationTablesLength = readUint16(); var quantizationTablesEnd = quantizationTablesLength + offset - 2; while (offset < quantizationTablesEnd) { var quantizationTableSpec = data[offset++]; requestMemoryAllocation(64 * 4); var tableData = new Int32Array(64); if ((quantizationTableSpec >> 4) === 0) { // 8 bit values for (j = 0; j < 64; j++) { var z = dctZigZag[j]; tableData[z] = data[offset++]; } } else if ((quantizationTableSpec >> 4) === 1) { //16 bit for (j = 0; j < 64; j++) { var z = dctZigZag[j]; tableData[z] = readUint16(); } } else throw new Error("DQT: invalid table spec"); quantizationTables[quantizationTableSpec & 15] = tableData; } break; case 0xFFC0: // SOF0 (Start of Frame, Baseline DCT) case 0xFFC1: // SOF1 (Start of Frame, Extended DCT) case 0xFFC2: // SOF2 (Start of Frame, Progressive DCT) readUint16(); // skip data length frame = {}; frame.extended = (fileMarker === 0xFFC1); frame.progressive = (fileMarker === 0xFFC2); frame.precision = data[offset++]; frame.scanLines = readUint16(); frame.samplesPerLine = readUint16(); frame.components = {}; frame.componentsOrder = []; var pixelsInFrame = frame.scanLines * frame.samplesPerLine; if (pixelsInFrame > maxResolutionInPixels) { var exceededAmount = Math.ceil((pixelsInFrame - maxResolutionInPixels) / 1e6); throw new Error(`maxResolutionInMP limit exceeded by ${exceededAmount}MP`); } var componentsCount = data[offset++], componentId; var maxH = 0, maxV = 0; for (i = 0; i < componentsCount; i++) { componentId = data[offset]; var h = data[offset + 1] >> 4; var v = data[offset + 1] & 15; var qId = data[offset + 2]; frame.componentsOrder.push(componentId); frame.components[componentId] = { h: h, v: v, quantizationIdx: qId }; offset += 3; } prepareComponents(frame); frames.push(frame); break; case 0xFFC4: // DHT (Define Huffman Tables) var huffmanLength = readUint16(); for (i = 2; i < huffmanLength;) { var huffmanTableSpec = data[offset++]; var codeLengths = new Uint8Array(16); var codeLengthSum = 0; for (j = 0; j < 16; j++, offset++) { codeLengthSum += (codeLengths[j] = data[offset]); } requestMemoryAllocation(16 + codeLengthSum); var huffmanValues = new Uint8Array(codeLengthSum); for (j = 0; j < codeLengthSum; j++, offset++) huffmanValues[j] = data[offset]; i += 17 + codeLengthSum; ((huffmanTableSpec >> 4) === 0 ? huffmanTablesDC : huffmanTablesAC)[huffmanTableSpec & 15] = buildHuffmanTable(codeLengths, huffmanValues); } break; case 0xFFDD: // DRI (Define Restart Interval) readUint16(); // skip data length resetInterval = readUint16(); break; case 0xFFDC: // Number of Lines marker readUint16() // skip data length readUint16() // Ignore this data since it represents the image height break; case 0xFFDA: // SOS (Start of Scan) var scanLength = readUint16(); var selectorsCount = data[offset++]; var components = [], component; for (i = 0; i < selectorsCount; i++) { component = frame.components[data[offset++]]; var tableSpec = data[offset++]; component.huffmanTableDC = huffmanTablesDC[tableSpec >> 4]; component.huffmanTableAC = huffmanTablesAC[tableSpec & 15]; components.push(component); } var spectralStart = data[offset++]; var spectralEnd = data[offset++]; var successiveApproximation = data[offset++]; var processed = decodeScan(data, offset, frame, components, resetInterval, spectralStart, spectralEnd, successiveApproximation >> 4, successiveApproximation & 15, this.opts); offset += processed; break; case 0xFFFF: // Fill bytes if (data[offset] !== 0xFF) { // Avoid skipping a valid marker. offset--; } break; default: if (data[offset - 3] == 0xFF && data[offset - 2] >= 0xC0 && data[offset - 2] <= 0xFE) { // could be incorrect encoding -- last 0xFF byte of the previous // block was eaten by the encoder offset -= 3; break; } throw new Error("unknown JPEG marker " + fileMarker.toString(16)); } fileMarker = readUint16(); } if (frames.length != 1) throw new Error("only single frame JPEGs supported"); // set each frame's components quantization table for (var i = 0; i < frames.length; i++) { var cp = frames[i].components; for (var j in cp) { cp[j].quantizationTable = quantizationTables[cp[j].quantizationIdx]; delete cp[j].quantizationIdx; } } this.width = frame.samplesPerLine; this.height = frame.scanLines; this.jfif = jfif; this.adobe = adobe; this.components = []; for (var i = 0; i < frame.componentsOrder.length; i++) { var component = frame.components[frame.componentsOrder[i]]; this.components.push({ lines: buildComponentData(frame, component), scaleX: component.h / frame.maxH, scaleY: component.v / frame.maxV }); } }, getData: function getData(width, height) { var scaleX = this.width / width, scaleY = this.height / height; var component1, component2, component3, component4; var component1Line, component2Line, component3Line, component4Line; var x, y; var offset = 0; var Y, Cb, Cr, K, C, M, Ye, R, G, B; var colorTransform; var dataLength = width * height * this.components.length; requestMemoryAllocation(dataLength); var data = new Uint8Array(dataLength); switch (this.components.length) { case 1: component1 = this.components[0]; for (y = 0; y < height; y++) { component1Line = component1.lines[0 | (y * component1.scaleY * scaleY)]; for (x = 0; x < width; x++) { Y = component1Line[0 | (x * component1.scaleX * scaleX)]; data[offset++] = Y; } } break; case 2: // PDF might compress two component data in custom colorspace component1 = this.components[0]; component2 = this.components[1]; for (y = 0; y < height; y++) { component1Line = component1.lines[0 | (y * component1.scaleY * scaleY)]; component2Line = component2.lines[0 | (y * component2.scaleY * scaleY)]; for (x = 0; x < width; x++) { Y = component1Line[0 | (x * component1.scaleX * scaleX)]; data[offset++] = Y; Y = component2Line[0 | (x * component2.scaleX * scaleX)]; data[offset++] = Y; } } break; case 3: // The default transform for three components is true colorTransform = true; // The adobe transform marker overrides any previous setting if (this.adobe && this.adobe.transformCode) colorTransform = true; else if (typeof this.opts.colorTransform !== 'undefined') colorTransform = !!this.opts.colorTransform; component1 = this.components[0]; component2 = this.components[1]; component3 = this.components[2]; for (y = 0; y < height; y++) { component1Line = component1.lines[0 | (y * component1.scaleY * scaleY)]; component2Line = component2.lines[0 | (y * component2.scaleY * scaleY)]; component3Line = component3.lines[0 | (y * component3.scaleY * scaleY)]; for (x = 0; x < width; x++) { if (!colorTransform) { R = component1Line[0 | (x * component1.scaleX * scaleX)]; G = component2Line[0 | (x * component2.scaleX * scaleX)]; B = component3Line[0 | (x * component3.scaleX * scaleX)]; } else { Y = component1Line[0 | (x * component1.scaleX * scaleX)]; Cb = component2Line[0 | (x * component2.scaleX * scaleX)]; Cr = component3Line[0 | (x * component3.scaleX * scaleX)]; R = clampTo8bit(Y + 1.402 * (Cr - 128)); G = clampTo8bit(Y - 0.3441363 * (Cb - 128) - 0.71413636 * (Cr - 128)); B = clampTo8bit(Y + 1.772 * (Cb - 128)); } data[offset++] = R; data[offset++] = G; data[offset++] = B; } } break; case 4: if (!this.adobe) throw new Error('Unsupported color mode (4 components)'); // The default transform for four components is false colorTransform = false; // The adobe transform marker overrides any previous setting if (this.adobe && this.adobe.transformCode) colorTransform = true; else if (typeof this.opts.colorTransform !== 'undefined') colorTransform = !!this.opts.colorTransform; component1 = this.components[0]; component2 = this.components[1]; component3 = this.components[2]; component4 = this.components[3]; for (y = 0; y < height; y++) { component1Line = component1.lines[0 | (y * component1.scaleY * scaleY)]; component2Line = component2.lines[0 | (y * component2.scaleY * scaleY)]; component3Line = component3.lines[0 | (y * component3.scaleY * scaleY)]; component4Line = component4.lines[0 | (y * component4.scaleY * scaleY)]; for (x = 0; x < width; x++) { if (!colorTransform) { C = component1Line[0 | (x * component1.scaleX * scaleX)]; M = component2Line[0 | (x * component2.scaleX * scaleX)]; Ye = component3Line[0 | (x * component3.scaleX * scaleX)]; K = component4Line[0 | (x * component4.scaleX * scaleX)]; } else { Y = component1Line[0 | (x * component1.scaleX * scaleX)]; Cb = component2Line[0 | (x * component2.scaleX * scaleX)]; Cr = component3Line[0 | (x * component3.scaleX * scaleX)]; K = component4Line[0 | (x * component4.scaleX * scaleX)]; C = 255 - clampTo8bit(Y + 1.402 * (Cr - 128)); M = 255 - clampTo8bit(Y - 0.3441363 * (Cb - 128) - 0.71413636 * (Cr - 128)); Ye = 255 - clampTo8bit(Y + 1.772 * (Cb - 128)); } data[offset++] = 255-C; data[offset++] = 255-M; data[offset++] = 255-Ye; data[offset++] = 255-K; } } break; default: throw new Error('Unsupported color mode'); } return data; }, copyToImageData: function copyToImageData(imageData, formatAsRGBA) { var width = imageData.width, height = imageData.height; var imageDataArray = imageData.data; var data = this.getData(width, height); var i = 0, j = 0, x, y; var Y, K, C, M, R, G, B; switch (this.components.length) { case 1: for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { Y = data[i++]; imageDataArray[j++] = Y; imageDataArray[j++] = Y; imageDataArray[j++] = Y; if (formatAsRGBA) { imageDataArray[j++] = 255; } } } break; case 3: for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { R = data[i++]; G = data[i++]; B = data[i++]; imageDataArray[j++] = R; imageDataArray[j++] = G; imageDataArray[j++] = B; if (formatAsRGBA) { imageDataArray[j++] = 255; } } } break; case 4: for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { C = data[i++]; M = data[i++]; Y = data[i++]; K = data[i++]; R = 255 - clampTo8bit(C * (1 - K / 255) + K); G = 255 - clampTo8bit(M * (1 - K / 255) + K); B = 255 - clampTo8bit(Y * (1 - K / 255) + K); imageDataArray[j++] = R; imageDataArray[j++] = G; imageDataArray[j++] = B; if (formatAsRGBA) { imageDataArray[j++] = 255; } } } break; default: throw new Error('Unsupported color mode'); } } }; // We cap the amount of memory used by jpeg-js to avoid unexpected OOMs from untrusted content. var totalBytesAllocated = 0; var maxMemoryUsageBytes = 0; function requestMemoryAllocation(increaseAmount = 0) { var totalMemoryImpactBytes = totalBytesAllocated + increaseAmount; if (totalMemoryImpactBytes > maxMemoryUsageBytes) { var exceededAmount = Math.ceil((totalMemoryImpactBytes - maxMemoryUsageBytes) / 1024 / 1024); throw new Error(`maxMemoryUsageInMB limit exceeded by at least ${exceededAmount}MB`); } totalBytesAllocated = totalMemoryImpactBytes; } constructor.resetMaxMemoryUsage = function (maxMemoryUsageBytes_) { totalBytesAllocated = 0; maxMemoryUsageBytes = maxMemoryUsageBytes_; }; constructor.getBytesAllocated = function () { return totalBytesAllocated; }; constructor.requestMemoryAllocation = requestMemoryAllocation; return constructor; })(); if (typeof module !== 'undefined') { module.exports = decode; } else if (typeof window !== 'undefined') { window['jpeg-js'] = window['jpeg-js'] || {}; window['jpeg-js'].decode = decode; } function decode(jpegData, userOpts = {}) { var defaultOpts = { // "undefined" means "Choose whether to transform colors based on the image’s color model." colorTransform: undefined, useTArray: false, formatAsRGBA: true, tolerantDecoding: true, maxResolutionInMP: 100, // Don't decode more than 100 megapixels maxMemoryUsageInMB: 512, // Don't decode if memory footprint is more than 512MB }; var opts = {...defaultOpts, ...userOpts}; var arr = new Uint8Array(jpegData); var decoder = new JpegImage(); decoder.opts = opts; // If this constructor ever supports async decoding this will need to be done differently. // Until then, treating as singleton limit is fine. JpegImage.resetMaxMemoryUsage(opts.maxMemoryUsageInMB * 1024 * 1024); decoder.parse(arr); var channels = (opts.formatAsRGBA) ? 4 : 3; var bytesNeeded = decoder.width * decoder.height * channels; try { JpegImage.requestMemoryAllocation(bytesNeeded); var image = { width: decoder.width, height: decoder.height, exifBuffer: decoder.exifBuffer, data: opts.useTArray ? new Uint8Array(bytesNeeded) : Buffer.alloc(bytesNeeded) }; if(decoder.comments.length > 0) { image["comments"] = decoder.comments; } } catch (err){ if (err instanceof RangeError){ throw new Error("Could not allocate enough memory for the image. " + "Required: " + bytesNeeded); } else { throw err; } } decoder.copyToImageData(image, opts.formatAsRGBA); return image; } }).call(this,require("buffer").Buffer) },{"buffer":48}],82:[function(require,module,exports){ (function (Buffer){ /* Copyright (c) 2008, Adobe Systems Incorporated All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Adobe Systems Incorporated nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* JPEG encoder ported to JavaScript and optimized by Andreas Ritter, www.bytestrom.eu, 11/2009 Basic GUI blocking jpeg encoder */ var btoa = btoa || function(buf) { return Buffer.from(buf).toString('base64'); }; function JPEGEncoder(quality) { var self = this; var fround = Math.round; var ffloor = Math.floor; var YTable = new Array(64); var UVTable = new Array(64); var fdtbl_Y = new Array(64); var fdtbl_UV = new Array(64); var YDC_HT; var UVDC_HT; var YAC_HT; var UVAC_HT; var bitcode = new Array(65535); var category = new Array(65535); var outputfDCTQuant = new Array(64); var DU = new Array(64); var byteout = []; var bytenew = 0; var bytepos = 7; var YDU = new Array(64); var UDU = new Array(64); var VDU = new Array(64); var clt = new Array(256); var RGB_YUV_TABLE = new Array(2048); var currentQuality; var ZigZag = [ 0, 1, 5, 6,14,15,27,28, 2, 4, 7,13,16,26,29,42, 3, 8,12,17,25,30,41,43, 9,11,18,24,31,40,44,53, 10,19,23,32,39,45,52,54, 20,22,33,38,46,51,55,60, 21,34,37,47,50,56,59,61, 35,36,48,49,57,58,62,63 ]; var std_dc_luminance_nrcodes = [0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0]; var std_dc_luminance_values = [0,1,2,3,4,5,6,7,8,9,10,11]; var std_ac_luminance_nrcodes = [0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d]; var std_ac_luminance_values = [ 0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12, 0x21,0x31,0x41,0x06,0x13,0x51,0x61,0x07, 0x22,0x71,0x14,0x32,0x81,0x91,0xa1,0x08, 0x23,0x42,0xb1,0xc1,0x15,0x52,0xd1,0xf0, 0x24,0x33,0x62,0x72,0x82,0x09,0x0a,0x16, 0x17,0x18,0x19,0x1a,0x25,0x26,0x27,0x28, 0x29,0x2a,0x34,0x35,0x36,0x37,0x38,0x39, 0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49, 0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59, 0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69, 0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79, 0x7a,0x83,0x84,0x85,0x86,0x87,0x88,0x89, 0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98, 0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7, 0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6, 0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5, 0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4, 0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe1,0xe2, 0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea, 0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8, 0xf9,0xfa ]; var std_dc_chrominance_nrcodes = [0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0]; var std_dc_chrominance_values = [0,1,2,3,4,5,6,7,8,9,10,11]; var std_ac_chrominance_nrcodes = [0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77]; var std_ac_chrominance_values = [ 0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21, 0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71, 0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91, 0xa1,0xb1,0xc1,0x09,0x23,0x33,0x52,0xf0, 0x15,0x62,0x72,0xd1,0x0a,0x16,0x24,0x34, 0xe1,0x25,0xf1,0x17,0x18,0x19,0x1a,0x26, 0x27,0x28,0x29,0x2a,0x35,0x36,0x37,0x38, 0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48, 0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58, 0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68, 0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78, 0x79,0x7a,0x82,0x83,0x84,0x85,0x86,0x87, 0x88,0x89,0x8a,0x92,0x93,0x94,0x95,0x96, 0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5, 0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4, 0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3, 0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2, 0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda, 0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9, 0xea,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8, 0xf9,0xfa ]; function initQuantTables(sf){ var YQT = [ 16, 11, 10, 16, 24, 40, 51, 61, 12, 12, 14, 19, 26, 58, 60, 55, 14, 13, 16, 24, 40, 57, 69, 56, 14, 17, 22, 29, 51, 87, 80, 62, 18, 22, 37, 56, 68,109,103, 77, 24, 35, 55, 64, 81,104,113, 92, 49, 64, 78, 87,103,121,120,101, 72, 92, 95, 98,112,100,103, 99 ]; for (var i = 0; i < 64; i++) { var t = ffloor((YQT[i]*sf+50)/100); if (t < 1) { t = 1; } else if (t > 255) { t = 255; } YTable[ZigZag[i]] = t; } var UVQT = [ 17, 18, 24, 47, 99, 99, 99, 99, 18, 21, 26, 66, 99, 99, 99, 99, 24, 26, 56, 99, 99, 99, 99, 99, 47, 66, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99 ]; for (var j = 0; j < 64; j++) { var u = ffloor((UVQT[j]*sf+50)/100); if (u < 1) { u = 1; } else if (u > 255) { u = 255; } UVTable[ZigZag[j]] = u; } var aasf = [ 1.0, 1.387039845, 1.306562965, 1.175875602, 1.0, 0.785694958, 0.541196100, 0.275899379 ]; var k = 0; for (var row = 0; row < 8; row++) { for (var col = 0; col < 8; col++) { fdtbl_Y[k] = (1.0 / (YTable [ZigZag[k]] * aasf[row] * aasf[col] * 8.0)); fdtbl_UV[k] = (1.0 / (UVTable[ZigZag[k]] * aasf[row] * aasf[col] * 8.0)); k++; } } } function computeHuffmanTbl(nrcodes, std_table){ var codevalue = 0; var pos_in_table = 0; var HT = new Array(); for (var k = 1; k <= 16; k++) { for (var j = 1; j <= nrcodes[k]; j++) { HT[std_table[pos_in_table]] = []; HT[std_table[pos_in_table]][0] = codevalue; HT[std_table[pos_in_table]][1] = k; pos_in_table++; codevalue++; } codevalue*=2; } return HT; } function initHuffmanTbl() { YDC_HT = computeHuffmanTbl(std_dc_luminance_nrcodes,std_dc_luminance_values); UVDC_HT = computeHuffmanTbl(std_dc_chrominance_nrcodes,std_dc_chrominance_values); YAC_HT = computeHuffmanTbl(std_ac_luminance_nrcodes,std_ac_luminance_values); UVAC_HT = computeHuffmanTbl(std_ac_chrominance_nrcodes,std_ac_chrominance_values); } function initCategoryNumber() { var nrlower = 1; var nrupper = 2; for (var cat = 1; cat <= 15; cat++) { //Positive numbers for (var nr = nrlower; nr>0] = 38470 * i; RGB_YUV_TABLE[(i+ 512)>>0] = 7471 * i + 0x8000; RGB_YUV_TABLE[(i+ 768)>>0] = -11059 * i; RGB_YUV_TABLE[(i+1024)>>0] = -21709 * i; RGB_YUV_TABLE[(i+1280)>>0] = 32768 * i + 0x807FFF; RGB_YUV_TABLE[(i+1536)>>0] = -27439 * i; RGB_YUV_TABLE[(i+1792)>>0] = - 5329 * i; } } // IO functions function writeBits(bs) { var value = bs[0]; var posval = bs[1]-1; while ( posval >= 0 ) { if (value & (1 << posval) ) { bytenew |= (1 << bytepos); } posval--; bytepos--; if (bytepos < 0) { if (bytenew == 0xFF) { writeByte(0xFF); writeByte(0); } else { writeByte(bytenew); } bytepos=7; bytenew=0; } } } function writeByte(value) { //byteout.push(clt[value]); // write char directly instead of converting later byteout.push(value); } function writeWord(value) { writeByte((value>>8)&0xFF); writeByte((value )&0xFF); } // DCT & quantization core function fDCTQuant(data, fdtbl) { var d0, d1, d2, d3, d4, d5, d6, d7; /* Pass 1: process rows. */ var dataOff=0; var i; var I8 = 8; var I64 = 64; for (i=0; i 0.0) ? ((fDCTQuant + 0.5)|0) : ((fDCTQuant - 0.5)|0); //outputfDCTQuant[i] = fround(fDCTQuant); } return outputfDCTQuant; } function writeAPP0() { writeWord(0xFFE0); // marker writeWord(16); // length writeByte(0x4A); // J writeByte(0x46); // F writeByte(0x49); // I writeByte(0x46); // F writeByte(0); // = "JFIF",'\0' writeByte(1); // versionhi writeByte(1); // versionlo writeByte(0); // xyunits writeWord(1); // xdensity writeWord(1); // ydensity writeByte(0); // thumbnwidth writeByte(0); // thumbnheight } function writeAPP1(exifBuffer) { if (!exifBuffer) return; writeWord(0xFFE1); // APP1 marker if (exifBuffer[0] === 0x45 && exifBuffer[1] === 0x78 && exifBuffer[2] === 0x69 && exifBuffer[3] === 0x66) { // Buffer already starts with EXIF, just use it directly writeWord(exifBuffer.length + 2); // length is buffer + length itself! } else { // Buffer doesn't start with EXIF, write it for them writeWord(exifBuffer.length + 5 + 2); // length is buffer + EXIF\0 + length itself! writeByte(0x45); // E writeByte(0x78); // X writeByte(0x69); // I writeByte(0x66); // F writeByte(0); // = "EXIF",'\0' } for (var i = 0; i < exifBuffer.length; i++) { writeByte(exifBuffer[i]); } } function writeSOF0(width, height) { writeWord(0xFFC0); // marker writeWord(17); // length, truecolor YUV JPG writeByte(8); // precision writeWord(height); writeWord(width); writeByte(3); // nrofcomponents writeByte(1); // IdY writeByte(0x11); // HVY writeByte(0); // QTY writeByte(2); // IdU writeByte(0x11); // HVU writeByte(1); // QTU writeByte(3); // IdV writeByte(0x11); // HVV writeByte(1); // QTV } function writeDQT() { writeWord(0xFFDB); // marker writeWord(132); // length writeByte(0); for (var i=0; i<64; i++) { writeByte(YTable[i]); } writeByte(1); for (var j=0; j<64; j++) { writeByte(UVTable[j]); } } function writeDHT() { writeWord(0xFFC4); // marker writeWord(0x01A2); // length writeByte(0); // HTYDCinfo for (var i=0; i<16; i++) { writeByte(std_dc_luminance_nrcodes[i+1]); } for (var j=0; j<=11; j++) { writeByte(std_dc_luminance_values[j]); } writeByte(0x10); // HTYACinfo for (var k=0; k<16; k++) { writeByte(std_ac_luminance_nrcodes[k+1]); } for (var l=0; l<=161; l++) { writeByte(std_ac_luminance_values[l]); } writeByte(1); // HTUDCinfo for (var m=0; m<16; m++) { writeByte(std_dc_chrominance_nrcodes[m+1]); } for (var n=0; n<=11; n++) { writeByte(std_dc_chrominance_values[n]); } writeByte(0x11); // HTUACinfo for (var o=0; o<16; o++) { writeByte(std_ac_chrominance_nrcodes[o+1]); } for (var p=0; p<=161; p++) { writeByte(std_ac_chrominance_values[p]); } } function writeSOS() { writeWord(0xFFDA); // marker writeWord(12); // length writeByte(3); // nrofcomponents writeByte(1); // IdY writeByte(0); // HTY writeByte(2); // IdU writeByte(0x11); // HTU writeByte(3); // IdV writeByte(0x11); // HTV writeByte(0); // Ss writeByte(0x3f); // Se writeByte(0); // Bf } function processDU(CDU, fdtbl, DC, HTDC, HTAC){ var EOB = HTAC[0x00]; var M16zeroes = HTAC[0xF0]; var pos; var I16 = 16; var I63 = 63; var I64 = 64; var DU_DCT = fDCTQuant(CDU, fdtbl); //ZigZag reorder for (var j=0;j0)&&(DU[end0pos]==0); end0pos--) {}; //end0pos = first element in reverse order !=0 if ( end0pos == 0) { writeBits(EOB); return DC; } var i = 1; var lng; while ( i <= end0pos ) { var startpos = i; for (; (DU[i]==0) && (i<=end0pos); ++i) {} var nrzeroes = i-startpos; if ( nrzeroes >= I16 ) { lng = nrzeroes>>4; for (var nrmarker=1; nrmarker <= lng; ++nrmarker) writeBits(M16zeroes); nrzeroes = nrzeroes&0xF; } pos = 32767+DU[i]; writeBits(HTAC[(nrzeroes<<4)+category[pos]]); writeBits(bitcode[pos]); i++; } if ( end0pos != I63 ) { writeBits(EOB); } return DC; } function initCharLookupTable(){ var sfcc = String.fromCharCode; for(var i=0; i < 256; i++){ ///// ACHTUNG // 255 clt[i] = sfcc(i); } } this.encode = function(image,quality) // image data object { var time_start = new Date().getTime(); if(quality) setQuality(quality); // Initialize bit writer byteout = new Array(); bytenew=0; bytepos=7; // Add JPEG headers writeWord(0xFFD8); // SOI writeAPP0(); writeAPP1(image.exifBuffer); writeDQT(); writeSOF0(image.width,image.height); writeDHT(); writeSOS(); // Encode 8x8 macroblocks var DCY=0; var DCU=0; var DCV=0; bytenew=0; bytepos=7; this.encode.displayName = "_encode_"; var imageData = image.data; var width = image.width; var height = image.height; var quadWidth = width*4; var tripleWidth = width*3; var x, y = 0; var r, g, b; var start,p, col,row,pos; while(y < height){ x = 0; while(x < quadWidth){ start = quadWidth * y + x; p = start; col = -1; row = 0; for(pos=0; pos < 64; pos++){ row = pos >> 3;// /8 col = ( pos & 7 ) * 4; // %8 p = start + ( row * quadWidth ) + col; if(y+row >= height){ // padding bottom p-= (quadWidth*(y+1+row-height)); } if(x+col >= quadWidth){ // padding right p-= ((x+col) - quadWidth +4) } r = imageData[ p++ ]; g = imageData[ p++ ]; b = imageData[ p++ ]; /* // calculate YUV values dynamically YDU[pos]=((( 0.29900)*r+( 0.58700)*g+( 0.11400)*b))-128; //-0x80 UDU[pos]=(((-0.16874)*r+(-0.33126)*g+( 0.50000)*b)); VDU[pos]=((( 0.50000)*r+(-0.41869)*g+(-0.08131)*b)); */ // use lookup table (slightly faster) YDU[pos] = ((RGB_YUV_TABLE[r] + RGB_YUV_TABLE[(g + 256)>>0] + RGB_YUV_TABLE[(b + 512)>>0]) >> 16)-128; UDU[pos] = ((RGB_YUV_TABLE[(r + 768)>>0] + RGB_YUV_TABLE[(g + 1024)>>0] + RGB_YUV_TABLE[(b + 1280)>>0]) >> 16)-128; VDU[pos] = ((RGB_YUV_TABLE[(r + 1280)>>0] + RGB_YUV_TABLE[(g + 1536)>>0] + RGB_YUV_TABLE[(b + 1792)>>0]) >> 16)-128; } DCY = processDU(YDU, fdtbl_Y, DCY, YDC_HT, YAC_HT); DCU = processDU(UDU, fdtbl_UV, DCU, UVDC_HT, UVAC_HT); DCV = processDU(VDU, fdtbl_UV, DCV, UVDC_HT, UVAC_HT); x+=32; } y+=8; } //////////////////////////////////////////////////////////////// // Do the bit alignment of the EOI marker if ( bytepos >= 0 ) { var fillbits = []; fillbits[1] = bytepos+1; fillbits[0] = (1<<(bytepos+1))-1; writeBits(fillbits); } writeWord(0xFFD9); //EOI if (typeof module === 'undefined') return new Uint8Array(byteout); return Buffer.from(byteout); var jpegDataUri = 'data:image/jpeg;base64,' + btoa(byteout.join('')); byteout = []; // benchmarking var duration = new Date().getTime() - time_start; //console.log('Encoding time: '+ duration + 'ms'); // return jpegDataUri } function setQuality(quality){ if (quality <= 0) { quality = 1; } if (quality > 100) { quality = 100; } if(currentQuality == quality) return // don't recalc if unchanged var sf = 0; if (quality < 50) { sf = Math.floor(5000 / quality); } else { sf = Math.floor(200 - quality*2); } initQuantTables(sf); currentQuality = quality; //console.log('Quality set to: '+quality +'%'); } function init(){ var time_start = new Date().getTime(); if(!quality) quality = 50; // Create tables initCharLookupTable() initHuffmanTbl(); initCategoryNumber(); initRGBYUVTable(); setQuality(quality); var duration = new Date().getTime() - time_start; //console.log('Initialization '+ duration + 'ms'); } init(); }; if (typeof module !== 'undefined') { module.exports = encode; } else if (typeof window !== 'undefined') { window['jpeg-js'] = window['jpeg-js'] || {}; window['jpeg-js'].encode = encode; } function encode(imgData, qu) { if (typeof qu === 'undefined') qu = 50; var encoder = new JPEGEncoder(qu); var data = encoder.encode(imgData, qu); return { data: data, width: imgData.width, height: imgData.height }; } // helper function to get the imageData of an existing image on the current page. function getImageDataFromImage(idOrElement){ var theImg = (typeof(idOrElement)=='string')? document.getElementById(idOrElement):idOrElement; var cvs = document.createElement('canvas'); cvs.width = theImg.width; cvs.height = theImg.height; var ctx = cvs.getContext("2d"); ctx.drawImage(theImg,0,0); return (ctx.getImageData(0, 0, cvs.width, cvs.height)); } }).call(this,require("buffer").Buffer) },{"buffer":48}],83:[function(require,module,exports){ (function (process){ var path = require('path'); var fs = require('fs'); var _0777 = parseInt('0777', 8); module.exports = mkdirP.mkdirp = mkdirP.mkdirP = mkdirP; function mkdirP (p, opts, f, made) { if (typeof opts === 'function') { f = opts; opts = {}; } else if (!opts || typeof opts !== 'object') { opts = { mode: opts }; } var mode = opts.mode; var xfs = opts.fs || fs; if (mode === undefined) { mode = _0777 & (~process.umask()); } if (!made) made = null; var cb = f || function () {}; p = path.resolve(p); xfs.mkdir(p, mode, function (er) { if (!er) { made = made || p; return cb(null, made); } switch (er.code) { case 'ENOENT': mkdirP(path.dirname(p), opts, function (er, made) { if (er) cb(er, made); else mkdirP(p, opts, cb, made); }); break; // In the case of any other error, just see if there's a dir // there already. If so, then hooray! If not, then something // is borked. default: xfs.stat(p, function (er2, stat) { // if the stat fails, then that's super weird. // let the original error be the failure reason. if (er2 || !stat.isDirectory()) cb(er, made) else cb(null, made); }); break; } }); } mkdirP.sync = function sync (p, opts, made) { if (!opts || typeof opts !== 'object') { opts = { mode: opts }; } var mode = opts.mode; var xfs = opts.fs || fs; if (mode === undefined) { mode = _0777 & (~process.umask()); } if (!made) made = null; p = path.resolve(p); try { xfs.mkdirSync(p, mode); made = made || p; } catch (err0) { switch (err0.code) { case 'ENOENT' : made = sync(path.dirname(p), opts, made); sync(p, opts, made); break; // In the case of any other error, just see if there's a dir // there already. If so, then hooray! If not, then something // is borked. default: var stat; try { stat = xfs.statSync(p); } catch (err1) { throw err0; } if (!stat.isDirectory()) throw err0; break; } } return made; }; }).call(this,require('_process')) },{"_process":133,"fs":47,"path":107}],84:[function(require,module,exports){ /* object-assign (c) Sindre Sorhus @license MIT */ 'use strict'; /* eslint-disable no-unused-vars */ var getOwnPropertySymbols = Object.getOwnPropertySymbols; var hasOwnProperty = Object.prototype.hasOwnProperty; var propIsEnumerable = Object.prototype.propertyIsEnumerable; function toObject(val) { if (val === null || val === undefined) { throw new TypeError('Object.assign cannot be called with null or undefined'); } return Object(val); } function shouldUseNative() { try { if (!Object.assign) { return false; } // Detect buggy property enumeration order in older V8 versions. // https://bugs.chromium.org/p/v8/issues/detail?id=4118 var test1 = new String('abc'); // eslint-disable-line no-new-wrappers test1[5] = 'de'; if (Object.getOwnPropertyNames(test1)[0] === '5') { return false; } // https://bugs.chromium.org/p/v8/issues/detail?id=3056 var test2 = {}; for (var i = 0; i < 10; i++) { test2['_' + String.fromCharCode(i)] = i; } var order2 = Object.getOwnPropertyNames(test2).map(function (n) { return test2[n]; }); if (order2.join('') !== '0123456789') { return false; } // https://bugs.chromium.org/p/v8/issues/detail?id=3056 var test3 = {}; 'abcdefghijklmnopqrst'.split('').forEach(function (letter) { test3[letter] = letter; }); if (Object.keys(Object.assign({}, test3)).join('') !== 'abcdefghijklmnopqrst') { return false; } return true; } catch (err) { // We don't expect any of the above to throw, but better to be safe. return false; } } module.exports = shouldUseNative() ? Object.assign : function (target, source) { var from; var to = toObject(target); var symbols; for (var s = 1; s < arguments.length; s++) { from = Object(arguments[s]); for (var key in from) { if (hasOwnProperty.call(from, key)) { to[key] = from[key]; } } if (getOwnPropertySymbols) { symbols = getOwnPropertySymbols(from); for (var i = 0; i < symbols.length; i++) { if (propIsEnumerable.call(from, symbols[i])) { to[symbols[i]] = from[symbols[i]]; } } } } return to; }; },{}],85:[function(require,module,exports){ arguments[4][64][0].apply(exports,arguments) },{"dup":64}],86:[function(require,module,exports){ // Top level file is just a mixin of submodules & constants 'use strict'; var assign = require('./lib/utils/common').assign; var deflate = require('./lib/deflate'); var inflate = require('./lib/inflate'); var constants = require('./lib/zlib/constants'); var pako = {}; assign(pako, deflate, inflate, constants); module.exports = pako; },{"./lib/deflate":87,"./lib/inflate":88,"./lib/utils/common":89,"./lib/zlib/constants":92}],87:[function(require,module,exports){ 'use strict'; var zlib_deflate = require('./zlib/deflate'); var utils = require('./utils/common'); var strings = require('./utils/strings'); var msg = require('./zlib/messages'); var ZStream = require('./zlib/zstream'); var toString = Object.prototype.toString; /* Public constants ==========================================================*/ /* ===========================================================================*/ var Z_NO_FLUSH = 0; var Z_FINISH = 4; var Z_OK = 0; var Z_STREAM_END = 1; var Z_SYNC_FLUSH = 2; var Z_DEFAULT_COMPRESSION = -1; var Z_DEFAULT_STRATEGY = 0; var Z_DEFLATED = 8; /* ===========================================================================*/ /** * class Deflate * * Generic JS-style wrapper for zlib calls. If you don't need * streaming behaviour - use more simple functions: [[deflate]], * [[deflateRaw]] and [[gzip]]. **/ /* internal * Deflate.chunks -> Array * * Chunks of output data, if [[Deflate#onData]] not overridden. **/ /** * Deflate.result -> Uint8Array|Array * * Compressed result, generated by default [[Deflate#onData]] * and [[Deflate#onEnd]] handlers. Filled after you push last chunk * (call [[Deflate#push]] with `Z_FINISH` / `true` param) or if you * push a chunk with explicit flush (call [[Deflate#push]] with * `Z_SYNC_FLUSH` param). **/ /** * Deflate.err -> Number * * Error code after deflate finished. 0 (Z_OK) on success. * You will not need it in real life, because deflate errors * are possible only on wrong options or bad `onData` / `onEnd` * custom handlers. **/ /** * Deflate.msg -> String * * Error message, if [[Deflate.err]] != 0 **/ /** * new Deflate(options) * - options (Object): zlib deflate options. * * Creates new deflator instance with specified params. Throws exception * on bad params. Supported options: * * - `level` * - `windowBits` * - `memLevel` * - `strategy` * - `dictionary` * * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced) * for more information on these. * * Additional options, for internal needs: * * - `chunkSize` - size of generated data chunks (16K by default) * - `raw` (Boolean) - do raw deflate * - `gzip` (Boolean) - create gzip wrapper * - `to` (String) - if equal to 'string', then result will be "binary string" * (each char code [0..255]) * - `header` (Object) - custom header for gzip * - `text` (Boolean) - true if compressed data believed to be text * - `time` (Number) - modification time, unix timestamp * - `os` (Number) - operation system code * - `extra` (Array) - array of bytes with extra data (max 65536) * - `name` (String) - file name (binary string) * - `comment` (String) - comment (binary string) * - `hcrc` (Boolean) - true if header crc should be added * * ##### Example: * * ```javascript * var pako = require('pako') * , chunk1 = Uint8Array([1,2,3,4,5,6,7,8,9]) * , chunk2 = Uint8Array([10,11,12,13,14,15,16,17,18,19]); * * var deflate = new pako.Deflate({ level: 3}); * * deflate.push(chunk1, false); * deflate.push(chunk2, true); // true -> last chunk * * if (deflate.err) { throw new Error(deflate.err); } * * console.log(deflate.result); * ``` **/ function Deflate(options) { if (!(this instanceof Deflate)) return new Deflate(options); this.options = utils.assign({ level: Z_DEFAULT_COMPRESSION, method: Z_DEFLATED, chunkSize: 16384, windowBits: 15, memLevel: 8, strategy: Z_DEFAULT_STRATEGY, to: '' }, options || {}); var opt = this.options; if (opt.raw && (opt.windowBits > 0)) { opt.windowBits = -opt.windowBits; } else if (opt.gzip && (opt.windowBits > 0) && (opt.windowBits < 16)) { opt.windowBits += 16; } this.err = 0; // error code, if happens (0 = Z_OK) this.msg = ''; // error message this.ended = false; // used to avoid multiple onEnd() calls this.chunks = []; // chunks of compressed data this.strm = new ZStream(); this.strm.avail_out = 0; var status = zlib_deflate.deflateInit2( this.strm, opt.level, opt.method, opt.windowBits, opt.memLevel, opt.strategy ); if (status !== Z_OK) { throw new Error(msg[status]); } if (opt.header) { zlib_deflate.deflateSetHeader(this.strm, opt.header); } if (opt.dictionary) { var dict; // Convert data if needed if (typeof opt.dictionary === 'string') { // If we need to compress text, change encoding to utf8. dict = strings.string2buf(opt.dictionary); } else if (toString.call(opt.dictionary) === '[object ArrayBuffer]') { dict = new Uint8Array(opt.dictionary); } else { dict = opt.dictionary; } status = zlib_deflate.deflateSetDictionary(this.strm, dict); if (status !== Z_OK) { throw new Error(msg[status]); } this._dict_set = true; } } /** * Deflate#push(data[, mode]) -> Boolean * - data (Uint8Array|Array|ArrayBuffer|String): input data. Strings will be * converted to utf8 byte sequence. * - mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. * See constants. Skipped or `false` means Z_NO_FLUSH, `true` means Z_FINISH. * * Sends input data to deflate pipe, generating [[Deflate#onData]] calls with * new compressed chunks. Returns `true` on success. The last data block must have * mode Z_FINISH (or `true`). That will flush internal pending buffers and call * [[Deflate#onEnd]]. For interim explicit flushes (without ending the stream) you * can use mode Z_SYNC_FLUSH, keeping the compression context. * * On fail call [[Deflate#onEnd]] with error code and return false. * * We strongly recommend to use `Uint8Array` on input for best speed (output * array format is detected automatically). Also, don't skip last param and always * use the same type in your code (boolean or number). That will improve JS speed. * * For regular `Array`-s make sure all elements are [0..255]. * * ##### Example * * ```javascript * push(chunk, false); // push one of data chunks * ... * push(chunk, true); // push last chunk * ``` **/ Deflate.prototype.push = function (data, mode) { var strm = this.strm; var chunkSize = this.options.chunkSize; var status, _mode; if (this.ended) { return false; } _mode = (mode === ~~mode) ? mode : ((mode === true) ? Z_FINISH : Z_NO_FLUSH); // Convert data if needed if (typeof data === 'string') { // If we need to compress text, change encoding to utf8. strm.input = strings.string2buf(data); } else if (toString.call(data) === '[object ArrayBuffer]') { strm.input = new Uint8Array(data); } else { strm.input = data; } strm.next_in = 0; strm.avail_in = strm.input.length; do { if (strm.avail_out === 0) { strm.output = new utils.Buf8(chunkSize); strm.next_out = 0; strm.avail_out = chunkSize; } status = zlib_deflate.deflate(strm, _mode); /* no bad return value */ if (status !== Z_STREAM_END && status !== Z_OK) { this.onEnd(status); this.ended = true; return false; } if (strm.avail_out === 0 || (strm.avail_in === 0 && (_mode === Z_FINISH || _mode === Z_SYNC_FLUSH))) { if (this.options.to === 'string') { this.onData(strings.buf2binstring(utils.shrinkBuf(strm.output, strm.next_out))); } else { this.onData(utils.shrinkBuf(strm.output, strm.next_out)); } } } while ((strm.avail_in > 0 || strm.avail_out === 0) && status !== Z_STREAM_END); // Finalize on the last chunk. if (_mode === Z_FINISH) { status = zlib_deflate.deflateEnd(this.strm); this.onEnd(status); this.ended = true; return status === Z_OK; } // callback interim results if Z_SYNC_FLUSH. if (_mode === Z_SYNC_FLUSH) { this.onEnd(Z_OK); strm.avail_out = 0; return true; } return true; }; /** * Deflate#onData(chunk) -> Void * - chunk (Uint8Array|Array|String): output data. Type of array depends * on js engine support. When string output requested, each chunk * will be string. * * By default, stores data blocks in `chunks[]` property and glue * those in `onEnd`. Override this handler, if you need another behaviour. **/ Deflate.prototype.onData = function (chunk) { this.chunks.push(chunk); }; /** * Deflate#onEnd(status) -> Void * - status (Number): deflate status. 0 (Z_OK) on success, * other if not. * * Called once after you tell deflate that the input stream is * complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) * or if an error happened. By default - join collected chunks, * free memory and fill `results` / `err` properties. **/ Deflate.prototype.onEnd = function (status) { // On success - join if (status === Z_OK) { if (this.options.to === 'string') { this.result = this.chunks.join(''); } else { this.result = utils.flattenChunks(this.chunks); } } this.chunks = []; this.err = status; this.msg = this.strm.msg; }; /** * deflate(data[, options]) -> Uint8Array|Array|String * - data (Uint8Array|Array|String): input data to compress. * - options (Object): zlib deflate options. * * Compress `data` with deflate algorithm and `options`. * * Supported options are: * * - level * - windowBits * - memLevel * - strategy * - dictionary * * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced) * for more information on these. * * Sugar (options): * * - `raw` (Boolean) - say that we work with raw stream, if you don't wish to specify * negative windowBits implicitly. * - `to` (String) - if equal to 'string', then result will be "binary string" * (each char code [0..255]) * * ##### Example: * * ```javascript * var pako = require('pako') * , data = Uint8Array([1,2,3,4,5,6,7,8,9]); * * console.log(pako.deflate(data)); * ``` **/ function deflate(input, options) { var deflator = new Deflate(options); deflator.push(input, true); // That will never happens, if you don't cheat with options :) if (deflator.err) { throw deflator.msg || msg[deflator.err]; } return deflator.result; } /** * deflateRaw(data[, options]) -> Uint8Array|Array|String * - data (Uint8Array|Array|String): input data to compress. * - options (Object): zlib deflate options. * * The same as [[deflate]], but creates raw data, without wrapper * (header and adler32 crc). **/ function deflateRaw(input, options) { options = options || {}; options.raw = true; return deflate(input, options); } /** * gzip(data[, options]) -> Uint8Array|Array|String * - data (Uint8Array|Array|String): input data to compress. * - options (Object): zlib deflate options. * * The same as [[deflate]], but create gzip wrapper instead of * deflate one. **/ function gzip(input, options) { options = options || {}; options.gzip = true; return deflate(input, options); } exports.Deflate = Deflate; exports.deflate = deflate; exports.deflateRaw = deflateRaw; exports.gzip = gzip; },{"./utils/common":89,"./utils/strings":90,"./zlib/deflate":94,"./zlib/messages":99,"./zlib/zstream":101}],88:[function(require,module,exports){ 'use strict'; var zlib_inflate = require('./zlib/inflate'); var utils = require('./utils/common'); var strings = require('./utils/strings'); var c = require('./zlib/constants'); var msg = require('./zlib/messages'); var ZStream = require('./zlib/zstream'); var GZheader = require('./zlib/gzheader'); var toString = Object.prototype.toString; /** * class Inflate * * Generic JS-style wrapper for zlib calls. If you don't need * streaming behaviour - use more simple functions: [[inflate]] * and [[inflateRaw]]. **/ /* internal * inflate.chunks -> Array * * Chunks of output data, if [[Inflate#onData]] not overridden. **/ /** * Inflate.result -> Uint8Array|Array|String * * Uncompressed result, generated by default [[Inflate#onData]] * and [[Inflate#onEnd]] handlers. Filled after you push last chunk * (call [[Inflate#push]] with `Z_FINISH` / `true` param) or if you * push a chunk with explicit flush (call [[Inflate#push]] with * `Z_SYNC_FLUSH` param). **/ /** * Inflate.err -> Number * * Error code after inflate finished. 0 (Z_OK) on success. * Should be checked if broken data possible. **/ /** * Inflate.msg -> String * * Error message, if [[Inflate.err]] != 0 **/ /** * new Inflate(options) * - options (Object): zlib inflate options. * * Creates new inflator instance with specified params. Throws exception * on bad params. Supported options: * * - `windowBits` * - `dictionary` * * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced) * for more information on these. * * Additional options, for internal needs: * * - `chunkSize` - size of generated data chunks (16K by default) * - `raw` (Boolean) - do raw inflate * - `to` (String) - if equal to 'string', then result will be converted * from utf8 to utf16 (javascript) string. When string output requested, * chunk length can differ from `chunkSize`, depending on content. * * By default, when no options set, autodetect deflate/gzip data format via * wrapper header. * * ##### Example: * * ```javascript * var pako = require('pako') * , chunk1 = Uint8Array([1,2,3,4,5,6,7,8,9]) * , chunk2 = Uint8Array([10,11,12,13,14,15,16,17,18,19]); * * var inflate = new pako.Inflate({ level: 3}); * * inflate.push(chunk1, false); * inflate.push(chunk2, true); // true -> last chunk * * if (inflate.err) { throw new Error(inflate.err); } * * console.log(inflate.result); * ``` **/ function Inflate(options) { if (!(this instanceof Inflate)) return new Inflate(options); this.options = utils.assign({ chunkSize: 16384, windowBits: 0, to: '' }, options || {}); var opt = this.options; // Force window size for `raw` data, if not set directly, // because we have no header for autodetect. if (opt.raw && (opt.windowBits >= 0) && (opt.windowBits < 16)) { opt.windowBits = -opt.windowBits; if (opt.windowBits === 0) { opt.windowBits = -15; } } // If `windowBits` not defined (and mode not raw) - set autodetect flag for gzip/deflate if ((opt.windowBits >= 0) && (opt.windowBits < 16) && !(options && options.windowBits)) { opt.windowBits += 32; } // Gzip header has no info about windows size, we can do autodetect only // for deflate. So, if window size not set, force it to max when gzip possible if ((opt.windowBits > 15) && (opt.windowBits < 48)) { // bit 3 (16) -> gzipped data // bit 4 (32) -> autodetect gzip/deflate if ((opt.windowBits & 15) === 0) { opt.windowBits |= 15; } } this.err = 0; // error code, if happens (0 = Z_OK) this.msg = ''; // error message this.ended = false; // used to avoid multiple onEnd() calls this.chunks = []; // chunks of compressed data this.strm = new ZStream(); this.strm.avail_out = 0; var status = zlib_inflate.inflateInit2( this.strm, opt.windowBits ); if (status !== c.Z_OK) { throw new Error(msg[status]); } this.header = new GZheader(); zlib_inflate.inflateGetHeader(this.strm, this.header); } /** * Inflate#push(data[, mode]) -> Boolean * - data (Uint8Array|Array|ArrayBuffer|String): input data * - mode (Number|Boolean): 0..6 for corresponding Z_NO_FLUSH..Z_TREE modes. * See constants. Skipped or `false` means Z_NO_FLUSH, `true` means Z_FINISH. * * Sends input data to inflate pipe, generating [[Inflate#onData]] calls with * new output chunks. Returns `true` on success. The last data block must have * mode Z_FINISH (or `true`). That will flush internal pending buffers and call * [[Inflate#onEnd]]. For interim explicit flushes (without ending the stream) you * can use mode Z_SYNC_FLUSH, keeping the decompression context. * * On fail call [[Inflate#onEnd]] with error code and return false. * * We strongly recommend to use `Uint8Array` on input for best speed (output * format is detected automatically). Also, don't skip last param and always * use the same type in your code (boolean or number). That will improve JS speed. * * For regular `Array`-s make sure all elements are [0..255]. * * ##### Example * * ```javascript * push(chunk, false); // push one of data chunks * ... * push(chunk, true); // push last chunk * ``` **/ Inflate.prototype.push = function (data, mode) { var strm = this.strm; var chunkSize = this.options.chunkSize; var dictionary = this.options.dictionary; var status, _mode; var next_out_utf8, tail, utf8str; var dict; // Flag to properly process Z_BUF_ERROR on testing inflate call // when we check that all output data was flushed. var allowBufError = false; if (this.ended) { return false; } _mode = (mode === ~~mode) ? mode : ((mode === true) ? c.Z_FINISH : c.Z_NO_FLUSH); // Convert data if needed if (typeof data === 'string') { // Only binary strings can be decompressed on practice strm.input = strings.binstring2buf(data); } else if (toString.call(data) === '[object ArrayBuffer]') { strm.input = new Uint8Array(data); } else { strm.input = data; } strm.next_in = 0; strm.avail_in = strm.input.length; do { if (strm.avail_out === 0) { strm.output = new utils.Buf8(chunkSize); strm.next_out = 0; strm.avail_out = chunkSize; } status = zlib_inflate.inflate(strm, c.Z_NO_FLUSH); /* no bad return value */ if (status === c.Z_NEED_DICT && dictionary) { // Convert data if needed if (typeof dictionary === 'string') { dict = strings.string2buf(dictionary); } else if (toString.call(dictionary) === '[object ArrayBuffer]') { dict = new Uint8Array(dictionary); } else { dict = dictionary; } status = zlib_inflate.inflateSetDictionary(this.strm, dict); } if (status === c.Z_BUF_ERROR && allowBufError === true) { status = c.Z_OK; allowBufError = false; } if (status !== c.Z_STREAM_END && status !== c.Z_OK) { this.onEnd(status); this.ended = true; return false; } if (strm.next_out) { if (strm.avail_out === 0 || status === c.Z_STREAM_END || (strm.avail_in === 0 && (_mode === c.Z_FINISH || _mode === c.Z_SYNC_FLUSH))) { if (this.options.to === 'string') { next_out_utf8 = strings.utf8border(strm.output, strm.next_out); tail = strm.next_out - next_out_utf8; utf8str = strings.buf2string(strm.output, next_out_utf8); // move tail strm.next_out = tail; strm.avail_out = chunkSize - tail; if (tail) { utils.arraySet(strm.output, strm.output, next_out_utf8, tail, 0); } this.onData(utf8str); } else { this.onData(utils.shrinkBuf(strm.output, strm.next_out)); } } } // When no more input data, we should check that internal inflate buffers // are flushed. The only way to do it when avail_out = 0 - run one more // inflate pass. But if output data not exists, inflate return Z_BUF_ERROR. // Here we set flag to process this error properly. // // NOTE. Deflate does not return error in this case and does not needs such // logic. if (strm.avail_in === 0 && strm.avail_out === 0) { allowBufError = true; } } while ((strm.avail_in > 0 || strm.avail_out === 0) && status !== c.Z_STREAM_END); if (status === c.Z_STREAM_END) { _mode = c.Z_FINISH; } // Finalize on the last chunk. if (_mode === c.Z_FINISH) { status = zlib_inflate.inflateEnd(this.strm); this.onEnd(status); this.ended = true; return status === c.Z_OK; } // callback interim results if Z_SYNC_FLUSH. if (_mode === c.Z_SYNC_FLUSH) { this.onEnd(c.Z_OK); strm.avail_out = 0; return true; } return true; }; /** * Inflate#onData(chunk) -> Void * - chunk (Uint8Array|Array|String): output data. Type of array depends * on js engine support. When string output requested, each chunk * will be string. * * By default, stores data blocks in `chunks[]` property and glue * those in `onEnd`. Override this handler, if you need another behaviour. **/ Inflate.prototype.onData = function (chunk) { this.chunks.push(chunk); }; /** * Inflate#onEnd(status) -> Void * - status (Number): inflate status. 0 (Z_OK) on success, * other if not. * * Called either after you tell inflate that the input stream is * complete (Z_FINISH) or should be flushed (Z_SYNC_FLUSH) * or if an error happened. By default - join collected chunks, * free memory and fill `results` / `err` properties. **/ Inflate.prototype.onEnd = function (status) { // On success - join if (status === c.Z_OK) { if (this.options.to === 'string') { // Glue & convert here, until we teach pako to send // utf8 aligned strings to onData this.result = this.chunks.join(''); } else { this.result = utils.flattenChunks(this.chunks); } } this.chunks = []; this.err = status; this.msg = this.strm.msg; }; /** * inflate(data[, options]) -> Uint8Array|Array|String * - data (Uint8Array|Array|String): input data to decompress. * - options (Object): zlib inflate options. * * Decompress `data` with inflate/ungzip and `options`. Autodetect * format via wrapper header by default. That's why we don't provide * separate `ungzip` method. * * Supported options are: * * - windowBits * * [http://zlib.net/manual.html#Advanced](http://zlib.net/manual.html#Advanced) * for more information. * * Sugar (options): * * - `raw` (Boolean) - say that we work with raw stream, if you don't wish to specify * negative windowBits implicitly. * - `to` (String) - if equal to 'string', then result will be converted * from utf8 to utf16 (javascript) string. When string output requested, * chunk length can differ from `chunkSize`, depending on content. * * * ##### Example: * * ```javascript * var pako = require('pako') * , input = pako.deflate([1,2,3,4,5,6,7,8,9]) * , output; * * try { * output = pako.inflate(input); * } catch (err) * console.log(err); * } * ``` **/ function inflate(input, options) { var inflator = new Inflate(options); inflator.push(input, true); // That will never happens, if you don't cheat with options :) if (inflator.err) { throw inflator.msg || msg[inflator.err]; } return inflator.result; } /** * inflateRaw(data[, options]) -> Uint8Array|Array|String * - data (Uint8Array|Array|String): input data to decompress. * - options (Object): zlib inflate options. * * The same as [[inflate]], but creates raw data, without wrapper * (header and adler32 crc). **/ function inflateRaw(input, options) { options = options || {}; options.raw = true; return inflate(input, options); } /** * ungzip(data[, options]) -> Uint8Array|Array|String * - data (Uint8Array|Array|String): input data to decompress. * - options (Object): zlib inflate options. * * Just shortcut to [[inflate]], because it autodetects format * by header.content. Done for convenience. **/ exports.Inflate = Inflate; exports.inflate = inflate; exports.inflateRaw = inflateRaw; exports.ungzip = inflate; },{"./utils/common":89,"./utils/strings":90,"./zlib/constants":92,"./zlib/gzheader":95,"./zlib/inflate":97,"./zlib/messages":99,"./zlib/zstream":101}],89:[function(require,module,exports){ arguments[4][36][0].apply(exports,arguments) },{"dup":36}],90:[function(require,module,exports){ // String encode/decode helpers 'use strict'; var utils = require('./common'); // Quick check if we can use fast array to bin string conversion // // - apply(Array) can fail on Android 2.2 // - apply(Uint8Array) can fail on iOS 5.1 Safari // var STR_APPLY_OK = true; var STR_APPLY_UIA_OK = true; try { String.fromCharCode.apply(null, [ 0 ]); } catch (__) { STR_APPLY_OK = false; } try { String.fromCharCode.apply(null, new Uint8Array(1)); } catch (__) { STR_APPLY_UIA_OK = false; } // Table with utf8 lengths (calculated by first byte of sequence) // Note, that 5 & 6-byte values and some 4-byte values can not be represented in JS, // because max possible codepoint is 0x10ffff var _utf8len = new utils.Buf8(256); for (var q = 0; q < 256; q++) { _utf8len[q] = (q >= 252 ? 6 : q >= 248 ? 5 : q >= 240 ? 4 : q >= 224 ? 3 : q >= 192 ? 2 : 1); } _utf8len[254] = _utf8len[254] = 1; // Invalid sequence start // convert string to array (typed, when possible) exports.string2buf = function (str) { var buf, c, c2, m_pos, i, str_len = str.length, buf_len = 0; // count binary size for (m_pos = 0; m_pos < str_len; m_pos++) { c = str.charCodeAt(m_pos); if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) { c2 = str.charCodeAt(m_pos + 1); if ((c2 & 0xfc00) === 0xdc00) { c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00); m_pos++; } } buf_len += c < 0x80 ? 1 : c < 0x800 ? 2 : c < 0x10000 ? 3 : 4; } // allocate buffer buf = new utils.Buf8(buf_len); // convert for (i = 0, m_pos = 0; i < buf_len; m_pos++) { c = str.charCodeAt(m_pos); if ((c & 0xfc00) === 0xd800 && (m_pos + 1 < str_len)) { c2 = str.charCodeAt(m_pos + 1); if ((c2 & 0xfc00) === 0xdc00) { c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00); m_pos++; } } if (c < 0x80) { /* one byte */ buf[i++] = c; } else if (c < 0x800) { /* two bytes */ buf[i++] = 0xC0 | (c >>> 6); buf[i++] = 0x80 | (c & 0x3f); } else if (c < 0x10000) { /* three bytes */ buf[i++] = 0xE0 | (c >>> 12); buf[i++] = 0x80 | (c >>> 6 & 0x3f); buf[i++] = 0x80 | (c & 0x3f); } else { /* four bytes */ buf[i++] = 0xf0 | (c >>> 18); buf[i++] = 0x80 | (c >>> 12 & 0x3f); buf[i++] = 0x80 | (c >>> 6 & 0x3f); buf[i++] = 0x80 | (c & 0x3f); } } return buf; }; // Helper (used in 2 places) function buf2binstring(buf, len) { // use fallback for big arrays to avoid stack overflow if (len < 65537) { if ((buf.subarray && STR_APPLY_UIA_OK) || (!buf.subarray && STR_APPLY_OK)) { return String.fromCharCode.apply(null, utils.shrinkBuf(buf, len)); } } var result = ''; for (var i = 0; i < len; i++) { result += String.fromCharCode(buf[i]); } return result; } // Convert byte array to binary string exports.buf2binstring = function (buf) { return buf2binstring(buf, buf.length); }; // Convert binary string (typed, when possible) exports.binstring2buf = function (str) { var buf = new utils.Buf8(str.length); for (var i = 0, len = buf.length; i < len; i++) { buf[i] = str.charCodeAt(i); } return buf; }; // convert array to string exports.buf2string = function (buf, max) { var i, out, c, c_len; var len = max || buf.length; // Reserve max possible length (2 words per char) // NB: by unknown reasons, Array is significantly faster for // String.fromCharCode.apply than Uint16Array. var utf16buf = new Array(len * 2); for (out = 0, i = 0; i < len;) { c = buf[i++]; // quick process ascii if (c < 0x80) { utf16buf[out++] = c; continue; } c_len = _utf8len[c]; // skip 5 & 6 byte codes if (c_len > 4) { utf16buf[out++] = 0xfffd; i += c_len - 1; continue; } // apply mask on first byte c &= c_len === 2 ? 0x1f : c_len === 3 ? 0x0f : 0x07; // join the rest while (c_len > 1 && i < len) { c = (c << 6) | (buf[i++] & 0x3f); c_len--; } // terminated by end of string? if (c_len > 1) { utf16buf[out++] = 0xfffd; continue; } if (c < 0x10000) { utf16buf[out++] = c; } else { c -= 0x10000; utf16buf[out++] = 0xd800 | ((c >> 10) & 0x3ff); utf16buf[out++] = 0xdc00 | (c & 0x3ff); } } return buf2binstring(utf16buf, out); }; // Calculate max possible position in utf8 buffer, // that will not break sequence. If that's not possible // - (very small limits) return max size as is. // // buf[] - utf8 bytes array // max - length limit (mandatory); exports.utf8border = function (buf, max) { var pos; max = max || buf.length; if (max > buf.length) { max = buf.length; } // go back from last position, until start of sequence found pos = max - 1; while (pos >= 0 && (buf[pos] & 0xC0) === 0x80) { pos--; } // Very small and broken sequence, // return max, because we should return something anyway. if (pos < 0) { return max; } // If we came to start of buffer - that means buffer is too small, // return max too. if (pos === 0) { return max; } return (pos + _utf8len[buf[pos]] > max) ? pos : max; }; },{"./common":89}],91:[function(require,module,exports){ arguments[4][37][0].apply(exports,arguments) },{"dup":37}],92:[function(require,module,exports){ arguments[4][38][0].apply(exports,arguments) },{"dup":38}],93:[function(require,module,exports){ arguments[4][39][0].apply(exports,arguments) },{"dup":39}],94:[function(require,module,exports){ 'use strict'; // (C) 1995-2013 Jean-loup Gailly and Mark Adler // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. var utils = require('../utils/common'); var trees = require('./trees'); var adler32 = require('./adler32'); var crc32 = require('./crc32'); var msg = require('./messages'); /* Public constants ==========================================================*/ /* ===========================================================================*/ /* Allowed flush values; see deflate() and inflate() below for details */ var Z_NO_FLUSH = 0; var Z_PARTIAL_FLUSH = 1; //var Z_SYNC_FLUSH = 2; var Z_FULL_FLUSH = 3; var Z_FINISH = 4; var Z_BLOCK = 5; //var Z_TREES = 6; /* Return codes for the compression/decompression functions. Negative values * are errors, positive values are used for special but normal events. */ var Z_OK = 0; var Z_STREAM_END = 1; //var Z_NEED_DICT = 2; //var Z_ERRNO = -1; var Z_STREAM_ERROR = -2; var Z_DATA_ERROR = -3; //var Z_MEM_ERROR = -4; var Z_BUF_ERROR = -5; //var Z_VERSION_ERROR = -6; /* compression levels */ //var Z_NO_COMPRESSION = 0; //var Z_BEST_SPEED = 1; //var Z_BEST_COMPRESSION = 9; var Z_DEFAULT_COMPRESSION = -1; var Z_FILTERED = 1; var Z_HUFFMAN_ONLY = 2; var Z_RLE = 3; var Z_FIXED = 4; var Z_DEFAULT_STRATEGY = 0; /* Possible values of the data_type field (though see inflate()) */ //var Z_BINARY = 0; //var Z_TEXT = 1; //var Z_ASCII = 1; // = Z_TEXT var Z_UNKNOWN = 2; /* The deflate compression method */ var Z_DEFLATED = 8; /*============================================================================*/ var MAX_MEM_LEVEL = 9; /* Maximum value for memLevel in deflateInit2 */ var MAX_WBITS = 15; /* 32K LZ77 window */ var DEF_MEM_LEVEL = 8; var LENGTH_CODES = 29; /* number of length codes, not counting the special END_BLOCK code */ var LITERALS = 256; /* number of literal bytes 0..255 */ var L_CODES = LITERALS + 1 + LENGTH_CODES; /* number of Literal or Length codes, including the END_BLOCK code */ var D_CODES = 30; /* number of distance codes */ var BL_CODES = 19; /* number of codes used to transfer the bit lengths */ var HEAP_SIZE = 2 * L_CODES + 1; /* maximum heap size */ var MAX_BITS = 15; /* All codes must not exceed MAX_BITS bits */ var MIN_MATCH = 3; var MAX_MATCH = 258; var MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1); var PRESET_DICT = 0x20; var INIT_STATE = 42; var EXTRA_STATE = 69; var NAME_STATE = 73; var COMMENT_STATE = 91; var HCRC_STATE = 103; var BUSY_STATE = 113; var FINISH_STATE = 666; var BS_NEED_MORE = 1; /* block not completed, need more input or more output */ var BS_BLOCK_DONE = 2; /* block flush performed */ var BS_FINISH_STARTED = 3; /* finish started, need only more output at next deflate */ var BS_FINISH_DONE = 4; /* finish done, accept no more input or output */ var OS_CODE = 0x03; // Unix :) . Don't detect, use this default. function err(strm, errorCode) { strm.msg = msg[errorCode]; return errorCode; } function rank(f) { return ((f) << 1) - ((f) > 4 ? 9 : 0); } function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } } /* ========================================================================= * Flush as much pending output as possible. All deflate() output goes * through this function so some applications may wish to modify it * to avoid allocating a large strm->output buffer and copying into it. * (See also read_buf()). */ function flush_pending(strm) { var s = strm.state; //_tr_flush_bits(s); var len = s.pending; if (len > strm.avail_out) { len = strm.avail_out; } if (len === 0) { return; } utils.arraySet(strm.output, s.pending_buf, s.pending_out, len, strm.next_out); strm.next_out += len; s.pending_out += len; strm.total_out += len; strm.avail_out -= len; s.pending -= len; if (s.pending === 0) { s.pending_out = 0; } } function flush_block_only(s, last) { trees._tr_flush_block(s, (s.block_start >= 0 ? s.block_start : -1), s.strstart - s.block_start, last); s.block_start = s.strstart; flush_pending(s.strm); } function put_byte(s, b) { s.pending_buf[s.pending++] = b; } /* ========================================================================= * Put a short in the pending buffer. The 16-bit value is put in MSB order. * IN assertion: the stream state is correct and there is enough room in * pending_buf. */ function putShortMSB(s, b) { // put_byte(s, (Byte)(b >> 8)); // put_byte(s, (Byte)(b & 0xff)); s.pending_buf[s.pending++] = (b >>> 8) & 0xff; s.pending_buf[s.pending++] = b & 0xff; } /* =========================================================================== * Read a new buffer from the current input stream, update the adler32 * and total number of bytes read. All deflate() input goes through * this function so some applications may wish to modify it to avoid * allocating a large strm->input buffer and copying from it. * (See also flush_pending()). */ function read_buf(strm, buf, start, size) { var len = strm.avail_in; if (len > size) { len = size; } if (len === 0) { return 0; } strm.avail_in -= len; // zmemcpy(buf, strm->next_in, len); utils.arraySet(buf, strm.input, strm.next_in, len, start); if (strm.state.wrap === 1) { strm.adler = adler32(strm.adler, buf, len, start); } else if (strm.state.wrap === 2) { strm.adler = crc32(strm.adler, buf, len, start); } strm.next_in += len; strm.total_in += len; return len; } /* =========================================================================== * Set match_start to the longest match starting at the given string and * return its length. Matches shorter or equal to prev_length are discarded, * in which case the result is equal to prev_length and match_start is * garbage. * IN assertions: cur_match is the head of the hash chain for the current * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 * OUT assertion: the match length is not greater than s->lookahead. */ function longest_match(s, cur_match) { var chain_length = s.max_chain_length; /* max hash chain length */ var scan = s.strstart; /* current string */ var match; /* matched string */ var len; /* length of current match */ var best_len = s.prev_length; /* best match length so far */ var nice_match = s.nice_match; /* stop if match long enough */ var limit = (s.strstart > (s.w_size - MIN_LOOKAHEAD)) ? s.strstart - (s.w_size - MIN_LOOKAHEAD) : 0/*NIL*/; var _win = s.window; // shortcut var wmask = s.w_mask; var prev = s.prev; /* Stop when cur_match becomes <= limit. To simplify the code, * we prevent matches with the string of window index 0. */ var strend = s.strstart + MAX_MATCH; var scan_end1 = _win[scan + best_len - 1]; var scan_end = _win[scan + best_len]; /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. * It is easy to get rid of this optimization if necessary. */ // Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); /* Do not waste too much time if we already have a good match: */ if (s.prev_length >= s.good_match) { chain_length >>= 2; } /* Do not look for matches beyond the end of the input. This is necessary * to make deflate deterministic. */ if (nice_match > s.lookahead) { nice_match = s.lookahead; } // Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); do { // Assert(cur_match < s->strstart, "no future"); match = cur_match; /* Skip to next match if the match length cannot increase * or if the match length is less than 2. Note that the checks below * for insufficient lookahead only occur occasionally for performance * reasons. Therefore uninitialized memory will be accessed, and * conditional jumps will be made that depend on those values. * However the length of the match is limited to the lookahead, so * the output of deflate is not affected by the uninitialized values. */ if (_win[match + best_len] !== scan_end || _win[match + best_len - 1] !== scan_end1 || _win[match] !== _win[scan] || _win[++match] !== _win[scan + 1]) { continue; } /* The check at best_len-1 can be removed because it will be made * again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scan += 2; match++; // Assert(*scan == *match, "match[2]?"); /* We check for insufficient lookahead only every 8th comparison; * the 256th check will be made at strstart+258. */ do { /*jshint noempty:false*/ } while (_win[++scan] === _win[++match] && _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && _win[++scan] === _win[++match] && scan < strend); // Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); len = MAX_MATCH - (strend - scan); scan = strend - MAX_MATCH; if (len > best_len) { s.match_start = cur_match; best_len = len; if (len >= nice_match) { break; } scan_end1 = _win[scan + best_len - 1]; scan_end = _win[scan + best_len]; } } while ((cur_match = prev[cur_match & wmask]) > limit && --chain_length !== 0); if (best_len <= s.lookahead) { return best_len; } return s.lookahead; } /* =========================================================================== * Fill the window when the lookahead becomes insufficient. * Updates strstart and lookahead. * * IN assertion: lookahead < MIN_LOOKAHEAD * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD * At least one byte has been read, or avail_in == 0; reads are * performed for at least two bytes (required for the zip translate_eol * option -- not supported here). */ function fill_window(s) { var _w_size = s.w_size; var p, n, m, more, str; //Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); do { more = s.window_size - s.lookahead - s.strstart; // JS ints have 32 bit, block below not needed /* Deal with !@#$% 64K limit: */ //if (sizeof(int) <= 2) { // if (more == 0 && s->strstart == 0 && s->lookahead == 0) { // more = wsize; // // } else if (more == (unsigned)(-1)) { // /* Very unlikely, but possible on 16 bit machine if // * strstart == 0 && lookahead == 1 (input done a byte at time) // */ // more--; // } //} /* If the window is almost full and there is insufficient lookahead, * move the upper half to the lower one to make room in the upper half. */ if (s.strstart >= _w_size + (_w_size - MIN_LOOKAHEAD)) { utils.arraySet(s.window, s.window, _w_size, _w_size, 0); s.match_start -= _w_size; s.strstart -= _w_size; /* we now have strstart >= MAX_DIST */ s.block_start -= _w_size; /* Slide the hash table (could be avoided with 32 bit values at the expense of memory usage). We slide even when level == 0 to keep the hash table consistent if we switch back to level > 0 later. (Using level 0 permanently is not an optimal usage of zlib, so we don't care about this pathological case.) */ n = s.hash_size; p = n; do { m = s.head[--p]; s.head[p] = (m >= _w_size ? m - _w_size : 0); } while (--n); n = _w_size; p = n; do { m = s.prev[--p]; s.prev[p] = (m >= _w_size ? m - _w_size : 0); /* If n is not on any hash chain, prev[n] is garbage but * its value will never be used. */ } while (--n); more += _w_size; } if (s.strm.avail_in === 0) { break; } /* If there was no sliding: * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && * more == window_size - lookahead - strstart * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) * => more >= window_size - 2*WSIZE + 2 * In the BIG_MEM or MMAP case (not yet supported), * window_size == input_size + MIN_LOOKAHEAD && * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. * Otherwise, window_size == 2*WSIZE so more >= 2. * If there was sliding, more >= WSIZE. So in all cases, more >= 2. */ //Assert(more >= 2, "more < 2"); n = read_buf(s.strm, s.window, s.strstart + s.lookahead, more); s.lookahead += n; /* Initialize the hash value now that we have some input: */ if (s.lookahead + s.insert >= MIN_MATCH) { str = s.strstart - s.insert; s.ins_h = s.window[str]; /* UPDATE_HASH(s, s->ins_h, s->window[str + 1]); */ s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + 1]) & s.hash_mask; //#if MIN_MATCH != 3 // Call update_hash() MIN_MATCH-3 more times //#endif while (s.insert) { /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */ s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask; s.prev[str & s.w_mask] = s.head[s.ins_h]; s.head[s.ins_h] = str; str++; s.insert--; if (s.lookahead + s.insert < MIN_MATCH) { break; } } } /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, * but this is not important since only literal bytes will be emitted. */ } while (s.lookahead < MIN_LOOKAHEAD && s.strm.avail_in !== 0); /* If the WIN_INIT bytes after the end of the current data have never been * written, then zero those bytes in order to avoid memory check reports of * the use of uninitialized (or uninitialised as Julian writes) bytes by * the longest match routines. Update the high water mark for the next * time through here. WIN_INIT is set to MAX_MATCH since the longest match * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. */ // if (s.high_water < s.window_size) { // var curr = s.strstart + s.lookahead; // var init = 0; // // if (s.high_water < curr) { // /* Previous high water mark below current data -- zero WIN_INIT // * bytes or up to end of window, whichever is less. // */ // init = s.window_size - curr; // if (init > WIN_INIT) // init = WIN_INIT; // zmemzero(s->window + curr, (unsigned)init); // s->high_water = curr + init; // } // else if (s->high_water < (ulg)curr + WIN_INIT) { // /* High water mark at or above current data, but below current data // * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up // * to end of window, whichever is less. // */ // init = (ulg)curr + WIN_INIT - s->high_water; // if (init > s->window_size - s->high_water) // init = s->window_size - s->high_water; // zmemzero(s->window + s->high_water, (unsigned)init); // s->high_water += init; // } // } // // Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, // "not enough room for search"); } /* =========================================================================== * Copy without compression as much as possible from the input stream, return * the current block state. * This function does not insert new strings in the dictionary since * uncompressible data is probably not useful. This function is used * only for the level=0 compression option. * NOTE: this function should be optimized to avoid extra copying from * window to pending_buf. */ function deflate_stored(s, flush) { /* Stored blocks are limited to 0xffff bytes, pending_buf is limited * to pending_buf_size, and each stored block has a 5 byte header: */ var max_block_size = 0xffff; if (max_block_size > s.pending_buf_size - 5) { max_block_size = s.pending_buf_size - 5; } /* Copy as much as possible from input to output: */ for (;;) { /* Fill the window as much as possible: */ if (s.lookahead <= 1) { //Assert(s->strstart < s->w_size+MAX_DIST(s) || // s->block_start >= (long)s->w_size, "slide too late"); // if (!(s.strstart < s.w_size + (s.w_size - MIN_LOOKAHEAD) || // s.block_start >= s.w_size)) { // throw new Error("slide too late"); // } fill_window(s); if (s.lookahead === 0 && flush === Z_NO_FLUSH) { return BS_NEED_MORE; } if (s.lookahead === 0) { break; } /* flush the current block */ } //Assert(s->block_start >= 0L, "block gone"); // if (s.block_start < 0) throw new Error("block gone"); s.strstart += s.lookahead; s.lookahead = 0; /* Emit a stored block if pending_buf will be full: */ var max_start = s.block_start + max_block_size; if (s.strstart === 0 || s.strstart >= max_start) { /* strstart == 0 is possible when wraparound on 16-bit machine */ s.lookahead = s.strstart - max_start; s.strstart = max_start; /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } /* Flush if we may have to slide, otherwise block_start may become * negative and the data will be gone: */ if (s.strstart - s.block_start >= (s.w_size - MIN_LOOKAHEAD)) { /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } } s.insert = 0; if (flush === Z_FINISH) { /*** FLUSH_BLOCK(s, 1); ***/ flush_block_only(s, true); if (s.strm.avail_out === 0) { return BS_FINISH_STARTED; } /***/ return BS_FINISH_DONE; } if (s.strstart > s.block_start) { /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } return BS_NEED_MORE; } /* =========================================================================== * Compress as much as possible from the input stream, return the current * block state. * This function does not perform lazy evaluation of matches and inserts * new strings in the dictionary only for unmatched strings or for short * matches. It is used only for the fast compression options. */ function deflate_fast(s, flush) { var hash_head; /* head of the hash chain */ var bflush; /* set if current block must be flushed */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s.lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) { return BS_NEED_MORE; } if (s.lookahead === 0) { break; /* flush the current block */ } } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ hash_head = 0/*NIL*/; if (s.lookahead >= MIN_MATCH) { /*** INSERT_STRING(s, s.strstart, hash_head); ***/ s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; s.head[s.ins_h] = s.strstart; /***/ } /* Find the longest match, discarding those <= prev_length. * At this point we have always match_length < MIN_MATCH */ if (hash_head !== 0/*NIL*/ && ((s.strstart - hash_head) <= (s.w_size - MIN_LOOKAHEAD))) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ s.match_length = longest_match(s, hash_head); /* longest_match() sets match_start */ } if (s.match_length >= MIN_MATCH) { // check_match(s, s.strstart, s.match_start, s.match_length); // for debug only /*** _tr_tally_dist(s, s.strstart - s.match_start, s.match_length - MIN_MATCH, bflush); ***/ bflush = trees._tr_tally(s, s.strstart - s.match_start, s.match_length - MIN_MATCH); s.lookahead -= s.match_length; /* Insert new strings in the hash table only if the match length * is not too large. This saves time but degrades compression. */ if (s.match_length <= s.max_lazy_match/*max_insert_length*/ && s.lookahead >= MIN_MATCH) { s.match_length--; /* string at strstart already in table */ do { s.strstart++; /*** INSERT_STRING(s, s.strstart, hash_head); ***/ s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; s.head[s.ins_h] = s.strstart; /***/ /* strstart never exceeds WSIZE-MAX_MATCH, so there are * always MIN_MATCH bytes ahead. */ } while (--s.match_length !== 0); s.strstart++; } else { s.strstart += s.match_length; s.match_length = 0; s.ins_h = s.window[s.strstart]; /* UPDATE_HASH(s, s.ins_h, s.window[s.strstart+1]); */ s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + 1]) & s.hash_mask; //#if MIN_MATCH != 3 // Call UPDATE_HASH() MIN_MATCH-3 more times //#endif /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not * matter since it will be recomputed at next deflate call. */ } } else { /* No match, output a literal byte */ //Tracevv((stderr,"%c", s.window[s.strstart])); /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ bflush = trees._tr_tally(s, 0, s.window[s.strstart]); s.lookahead--; s.strstart++; } if (bflush) { /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } } s.insert = ((s.strstart < (MIN_MATCH - 1)) ? s.strstart : MIN_MATCH - 1); if (flush === Z_FINISH) { /*** FLUSH_BLOCK(s, 1); ***/ flush_block_only(s, true); if (s.strm.avail_out === 0) { return BS_FINISH_STARTED; } /***/ return BS_FINISH_DONE; } if (s.last_lit) { /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } return BS_BLOCK_DONE; } /* =========================================================================== * Same as above, but achieves better compression. We use a lazy * evaluation for matches: a match is finally adopted only if there is * no better match at the next window position. */ function deflate_slow(s, flush) { var hash_head; /* head of hash chain */ var bflush; /* set if current block must be flushed */ var max_insert; /* Process the input block. */ for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ if (s.lookahead < MIN_LOOKAHEAD) { fill_window(s); if (s.lookahead < MIN_LOOKAHEAD && flush === Z_NO_FLUSH) { return BS_NEED_MORE; } if (s.lookahead === 0) { break; } /* flush the current block */ } /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ hash_head = 0/*NIL*/; if (s.lookahead >= MIN_MATCH) { /*** INSERT_STRING(s, s.strstart, hash_head); ***/ s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; s.head[s.ins_h] = s.strstart; /***/ } /* Find the longest match, discarding those <= prev_length. */ s.prev_length = s.match_length; s.prev_match = s.match_start; s.match_length = MIN_MATCH - 1; if (hash_head !== 0/*NIL*/ && s.prev_length < s.max_lazy_match && s.strstart - hash_head <= (s.w_size - MIN_LOOKAHEAD)/*MAX_DIST(s)*/) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ s.match_length = longest_match(s, hash_head); /* longest_match() sets match_start */ if (s.match_length <= 5 && (s.strategy === Z_FILTERED || (s.match_length === MIN_MATCH && s.strstart - s.match_start > 4096/*TOO_FAR*/))) { /* If prev_match is also MIN_MATCH, match_start is garbage * but we will ignore the current match anyway. */ s.match_length = MIN_MATCH - 1; } } /* If there was a match at the previous step and the current * match is not better, output the previous match: */ if (s.prev_length >= MIN_MATCH && s.match_length <= s.prev_length) { max_insert = s.strstart + s.lookahead - MIN_MATCH; /* Do not insert strings in hash table beyond this. */ //check_match(s, s.strstart-1, s.prev_match, s.prev_length); /***_tr_tally_dist(s, s.strstart - 1 - s.prev_match, s.prev_length - MIN_MATCH, bflush);***/ bflush = trees._tr_tally(s, s.strstart - 1 - s.prev_match, s.prev_length - MIN_MATCH); /* Insert in hash table all strings up to the end of the match. * strstart-1 and strstart are already inserted. If there is not * enough lookahead, the last two strings are not inserted in * the hash table. */ s.lookahead -= s.prev_length - 1; s.prev_length -= 2; do { if (++s.strstart <= max_insert) { /*** INSERT_STRING(s, s.strstart, hash_head); ***/ s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[s.strstart + MIN_MATCH - 1]) & s.hash_mask; hash_head = s.prev[s.strstart & s.w_mask] = s.head[s.ins_h]; s.head[s.ins_h] = s.strstart; /***/ } } while (--s.prev_length !== 0); s.match_available = 0; s.match_length = MIN_MATCH - 1; s.strstart++; if (bflush) { /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } } else if (s.match_available) { /* If there was no match at the previous position, output a * single literal. If there was a match but the current match * is longer, truncate the previous match to a single literal. */ //Tracevv((stderr,"%c", s->window[s->strstart-1])); /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/ bflush = trees._tr_tally(s, 0, s.window[s.strstart - 1]); if (bflush) { /*** FLUSH_BLOCK_ONLY(s, 0) ***/ flush_block_only(s, false); /***/ } s.strstart++; s.lookahead--; if (s.strm.avail_out === 0) { return BS_NEED_MORE; } } else { /* There is no previous match to compare with, wait for * the next step to decide. */ s.match_available = 1; s.strstart++; s.lookahead--; } } //Assert (flush != Z_NO_FLUSH, "no flush?"); if (s.match_available) { //Tracevv((stderr,"%c", s->window[s->strstart-1])); /*** _tr_tally_lit(s, s.window[s.strstart-1], bflush); ***/ bflush = trees._tr_tally(s, 0, s.window[s.strstart - 1]); s.match_available = 0; } s.insert = s.strstart < MIN_MATCH - 1 ? s.strstart : MIN_MATCH - 1; if (flush === Z_FINISH) { /*** FLUSH_BLOCK(s, 1); ***/ flush_block_only(s, true); if (s.strm.avail_out === 0) { return BS_FINISH_STARTED; } /***/ return BS_FINISH_DONE; } if (s.last_lit) { /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } return BS_BLOCK_DONE; } /* =========================================================================== * For Z_RLE, simply look for runs of bytes, generate matches only of distance * one. Do not maintain a hash table. (It will be regenerated if this run of * deflate switches away from Z_RLE.) */ function deflate_rle(s, flush) { var bflush; /* set if current block must be flushed */ var prev; /* byte at distance one to match */ var scan, strend; /* scan goes up to strend for length of run */ var _win = s.window; for (;;) { /* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the longest run, plus one for the unrolled loop. */ if (s.lookahead <= MAX_MATCH) { fill_window(s); if (s.lookahead <= MAX_MATCH && flush === Z_NO_FLUSH) { return BS_NEED_MORE; } if (s.lookahead === 0) { break; } /* flush the current block */ } /* See how many times the previous byte repeats */ s.match_length = 0; if (s.lookahead >= MIN_MATCH && s.strstart > 0) { scan = s.strstart - 1; prev = _win[scan]; if (prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan]) { strend = s.strstart + MAX_MATCH; do { /*jshint noempty:false*/ } while (prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan] && prev === _win[++scan] && scan < strend); s.match_length = MAX_MATCH - (strend - scan); if (s.match_length > s.lookahead) { s.match_length = s.lookahead; } } //Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); } /* Emit match if have run of MIN_MATCH or longer, else emit literal */ if (s.match_length >= MIN_MATCH) { //check_match(s, s.strstart, s.strstart - 1, s.match_length); /*** _tr_tally_dist(s, 1, s.match_length - MIN_MATCH, bflush); ***/ bflush = trees._tr_tally(s, 1, s.match_length - MIN_MATCH); s.lookahead -= s.match_length; s.strstart += s.match_length; s.match_length = 0; } else { /* No match, output a literal byte */ //Tracevv((stderr,"%c", s->window[s->strstart])); /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ bflush = trees._tr_tally(s, 0, s.window[s.strstart]); s.lookahead--; s.strstart++; } if (bflush) { /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } } s.insert = 0; if (flush === Z_FINISH) { /*** FLUSH_BLOCK(s, 1); ***/ flush_block_only(s, true); if (s.strm.avail_out === 0) { return BS_FINISH_STARTED; } /***/ return BS_FINISH_DONE; } if (s.last_lit) { /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } return BS_BLOCK_DONE; } /* =========================================================================== * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. * (It will be regenerated if this run of deflate switches away from Huffman.) */ function deflate_huff(s, flush) { var bflush; /* set if current block must be flushed */ for (;;) { /* Make sure that we have a literal to write. */ if (s.lookahead === 0) { fill_window(s); if (s.lookahead === 0) { if (flush === Z_NO_FLUSH) { return BS_NEED_MORE; } break; /* flush the current block */ } } /* Output a literal byte */ s.match_length = 0; //Tracevv((stderr,"%c", s->window[s->strstart])); /*** _tr_tally_lit(s, s.window[s.strstart], bflush); ***/ bflush = trees._tr_tally(s, 0, s.window[s.strstart]); s.lookahead--; s.strstart++; if (bflush) { /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } } s.insert = 0; if (flush === Z_FINISH) { /*** FLUSH_BLOCK(s, 1); ***/ flush_block_only(s, true); if (s.strm.avail_out === 0) { return BS_FINISH_STARTED; } /***/ return BS_FINISH_DONE; } if (s.last_lit) { /*** FLUSH_BLOCK(s, 0); ***/ flush_block_only(s, false); if (s.strm.avail_out === 0) { return BS_NEED_MORE; } /***/ } return BS_BLOCK_DONE; } /* Values for max_lazy_match, good_match and max_chain_length, depending on * the desired pack level (0..9). The values given below have been tuned to * exclude worst case performance for pathological files. Better values may be * found for specific files. */ function Config(good_length, max_lazy, nice_length, max_chain, func) { this.good_length = good_length; this.max_lazy = max_lazy; this.nice_length = nice_length; this.max_chain = max_chain; this.func = func; } var configuration_table; configuration_table = [ /* good lazy nice chain */ new Config(0, 0, 0, 0, deflate_stored), /* 0 store only */ new Config(4, 4, 8, 4, deflate_fast), /* 1 max speed, no lazy matches */ new Config(4, 5, 16, 8, deflate_fast), /* 2 */ new Config(4, 6, 32, 32, deflate_fast), /* 3 */ new Config(4, 4, 16, 16, deflate_slow), /* 4 lazy matches */ new Config(8, 16, 32, 32, deflate_slow), /* 5 */ new Config(8, 16, 128, 128, deflate_slow), /* 6 */ new Config(8, 32, 128, 256, deflate_slow), /* 7 */ new Config(32, 128, 258, 1024, deflate_slow), /* 8 */ new Config(32, 258, 258, 4096, deflate_slow) /* 9 max compression */ ]; /* =========================================================================== * Initialize the "longest match" routines for a new zlib stream */ function lm_init(s) { s.window_size = 2 * s.w_size; /*** CLEAR_HASH(s); ***/ zero(s.head); // Fill with NIL (= 0); /* Set the default configuration parameters: */ s.max_lazy_match = configuration_table[s.level].max_lazy; s.good_match = configuration_table[s.level].good_length; s.nice_match = configuration_table[s.level].nice_length; s.max_chain_length = configuration_table[s.level].max_chain; s.strstart = 0; s.block_start = 0; s.lookahead = 0; s.insert = 0; s.match_length = s.prev_length = MIN_MATCH - 1; s.match_available = 0; s.ins_h = 0; } function DeflateState() { this.strm = null; /* pointer back to this zlib stream */ this.status = 0; /* as the name implies */ this.pending_buf = null; /* output still pending */ this.pending_buf_size = 0; /* size of pending_buf */ this.pending_out = 0; /* next pending byte to output to the stream */ this.pending = 0; /* nb of bytes in the pending buffer */ this.wrap = 0; /* bit 0 true for zlib, bit 1 true for gzip */ this.gzhead = null; /* gzip header information to write */ this.gzindex = 0; /* where in extra, name, or comment */ this.method = Z_DEFLATED; /* can only be DEFLATED */ this.last_flush = -1; /* value of flush param for previous deflate call */ this.w_size = 0; /* LZ77 window size (32K by default) */ this.w_bits = 0; /* log2(w_size) (8..16) */ this.w_mask = 0; /* w_size - 1 */ this.window = null; /* Sliding window. Input bytes are read into the second half of the window, * and move to the first half later to keep a dictionary of at least wSize * bytes. With this organization, matches are limited to a distance of * wSize-MAX_MATCH bytes, but this ensures that IO is always * performed with a length multiple of the block size. */ this.window_size = 0; /* Actual size of window: 2*wSize, except when the user input buffer * is directly used as sliding window. */ this.prev = null; /* Link to older string with same hash index. To limit the size of this * array to 64K, this link is maintained only for the last 32K strings. * An index in this array is thus a window index modulo 32K. */ this.head = null; /* Heads of the hash chains or NIL. */ this.ins_h = 0; /* hash index of string to be inserted */ this.hash_size = 0; /* number of elements in hash table */ this.hash_bits = 0; /* log2(hash_size) */ this.hash_mask = 0; /* hash_size-1 */ this.hash_shift = 0; /* Number of bits by which ins_h must be shifted at each input * step. It must be such that after MIN_MATCH steps, the oldest * byte no longer takes part in the hash key, that is: * hash_shift * MIN_MATCH >= hash_bits */ this.block_start = 0; /* Window position at the beginning of the current output block. Gets * negative when the window is moved backwards. */ this.match_length = 0; /* length of best match */ this.prev_match = 0; /* previous match */ this.match_available = 0; /* set if previous match exists */ this.strstart = 0; /* start of string to insert */ this.match_start = 0; /* start of matching string */ this.lookahead = 0; /* number of valid bytes ahead in window */ this.prev_length = 0; /* Length of the best match at previous step. Matches not greater than this * are discarded. This is used in the lazy match evaluation. */ this.max_chain_length = 0; /* To speed up deflation, hash chains are never searched beyond this * length. A higher limit improves compression ratio but degrades the * speed. */ this.max_lazy_match = 0; /* Attempt to find a better match only when the current match is strictly * smaller than this value. This mechanism is used only for compression * levels >= 4. */ // That's alias to max_lazy_match, don't use directly //this.max_insert_length = 0; /* Insert new strings in the hash table only if the match length is not * greater than this length. This saves time but degrades compression. * max_insert_length is used only for compression levels <= 3. */ this.level = 0; /* compression level (1..9) */ this.strategy = 0; /* favor or force Huffman coding*/ this.good_match = 0; /* Use a faster search when the previous match is longer than this */ this.nice_match = 0; /* Stop searching when current match exceeds this */ /* used by trees.c: */ /* Didn't use ct_data typedef below to suppress compiler warning */ // struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */ // struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ // struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */ // Use flat array of DOUBLE size, with interleaved fata, // because JS does not support effective this.dyn_ltree = new utils.Buf16(HEAP_SIZE * 2); this.dyn_dtree = new utils.Buf16((2 * D_CODES + 1) * 2); this.bl_tree = new utils.Buf16((2 * BL_CODES + 1) * 2); zero(this.dyn_ltree); zero(this.dyn_dtree); zero(this.bl_tree); this.l_desc = null; /* desc. for literal tree */ this.d_desc = null; /* desc. for distance tree */ this.bl_desc = null; /* desc. for bit length tree */ //ush bl_count[MAX_BITS+1]; this.bl_count = new utils.Buf16(MAX_BITS + 1); /* number of codes at each bit length for an optimal tree */ //int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ this.heap = new utils.Buf16(2 * L_CODES + 1); /* heap used to build the Huffman trees */ zero(this.heap); this.heap_len = 0; /* number of elements in the heap */ this.heap_max = 0; /* element of largest frequency */ /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. * The same heap array is used to build all trees. */ this.depth = new utils.Buf16(2 * L_CODES + 1); //uch depth[2*L_CODES+1]; zero(this.depth); /* Depth of each subtree used as tie breaker for trees of equal frequency */ this.l_buf = 0; /* buffer index for literals or lengths */ this.lit_bufsize = 0; /* Size of match buffer for literals/lengths. There are 4 reasons for * limiting lit_bufsize to 64K: * - frequencies can be kept in 16 bit counters * - if compression is not successful for the first block, all input * data is still in the window so we can still emit a stored block even * when input comes from standard input. (This can also be done for * all blocks if lit_bufsize is not greater than 32K.) * - if compression is not successful for a file smaller than 64K, we can * even emit a stored file instead of a stored block (saving 5 bytes). * This is applicable only for zip (not gzip or zlib). * - creating new Huffman trees less frequently may not provide fast * adaptation to changes in the input data statistics. (Take for * example a binary file with poorly compressible code followed by * a highly compressible string table.) Smaller buffer sizes give * fast adaptation but have of course the overhead of transmitting * trees more frequently. * - I can't count above 4 */ this.last_lit = 0; /* running index in l_buf */ this.d_buf = 0; /* Buffer index for distances. To simplify the code, d_buf and l_buf have * the same number of elements. To use different lengths, an extra flag * array would be necessary. */ this.opt_len = 0; /* bit length of current block with optimal trees */ this.static_len = 0; /* bit length of current block with static trees */ this.matches = 0; /* number of string matches in current block */ this.insert = 0; /* bytes at end of window left to insert */ this.bi_buf = 0; /* Output buffer. bits are inserted starting at the bottom (least * significant bits). */ this.bi_valid = 0; /* Number of valid bits in bi_buf. All bits above the last valid bit * are always zero. */ // Used for window memory init. We safely ignore it for JS. That makes // sense only for pointers and memory check tools. //this.high_water = 0; /* High water mark offset in window for initialized bytes -- bytes above * this are set to zero in order to avoid memory check warnings when * longest match routines access bytes past the input. This is then * updated to the new high water mark. */ } function deflateResetKeep(strm) { var s; if (!strm || !strm.state) { return err(strm, Z_STREAM_ERROR); } strm.total_in = strm.total_out = 0; strm.data_type = Z_UNKNOWN; s = strm.state; s.pending = 0; s.pending_out = 0; if (s.wrap < 0) { s.wrap = -s.wrap; /* was made negative by deflate(..., Z_FINISH); */ } s.status = (s.wrap ? INIT_STATE : BUSY_STATE); strm.adler = (s.wrap === 2) ? 0 // crc32(0, Z_NULL, 0) : 1; // adler32(0, Z_NULL, 0) s.last_flush = Z_NO_FLUSH; trees._tr_init(s); return Z_OK; } function deflateReset(strm) { var ret = deflateResetKeep(strm); if (ret === Z_OK) { lm_init(strm.state); } return ret; } function deflateSetHeader(strm, head) { if (!strm || !strm.state) { return Z_STREAM_ERROR; } if (strm.state.wrap !== 2) { return Z_STREAM_ERROR; } strm.state.gzhead = head; return Z_OK; } function deflateInit2(strm, level, method, windowBits, memLevel, strategy) { if (!strm) { // === Z_NULL return Z_STREAM_ERROR; } var wrap = 1; if (level === Z_DEFAULT_COMPRESSION) { level = 6; } if (windowBits < 0) { /* suppress zlib wrapper */ wrap = 0; windowBits = -windowBits; } else if (windowBits > 15) { wrap = 2; /* write gzip wrapper instead */ windowBits -= 16; } if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method !== Z_DEFLATED || windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { return err(strm, Z_STREAM_ERROR); } if (windowBits === 8) { windowBits = 9; } /* until 256-byte window bug fixed */ var s = new DeflateState(); strm.state = s; s.strm = strm; s.wrap = wrap; s.gzhead = null; s.w_bits = windowBits; s.w_size = 1 << s.w_bits; s.w_mask = s.w_size - 1; s.hash_bits = memLevel + 7; s.hash_size = 1 << s.hash_bits; s.hash_mask = s.hash_size - 1; s.hash_shift = ~~((s.hash_bits + MIN_MATCH - 1) / MIN_MATCH); s.window = new utils.Buf8(s.w_size * 2); s.head = new utils.Buf16(s.hash_size); s.prev = new utils.Buf16(s.w_size); // Don't need mem init magic for JS. //s.high_water = 0; /* nothing written to s->window yet */ s.lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ s.pending_buf_size = s.lit_bufsize * 4; //overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); //s->pending_buf = (uchf *) overlay; s.pending_buf = new utils.Buf8(s.pending_buf_size); // It is offset from `s.pending_buf` (size is `s.lit_bufsize * 2`) //s->d_buf = overlay + s->lit_bufsize/sizeof(ush); s.d_buf = 1 * s.lit_bufsize; //s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; s.l_buf = (1 + 2) * s.lit_bufsize; s.level = level; s.strategy = strategy; s.method = method; return deflateReset(strm); } function deflateInit(strm, level) { return deflateInit2(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, Z_DEFAULT_STRATEGY); } function deflate(strm, flush) { var old_flush, s; var beg, val; // for gzip header write only if (!strm || !strm.state || flush > Z_BLOCK || flush < 0) { return strm ? err(strm, Z_STREAM_ERROR) : Z_STREAM_ERROR; } s = strm.state; if (!strm.output || (!strm.input && strm.avail_in !== 0) || (s.status === FINISH_STATE && flush !== Z_FINISH)) { return err(strm, (strm.avail_out === 0) ? Z_BUF_ERROR : Z_STREAM_ERROR); } s.strm = strm; /* just in case */ old_flush = s.last_flush; s.last_flush = flush; /* Write the header */ if (s.status === INIT_STATE) { if (s.wrap === 2) { // GZIP header strm.adler = 0; //crc32(0L, Z_NULL, 0); put_byte(s, 31); put_byte(s, 139); put_byte(s, 8); if (!s.gzhead) { // s->gzhead == Z_NULL put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, 0); put_byte(s, s.level === 9 ? 2 : (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ? 4 : 0)); put_byte(s, OS_CODE); s.status = BUSY_STATE; } else { put_byte(s, (s.gzhead.text ? 1 : 0) + (s.gzhead.hcrc ? 2 : 0) + (!s.gzhead.extra ? 0 : 4) + (!s.gzhead.name ? 0 : 8) + (!s.gzhead.comment ? 0 : 16) ); put_byte(s, s.gzhead.time & 0xff); put_byte(s, (s.gzhead.time >> 8) & 0xff); put_byte(s, (s.gzhead.time >> 16) & 0xff); put_byte(s, (s.gzhead.time >> 24) & 0xff); put_byte(s, s.level === 9 ? 2 : (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2 ? 4 : 0)); put_byte(s, s.gzhead.os & 0xff); if (s.gzhead.extra && s.gzhead.extra.length) { put_byte(s, s.gzhead.extra.length & 0xff); put_byte(s, (s.gzhead.extra.length >> 8) & 0xff); } if (s.gzhead.hcrc) { strm.adler = crc32(strm.adler, s.pending_buf, s.pending, 0); } s.gzindex = 0; s.status = EXTRA_STATE; } } else // DEFLATE header { var header = (Z_DEFLATED + ((s.w_bits - 8) << 4)) << 8; var level_flags = -1; if (s.strategy >= Z_HUFFMAN_ONLY || s.level < 2) { level_flags = 0; } else if (s.level < 6) { level_flags = 1; } else if (s.level === 6) { level_flags = 2; } else { level_flags = 3; } header |= (level_flags << 6); if (s.strstart !== 0) { header |= PRESET_DICT; } header += 31 - (header % 31); s.status = BUSY_STATE; putShortMSB(s, header); /* Save the adler32 of the preset dictionary: */ if (s.strstart !== 0) { putShortMSB(s, strm.adler >>> 16); putShortMSB(s, strm.adler & 0xffff); } strm.adler = 1; // adler32(0L, Z_NULL, 0); } } //#ifdef GZIP if (s.status === EXTRA_STATE) { if (s.gzhead.extra/* != Z_NULL*/) { beg = s.pending; /* start of bytes to update crc */ while (s.gzindex < (s.gzhead.extra.length & 0xffff)) { if (s.pending === s.pending_buf_size) { if (s.gzhead.hcrc && s.pending > beg) { strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); } flush_pending(strm); beg = s.pending; if (s.pending === s.pending_buf_size) { break; } } put_byte(s, s.gzhead.extra[s.gzindex] & 0xff); s.gzindex++; } if (s.gzhead.hcrc && s.pending > beg) { strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); } if (s.gzindex === s.gzhead.extra.length) { s.gzindex = 0; s.status = NAME_STATE; } } else { s.status = NAME_STATE; } } if (s.status === NAME_STATE) { if (s.gzhead.name/* != Z_NULL*/) { beg = s.pending; /* start of bytes to update crc */ //int val; do { if (s.pending === s.pending_buf_size) { if (s.gzhead.hcrc && s.pending > beg) { strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); } flush_pending(strm); beg = s.pending; if (s.pending === s.pending_buf_size) { val = 1; break; } } // JS specific: little magic to add zero terminator to end of string if (s.gzindex < s.gzhead.name.length) { val = s.gzhead.name.charCodeAt(s.gzindex++) & 0xff; } else { val = 0; } put_byte(s, val); } while (val !== 0); if (s.gzhead.hcrc && s.pending > beg) { strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); } if (val === 0) { s.gzindex = 0; s.status = COMMENT_STATE; } } else { s.status = COMMENT_STATE; } } if (s.status === COMMENT_STATE) { if (s.gzhead.comment/* != Z_NULL*/) { beg = s.pending; /* start of bytes to update crc */ //int val; do { if (s.pending === s.pending_buf_size) { if (s.gzhead.hcrc && s.pending > beg) { strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); } flush_pending(strm); beg = s.pending; if (s.pending === s.pending_buf_size) { val = 1; break; } } // JS specific: little magic to add zero terminator to end of string if (s.gzindex < s.gzhead.comment.length) { val = s.gzhead.comment.charCodeAt(s.gzindex++) & 0xff; } else { val = 0; } put_byte(s, val); } while (val !== 0); if (s.gzhead.hcrc && s.pending > beg) { strm.adler = crc32(strm.adler, s.pending_buf, s.pending - beg, beg); } if (val === 0) { s.status = HCRC_STATE; } } else { s.status = HCRC_STATE; } } if (s.status === HCRC_STATE) { if (s.gzhead.hcrc) { if (s.pending + 2 > s.pending_buf_size) { flush_pending(strm); } if (s.pending + 2 <= s.pending_buf_size) { put_byte(s, strm.adler & 0xff); put_byte(s, (strm.adler >> 8) & 0xff); strm.adler = 0; //crc32(0L, Z_NULL, 0); s.status = BUSY_STATE; } } else { s.status = BUSY_STATE; } } //#endif /* Flush as much pending output as possible */ if (s.pending !== 0) { flush_pending(strm); if (strm.avail_out === 0) { /* Since avail_out is 0, deflate will be called again with * more output space, but possibly with both pending and * avail_in equal to zero. There won't be anything to do, * but this is not an error situation so make sure we * return OK instead of BUF_ERROR at next call of deflate: */ s.last_flush = -1; return Z_OK; } /* Make sure there is something to do and avoid duplicate consecutive * flushes. For repeated and useless calls with Z_FINISH, we keep * returning Z_STREAM_END instead of Z_BUF_ERROR. */ } else if (strm.avail_in === 0 && rank(flush) <= rank(old_flush) && flush !== Z_FINISH) { return err(strm, Z_BUF_ERROR); } /* User must not provide more input after the first FINISH: */ if (s.status === FINISH_STATE && strm.avail_in !== 0) { return err(strm, Z_BUF_ERROR); } /* Start a new block or continue the current one. */ if (strm.avail_in !== 0 || s.lookahead !== 0 || (flush !== Z_NO_FLUSH && s.status !== FINISH_STATE)) { var bstate = (s.strategy === Z_HUFFMAN_ONLY) ? deflate_huff(s, flush) : (s.strategy === Z_RLE ? deflate_rle(s, flush) : configuration_table[s.level].func(s, flush)); if (bstate === BS_FINISH_STARTED || bstate === BS_FINISH_DONE) { s.status = FINISH_STATE; } if (bstate === BS_NEED_MORE || bstate === BS_FINISH_STARTED) { if (strm.avail_out === 0) { s.last_flush = -1; /* avoid BUF_ERROR next call, see above */ } return Z_OK; /* If flush != Z_NO_FLUSH && avail_out == 0, the next call * of deflate should use the same flush parameter to make sure * that the flush is complete. So we don't have to output an * empty block here, this will be done at next call. This also * ensures that for a very small output buffer, we emit at most * one empty block. */ } if (bstate === BS_BLOCK_DONE) { if (flush === Z_PARTIAL_FLUSH) { trees._tr_align(s); } else if (flush !== Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ trees._tr_stored_block(s, 0, 0, false); /* For a full flush, this empty block will be recognized * as a special marker by inflate_sync(). */ if (flush === Z_FULL_FLUSH) { /*** CLEAR_HASH(s); ***/ /* forget history */ zero(s.head); // Fill with NIL (= 0); if (s.lookahead === 0) { s.strstart = 0; s.block_start = 0; s.insert = 0; } } } flush_pending(strm); if (strm.avail_out === 0) { s.last_flush = -1; /* avoid BUF_ERROR at next call, see above */ return Z_OK; } } } //Assert(strm->avail_out > 0, "bug2"); //if (strm.avail_out <= 0) { throw new Error("bug2");} if (flush !== Z_FINISH) { return Z_OK; } if (s.wrap <= 0) { return Z_STREAM_END; } /* Write the trailer */ if (s.wrap === 2) { put_byte(s, strm.adler & 0xff); put_byte(s, (strm.adler >> 8) & 0xff); put_byte(s, (strm.adler >> 16) & 0xff); put_byte(s, (strm.adler >> 24) & 0xff); put_byte(s, strm.total_in & 0xff); put_byte(s, (strm.total_in >> 8) & 0xff); put_byte(s, (strm.total_in >> 16) & 0xff); put_byte(s, (strm.total_in >> 24) & 0xff); } else { putShortMSB(s, strm.adler >>> 16); putShortMSB(s, strm.adler & 0xffff); } flush_pending(strm); /* If avail_out is zero, the application will call deflate again * to flush the rest. */ if (s.wrap > 0) { s.wrap = -s.wrap; } /* write the trailer only once! */ return s.pending !== 0 ? Z_OK : Z_STREAM_END; } function deflateEnd(strm) { var status; if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) { return Z_STREAM_ERROR; } status = strm.state.status; if (status !== INIT_STATE && status !== EXTRA_STATE && status !== NAME_STATE && status !== COMMENT_STATE && status !== HCRC_STATE && status !== BUSY_STATE && status !== FINISH_STATE ) { return err(strm, Z_STREAM_ERROR); } strm.state = null; return status === BUSY_STATE ? err(strm, Z_DATA_ERROR) : Z_OK; } /* ========================================================================= * Initializes the compression dictionary from the given byte * sequence without producing any compressed output. */ function deflateSetDictionary(strm, dictionary) { var dictLength = dictionary.length; var s; var str, n; var wrap; var avail; var next; var input; var tmpDict; if (!strm/*== Z_NULL*/ || !strm.state/*== Z_NULL*/) { return Z_STREAM_ERROR; } s = strm.state; wrap = s.wrap; if (wrap === 2 || (wrap === 1 && s.status !== INIT_STATE) || s.lookahead) { return Z_STREAM_ERROR; } /* when using zlib wrappers, compute Adler-32 for provided dictionary */ if (wrap === 1) { /* adler32(strm->adler, dictionary, dictLength); */ strm.adler = adler32(strm.adler, dictionary, dictLength, 0); } s.wrap = 0; /* avoid computing Adler-32 in read_buf */ /* if dictionary would fill window, just replace the history */ if (dictLength >= s.w_size) { if (wrap === 0) { /* already empty otherwise */ /*** CLEAR_HASH(s); ***/ zero(s.head); // Fill with NIL (= 0); s.strstart = 0; s.block_start = 0; s.insert = 0; } /* use the tail */ // dictionary = dictionary.slice(dictLength - s.w_size); tmpDict = new utils.Buf8(s.w_size); utils.arraySet(tmpDict, dictionary, dictLength - s.w_size, s.w_size, 0); dictionary = tmpDict; dictLength = s.w_size; } /* insert dictionary into window and hash */ avail = strm.avail_in; next = strm.next_in; input = strm.input; strm.avail_in = dictLength; strm.next_in = 0; strm.input = dictionary; fill_window(s); while (s.lookahead >= MIN_MATCH) { str = s.strstart; n = s.lookahead - (MIN_MATCH - 1); do { /* UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); */ s.ins_h = ((s.ins_h << s.hash_shift) ^ s.window[str + MIN_MATCH - 1]) & s.hash_mask; s.prev[str & s.w_mask] = s.head[s.ins_h]; s.head[s.ins_h] = str; str++; } while (--n); s.strstart = str; s.lookahead = MIN_MATCH - 1; fill_window(s); } s.strstart += s.lookahead; s.block_start = s.strstart; s.insert = s.lookahead; s.lookahead = 0; s.match_length = s.prev_length = MIN_MATCH - 1; s.match_available = 0; strm.next_in = next; strm.input = input; strm.avail_in = avail; s.wrap = wrap; return Z_OK; } exports.deflateInit = deflateInit; exports.deflateInit2 = deflateInit2; exports.deflateReset = deflateReset; exports.deflateResetKeep = deflateResetKeep; exports.deflateSetHeader = deflateSetHeader; exports.deflate = deflate; exports.deflateEnd = deflateEnd; exports.deflateSetDictionary = deflateSetDictionary; exports.deflateInfo = 'pako deflate (from Nodeca project)'; /* Not implemented exports.deflateBound = deflateBound; exports.deflateCopy = deflateCopy; exports.deflateParams = deflateParams; exports.deflatePending = deflatePending; exports.deflatePrime = deflatePrime; exports.deflateTune = deflateTune; */ },{"../utils/common":89,"./adler32":91,"./crc32":93,"./messages":99,"./trees":100}],95:[function(require,module,exports){ 'use strict'; // (C) 1995-2013 Jean-loup Gailly and Mark Adler // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. function GZheader() { /* true if compressed data believed to be text */ this.text = 0; /* modification time */ this.time = 0; /* extra flags (not used when writing a gzip file) */ this.xflags = 0; /* operating system */ this.os = 0; /* pointer to extra field or Z_NULL if none */ this.extra = null; /* extra field length (valid if extra != Z_NULL) */ this.extra_len = 0; // Actually, we don't need it in JS, // but leave for few code modifications // // Setup limits is not necessary because in js we should not preallocate memory // for inflate use constant limit in 65536 bytes // /* space at extra (only when reading header) */ // this.extra_max = 0; /* pointer to zero-terminated file name or Z_NULL */ this.name = ''; /* space at name (only when reading header) */ // this.name_max = 0; /* pointer to zero-terminated comment or Z_NULL */ this.comment = ''; /* space at comment (only when reading header) */ // this.comm_max = 0; /* true if there was or will be a header crc */ this.hcrc = 0; /* true when done reading gzip header (not used when writing a gzip file) */ this.done = false; } module.exports = GZheader; },{}],96:[function(require,module,exports){ arguments[4][41][0].apply(exports,arguments) },{"dup":41}],97:[function(require,module,exports){ arguments[4][42][0].apply(exports,arguments) },{"../utils/common":89,"./adler32":91,"./crc32":93,"./inffast":96,"./inftrees":98,"dup":42}],98:[function(require,module,exports){ arguments[4][43][0].apply(exports,arguments) },{"../utils/common":89,"dup":43}],99:[function(require,module,exports){ arguments[4][44][0].apply(exports,arguments) },{"dup":44}],100:[function(require,module,exports){ 'use strict'; // (C) 1995-2013 Jean-loup Gailly and Mark Adler // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. var utils = require('../utils/common'); /* Public constants ==========================================================*/ /* ===========================================================================*/ //var Z_FILTERED = 1; //var Z_HUFFMAN_ONLY = 2; //var Z_RLE = 3; var Z_FIXED = 4; //var Z_DEFAULT_STRATEGY = 0; /* Possible values of the data_type field (though see inflate()) */ var Z_BINARY = 0; var Z_TEXT = 1; //var Z_ASCII = 1; // = Z_TEXT var Z_UNKNOWN = 2; /*============================================================================*/ function zero(buf) { var len = buf.length; while (--len >= 0) { buf[len] = 0; } } // From zutil.h var STORED_BLOCK = 0; var STATIC_TREES = 1; var DYN_TREES = 2; /* The three kinds of block type */ var MIN_MATCH = 3; var MAX_MATCH = 258; /* The minimum and maximum match lengths */ // From deflate.h /* =========================================================================== * Internal compression state. */ var LENGTH_CODES = 29; /* number of length codes, not counting the special END_BLOCK code */ var LITERALS = 256; /* number of literal bytes 0..255 */ var L_CODES = LITERALS + 1 + LENGTH_CODES; /* number of Literal or Length codes, including the END_BLOCK code */ var D_CODES = 30; /* number of distance codes */ var BL_CODES = 19; /* number of codes used to transfer the bit lengths */ var HEAP_SIZE = 2 * L_CODES + 1; /* maximum heap size */ var MAX_BITS = 15; /* All codes must not exceed MAX_BITS bits */ var Buf_size = 16; /* size of bit buffer in bi_buf */ /* =========================================================================== * Constants */ var MAX_BL_BITS = 7; /* Bit length codes must not exceed MAX_BL_BITS bits */ var END_BLOCK = 256; /* end of block literal code */ var REP_3_6 = 16; /* repeat previous bit length 3-6 times (2 bits of repeat count) */ var REPZ_3_10 = 17; /* repeat a zero length 3-10 times (3 bits of repeat count) */ var REPZ_11_138 = 18; /* repeat a zero length 11-138 times (7 bits of repeat count) */ /* eslint-disable comma-spacing,array-bracket-spacing */ var extra_lbits = /* extra bits for each length code */ [0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0]; var extra_dbits = /* extra bits for each distance code */ [0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13]; var extra_blbits = /* extra bits for each bit length code */ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7]; var bl_order = [16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15]; /* eslint-enable comma-spacing,array-bracket-spacing */ /* The lengths of the bit length codes are sent in order of decreasing * probability, to avoid transmitting the lengths for unused bit length codes. */ /* =========================================================================== * Local data. These are initialized only once. */ // We pre-fill arrays with 0 to avoid uninitialized gaps var DIST_CODE_LEN = 512; /* see definition of array dist_code below */ // !!!! Use flat array instead of structure, Freq = i*2, Len = i*2+1 var static_ltree = new Array((L_CODES + 2) * 2); zero(static_ltree); /* The static literal tree. Since the bit lengths are imposed, there is no * need for the L_CODES extra codes used during heap construction. However * The codes 286 and 287 are needed to build a canonical tree (see _tr_init * below). */ var static_dtree = new Array(D_CODES * 2); zero(static_dtree); /* The static distance tree. (Actually a trivial tree since all codes use * 5 bits.) */ var _dist_code = new Array(DIST_CODE_LEN); zero(_dist_code); /* Distance codes. The first 256 values correspond to the distances * 3 .. 258, the last 256 values correspond to the top 8 bits of * the 15 bit distances. */ var _length_code = new Array(MAX_MATCH - MIN_MATCH + 1); zero(_length_code); /* length code for each normalized match length (0 == MIN_MATCH) */ var base_length = new Array(LENGTH_CODES); zero(base_length); /* First normalized length for each code (0 = MIN_MATCH) */ var base_dist = new Array(D_CODES); zero(base_dist); /* First normalized distance for each code (0 = distance of 1) */ function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) { this.static_tree = static_tree; /* static tree or NULL */ this.extra_bits = extra_bits; /* extra bits for each code or NULL */ this.extra_base = extra_base; /* base index for extra_bits */ this.elems = elems; /* max number of elements in the tree */ this.max_length = max_length; /* max bit length for the codes */ // show if `static_tree` has data or dummy - needed for monomorphic objects this.has_stree = static_tree && static_tree.length; } var static_l_desc; var static_d_desc; var static_bl_desc; function TreeDesc(dyn_tree, stat_desc) { this.dyn_tree = dyn_tree; /* the dynamic tree */ this.max_code = 0; /* largest code with non zero frequency */ this.stat_desc = stat_desc; /* the corresponding static tree */ } function d_code(dist) { return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)]; } /* =========================================================================== * Output a short LSB first on the stream. * IN assertion: there is enough room in pendingBuf. */ function put_short(s, w) { // put_byte(s, (uch)((w) & 0xff)); // put_byte(s, (uch)((ush)(w) >> 8)); s.pending_buf[s.pending++] = (w) & 0xff; s.pending_buf[s.pending++] = (w >>> 8) & 0xff; } /* =========================================================================== * Send a value on a given number of bits. * IN assertion: length <= 16 and value fits in length bits. */ function send_bits(s, value, length) { if (s.bi_valid > (Buf_size - length)) { s.bi_buf |= (value << s.bi_valid) & 0xffff; put_short(s, s.bi_buf); s.bi_buf = value >> (Buf_size - s.bi_valid); s.bi_valid += length - Buf_size; } else { s.bi_buf |= (value << s.bi_valid) & 0xffff; s.bi_valid += length; } } function send_code(s, c, tree) { send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/); } /* =========================================================================== * Reverse the first len bits of a code, using straightforward code (a faster * method would use a table) * IN assertion: 1 <= len <= 15 */ function bi_reverse(code, len) { var res = 0; do { res |= code & 1; code >>>= 1; res <<= 1; } while (--len > 0); return res >>> 1; } /* =========================================================================== * Flush the bit buffer, keeping at most 7 bits in it. */ function bi_flush(s) { if (s.bi_valid === 16) { put_short(s, s.bi_buf); s.bi_buf = 0; s.bi_valid = 0; } else if (s.bi_valid >= 8) { s.pending_buf[s.pending++] = s.bi_buf & 0xff; s.bi_buf >>= 8; s.bi_valid -= 8; } } /* =========================================================================== * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and * above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the * array bl_count contains the frequencies for each bit length. * The length opt_len is updated; static_len is also updated if stree is * not null. */ function gen_bitlen(s, desc) // deflate_state *s; // tree_desc *desc; /* the tree descriptor */ { var tree = desc.dyn_tree; var max_code = desc.max_code; var stree = desc.stat_desc.static_tree; var has_stree = desc.stat_desc.has_stree; var extra = desc.stat_desc.extra_bits; var base = desc.stat_desc.extra_base; var max_length = desc.stat_desc.max_length; var h; /* heap index */ var n, m; /* iterate over the tree elements */ var bits; /* bit length */ var xbits; /* extra bits */ var f; /* frequency */ var overflow = 0; /* number of elements with bit length too large */ for (bits = 0; bits <= MAX_BITS; bits++) { s.bl_count[bits] = 0; } /* In a first pass, compute the optimal bit lengths (which may * overflow in the case of the bit length tree). */ tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */ for (h = s.heap_max + 1; h < HEAP_SIZE; h++) { n = s.heap[h]; bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1; if (bits > max_length) { bits = max_length; overflow++; } tree[n * 2 + 1]/*.Len*/ = bits; /* We overwrite tree[n].Dad which is no longer needed */ if (n > max_code) { continue; } /* not a leaf node */ s.bl_count[bits]++; xbits = 0; if (n >= base) { xbits = extra[n - base]; } f = tree[n * 2]/*.Freq*/; s.opt_len += f * (bits + xbits); if (has_stree) { s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits); } } if (overflow === 0) { return; } // Trace((stderr,"\nbit length overflow\n")); /* This happens for example on obj2 and pic of the Calgary corpus */ /* Find the first bit length which could increase: */ do { bits = max_length - 1; while (s.bl_count[bits] === 0) { bits--; } s.bl_count[bits]--; /* move one leaf down the tree */ s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */ s.bl_count[max_length]--; /* The brother of the overflow item also moves one step up, * but this does not affect bl_count[max_length] */ overflow -= 2; } while (overflow > 0); /* Now recompute all bit lengths, scanning in increasing frequency. * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all * lengths instead of fixing only the wrong ones. This idea is taken * from 'ar' written by Haruhiko Okumura.) */ for (bits = max_length; bits !== 0; bits--) { n = s.bl_count[bits]; while (n !== 0) { m = s.heap[--h]; if (m > max_code) { continue; } if (tree[m * 2 + 1]/*.Len*/ !== bits) { // Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/; tree[m * 2 + 1]/*.Len*/ = bits; } n--; } } } /* =========================================================================== * Generate the codes for a given tree and bit counts (which need not be * optimal). * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non * zero code length. */ function gen_codes(tree, max_code, bl_count) // ct_data *tree; /* the tree to decorate */ // int max_code; /* largest code with non zero frequency */ // ushf *bl_count; /* number of codes at each bit length */ { var next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */ var code = 0; /* running code value */ var bits; /* bit index */ var n; /* code index */ /* The distribution counts are first used to generate the code values * without bit reversal. */ for (bits = 1; bits <= MAX_BITS; bits++) { next_code[bits] = code = (code + bl_count[bits - 1]) << 1; } /* Check that the bit counts in bl_count are consistent. The last code * must be all ones. */ //Assert (code + bl_count[MAX_BITS]-1 == (1< length code (0..28) */ length = 0; for (code = 0; code < LENGTH_CODES - 1; code++) { base_length[code] = length; for (n = 0; n < (1 << extra_lbits[code]); n++) { _length_code[length++] = code; } } //Assert (length == 256, "tr_static_init: length != 256"); /* Note that the length 255 (match length 258) can be represented * in two different ways: code 284 + 5 bits or code 285, so we * overwrite length_code[255] to use the best encoding: */ _length_code[length - 1] = code; /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ dist = 0; for (code = 0; code < 16; code++) { base_dist[code] = dist; for (n = 0; n < (1 << extra_dbits[code]); n++) { _dist_code[dist++] = code; } } //Assert (dist == 256, "tr_static_init: dist != 256"); dist >>= 7; /* from now on, all distances are divided by 128 */ for (; code < D_CODES; code++) { base_dist[code] = dist << 7; for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) { _dist_code[256 + dist++] = code; } } //Assert (dist == 256, "tr_static_init: 256+dist != 512"); /* Construct the codes of the static literal tree */ for (bits = 0; bits <= MAX_BITS; bits++) { bl_count[bits] = 0; } n = 0; while (n <= 143) { static_ltree[n * 2 + 1]/*.Len*/ = 8; n++; bl_count[8]++; } while (n <= 255) { static_ltree[n * 2 + 1]/*.Len*/ = 9; n++; bl_count[9]++; } while (n <= 279) { static_ltree[n * 2 + 1]/*.Len*/ = 7; n++; bl_count[7]++; } while (n <= 287) { static_ltree[n * 2 + 1]/*.Len*/ = 8; n++; bl_count[8]++; } /* Codes 286 and 287 do not exist, but we must include them in the * tree construction to get a canonical Huffman tree (longest code * all ones) */ gen_codes(static_ltree, L_CODES + 1, bl_count); /* The static distance tree is trivial: */ for (n = 0; n < D_CODES; n++) { static_dtree[n * 2 + 1]/*.Len*/ = 5; static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5); } // Now data ready and we can init static trees static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS); static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0, D_CODES, MAX_BITS); static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0, BL_CODES, MAX_BL_BITS); //static_init_done = true; } /* =========================================================================== * Initialize a new block. */ function init_block(s) { var n; /* iterates over tree elements */ /* Initialize the trees. */ for (n = 0; n < L_CODES; n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; } for (n = 0; n < D_CODES; n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; } for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; } s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1; s.opt_len = s.static_len = 0; s.last_lit = s.matches = 0; } /* =========================================================================== * Flush the bit buffer and align the output on a byte boundary */ function bi_windup(s) { if (s.bi_valid > 8) { put_short(s, s.bi_buf); } else if (s.bi_valid > 0) { //put_byte(s, (Byte)s->bi_buf); s.pending_buf[s.pending++] = s.bi_buf; } s.bi_buf = 0; s.bi_valid = 0; } /* =========================================================================== * Copy a stored block, storing first the length and its * one's complement if requested. */ function copy_block(s, buf, len, header) //DeflateState *s; //charf *buf; /* the input data */ //unsigned len; /* its length */ //int header; /* true if block header must be written */ { bi_windup(s); /* align on byte boundary */ if (header) { put_short(s, len); put_short(s, ~len); } // while (len--) { // put_byte(s, *buf++); // } utils.arraySet(s.pending_buf, s.window, buf, len, s.pending); s.pending += len; } /* =========================================================================== * Compares to subtrees, using the tree depth as tie breaker when * the subtrees have equal frequency. This minimizes the worst case length. */ function smaller(tree, n, m, depth) { var _n2 = n * 2; var _m2 = m * 2; return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ || (tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m])); } /* =========================================================================== * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). */ function pqdownheap(s, tree, k) // deflate_state *s; // ct_data *tree; /* the tree to restore */ // int k; /* node to move down */ { var v = s.heap[k]; var j = k << 1; /* left son of k */ while (j <= s.heap_len) { /* Set j to the smallest of the two sons: */ if (j < s.heap_len && smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) { j++; } /* Exit if v is smaller than both sons */ if (smaller(tree, v, s.heap[j], s.depth)) { break; } /* Exchange v with the smallest son */ s.heap[k] = s.heap[j]; k = j; /* And continue down the tree, setting j to the left son of k */ j <<= 1; } s.heap[k] = v; } // inlined manually // var SMALLEST = 1; /* =========================================================================== * Send the block data compressed using the given Huffman trees */ function compress_block(s, ltree, dtree) // deflate_state *s; // const ct_data *ltree; /* literal tree */ // const ct_data *dtree; /* distance tree */ { var dist; /* distance of matched string */ var lc; /* match length or unmatched char (if dist == 0) */ var lx = 0; /* running index in l_buf */ var code; /* the code to send */ var extra; /* number of extra bits to send */ if (s.last_lit !== 0) { do { dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]); lc = s.pending_buf[s.l_buf + lx]; lx++; if (dist === 0) { send_code(s, lc, ltree); /* send a literal byte */ //Tracecv(isgraph(lc), (stderr," '%c' ", lc)); } else { /* Here, lc is the match length - MIN_MATCH */ code = _length_code[lc]; send_code(s, code + LITERALS + 1, ltree); /* send the length code */ extra = extra_lbits[code]; if (extra !== 0) { lc -= base_length[code]; send_bits(s, lc, extra); /* send the extra length bits */ } dist--; /* dist is now the match distance - 1 */ code = d_code(dist); //Assert (code < D_CODES, "bad d_code"); send_code(s, code, dtree); /* send the distance code */ extra = extra_dbits[code]; if (extra !== 0) { dist -= base_dist[code]; send_bits(s, dist, extra); /* send the extra distance bits */ } } /* literal or match pair ? */ /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ //Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, // "pendingBuf overflow"); } while (lx < s.last_lit); } send_code(s, END_BLOCK, ltree); } /* =========================================================================== * Construct one Huffman tree and assigns the code bit strings and lengths. * Update the total bit length for the current block. * IN assertion: the field freq is set for all tree elements. * OUT assertions: the fields len and code are set to the optimal bit length * and corresponding code. The length opt_len is updated; static_len is * also updated if stree is not null. The field max_code is set. */ function build_tree(s, desc) // deflate_state *s; // tree_desc *desc; /* the tree descriptor */ { var tree = desc.dyn_tree; var stree = desc.stat_desc.static_tree; var has_stree = desc.stat_desc.has_stree; var elems = desc.stat_desc.elems; var n, m; /* iterate over heap elements */ var max_code = -1; /* largest code with non zero frequency */ var node; /* new node being created */ /* Construct the initial heap, with least frequent element in * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. * heap[0] is not used. */ s.heap_len = 0; s.heap_max = HEAP_SIZE; for (n = 0; n < elems; n++) { if (tree[n * 2]/*.Freq*/ !== 0) { s.heap[++s.heap_len] = max_code = n; s.depth[n] = 0; } else { tree[n * 2 + 1]/*.Len*/ = 0; } } /* The pkzip format requires that at least one distance code exists, * and that at least one bit should be sent even if there is only one * possible code. So to avoid special checks later on we force at least * two codes of non zero frequency. */ while (s.heap_len < 2) { node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0); tree[node * 2]/*.Freq*/ = 1; s.depth[node] = 0; s.opt_len--; if (has_stree) { s.static_len -= stree[node * 2 + 1]/*.Len*/; } /* node is 0 or 1 so it does not have extra bits */ } desc.max_code = max_code; /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, * establish sub-heaps of increasing lengths: */ for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); } /* Construct the Huffman tree by repeatedly combining the least two * frequent nodes. */ node = elems; /* next internal node of the tree */ do { //pqremove(s, tree, n); /* n = node of least frequency */ /*** pqremove ***/ n = s.heap[1/*SMALLEST*/]; s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--]; pqdownheap(s, tree, 1/*SMALLEST*/); /***/ m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */ s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */ s.heap[--s.heap_max] = m; /* Create a new node father of n and m */ tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/; s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1; tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node; /* and insert the new node in the heap */ s.heap[1/*SMALLEST*/] = node++; pqdownheap(s, tree, 1/*SMALLEST*/); } while (s.heap_len >= 2); s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/]; /* At this point, the fields freq and dad are set. We can now * generate the bit lengths. */ gen_bitlen(s, desc); /* The field len is now set, we can generate the bit codes */ gen_codes(tree, max_code, s.bl_count); } /* =========================================================================== * Scan a literal or distance tree to determine the frequencies of the codes * in the bit length tree. */ function scan_tree(s, tree, max_code) // deflate_state *s; // ct_data *tree; /* the tree to be scanned */ // int max_code; /* and its largest code of non zero frequency */ { var n; /* iterates over all tree elements */ var prevlen = -1; /* last emitted length */ var curlen; /* length of current code */ var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */ var count = 0; /* repeat count of the current code */ var max_count = 7; /* max repeat count */ var min_count = 4; /* min repeat count */ if (nextlen === 0) { max_count = 138; min_count = 3; } tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */ for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[(n + 1) * 2 + 1]/*.Len*/; if (++count < max_count && curlen === nextlen) { continue; } else if (count < min_count) { s.bl_tree[curlen * 2]/*.Freq*/ += count; } else if (curlen !== 0) { if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; } s.bl_tree[REP_3_6 * 2]/*.Freq*/++; } else if (count <= 10) { s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++; } else { s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++; } count = 0; prevlen = curlen; if (nextlen === 0) { max_count = 138; min_count = 3; } else if (curlen === nextlen) { max_count = 6; min_count = 3; } else { max_count = 7; min_count = 4; } } } /* =========================================================================== * Send a literal or distance tree in compressed form, using the codes in * bl_tree. */ function send_tree(s, tree, max_code) // deflate_state *s; // ct_data *tree; /* the tree to be scanned */ // int max_code; /* and its largest code of non zero frequency */ { var n; /* iterates over all tree elements */ var prevlen = -1; /* last emitted length */ var curlen; /* length of current code */ var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */ var count = 0; /* repeat count of the current code */ var max_count = 7; /* max repeat count */ var min_count = 4; /* min repeat count */ /* tree[max_code+1].Len = -1; */ /* guard already set */ if (nextlen === 0) { max_count = 138; min_count = 3; } for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[(n + 1) * 2 + 1]/*.Len*/; if (++count < max_count && curlen === nextlen) { continue; } else if (count < min_count) { do { send_code(s, curlen, s.bl_tree); } while (--count !== 0); } else if (curlen !== 0) { if (curlen !== prevlen) { send_code(s, curlen, s.bl_tree); count--; } //Assert(count >= 3 && count <= 6, " 3_6?"); send_code(s, REP_3_6, s.bl_tree); send_bits(s, count - 3, 2); } else if (count <= 10) { send_code(s, REPZ_3_10, s.bl_tree); send_bits(s, count - 3, 3); } else { send_code(s, REPZ_11_138, s.bl_tree); send_bits(s, count - 11, 7); } count = 0; prevlen = curlen; if (nextlen === 0) { max_count = 138; min_count = 3; } else if (curlen === nextlen) { max_count = 6; min_count = 3; } else { max_count = 7; min_count = 4; } } } /* =========================================================================== * Construct the Huffman tree for the bit lengths and return the index in * bl_order of the last bit length code to send. */ function build_bl_tree(s) { var max_blindex; /* index of last bit length code of non zero freq */ /* Determine the bit length frequencies for literal and distance trees */ scan_tree(s, s.dyn_ltree, s.l_desc.max_code); scan_tree(s, s.dyn_dtree, s.d_desc.max_code); /* Build the bit length tree: */ build_tree(s, s.bl_desc); /* opt_len now includes the length of the tree representations, except * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. */ /* Determine the number of bit length codes to send. The pkzip format * requires that at least 4 bit length codes be sent. (appnote.txt says * 3 but the actual value used is 4.) */ for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) { if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) { break; } } /* Update opt_len to include the bit length tree and counts */ s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4; //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", // s->opt_len, s->static_len)); return max_blindex; } /* =========================================================================== * Send the header for a block using dynamic Huffman trees: the counts, the * lengths of the bit length codes, the literal tree and the distance tree. * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. */ function send_all_trees(s, lcodes, dcodes, blcodes) // deflate_state *s; // int lcodes, dcodes, blcodes; /* number of codes for each tree */ { var rank; /* index in bl_order */ //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, // "too many codes"); //Tracev((stderr, "\nbl counts: ")); send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */ send_bits(s, dcodes - 1, 5); send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */ for (rank = 0; rank < blcodes; rank++) { //Tracev((stderr, "\nbl code %2d ", bl_order[rank])); send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3); } //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */ //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */ //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); } /* =========================================================================== * Check if the data type is TEXT or BINARY, using the following algorithm: * - TEXT if the two conditions below are satisfied: * a) There are no non-portable control characters belonging to the * "black list" (0..6, 14..25, 28..31). * b) There is at least one printable character belonging to the * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). * - BINARY otherwise. * - The following partially-portable control characters form a * "gray list" that is ignored in this detection algorithm: * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). * IN assertion: the fields Freq of dyn_ltree are set. */ function detect_data_type(s) { /* black_mask is the bit mask of black-listed bytes * set bits 0..6, 14..25, and 28..31 * 0xf3ffc07f = binary 11110011111111111100000001111111 */ var black_mask = 0xf3ffc07f; var n; /* Check for non-textual ("black-listed") bytes. */ for (n = 0; n <= 31; n++, black_mask >>>= 1) { if ((black_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) { return Z_BINARY; } } /* Check for textual ("white-listed") bytes. */ if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) { return Z_TEXT; } for (n = 32; n < LITERALS; n++) { if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) { return Z_TEXT; } } /* There are no "black-listed" or "white-listed" bytes: * this stream either is empty or has tolerated ("gray-listed") bytes only. */ return Z_BINARY; } var static_init_done = false; /* =========================================================================== * Initialize the tree data structures for a new zlib stream. */ function _tr_init(s) { if (!static_init_done) { tr_static_init(); static_init_done = true; } s.l_desc = new TreeDesc(s.dyn_ltree, static_l_desc); s.d_desc = new TreeDesc(s.dyn_dtree, static_d_desc); s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc); s.bi_buf = 0; s.bi_valid = 0; /* Initialize the first block of the first file: */ init_block(s); } /* =========================================================================== * Send a stored block */ function _tr_stored_block(s, buf, stored_len, last) //DeflateState *s; //charf *buf; /* input block */ //ulg stored_len; /* length of input block */ //int last; /* one if this is the last block for a file */ { send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3); /* send block type */ copy_block(s, buf, stored_len, true); /* with header */ } /* =========================================================================== * Send one empty static block to give enough lookahead for inflate. * This takes 10 bits, of which 7 may remain in the bit buffer. */ function _tr_align(s) { send_bits(s, STATIC_TREES << 1, 3); send_code(s, END_BLOCK, static_ltree); bi_flush(s); } /* =========================================================================== * Determine the best encoding for the current block: dynamic trees, static * trees or store, and output the encoded block to the zip file. */ function _tr_flush_block(s, buf, stored_len, last) //DeflateState *s; //charf *buf; /* input block, or NULL if too old */ //ulg stored_len; /* length of input block */ //int last; /* one if this is the last block for a file */ { var opt_lenb, static_lenb; /* opt_len and static_len in bytes */ var max_blindex = 0; /* index of last bit length code of non zero freq */ /* Build the Huffman trees unless a stored block is forced */ if (s.level > 0) { /* Check if the file is binary or text */ if (s.strm.data_type === Z_UNKNOWN) { s.strm.data_type = detect_data_type(s); } /* Construct the literal and distance trees */ build_tree(s, s.l_desc); // Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, // s->static_len)); build_tree(s, s.d_desc); // Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, // s->static_len)); /* At this point, opt_len and static_len are the total bit lengths of * the compressed block data, excluding the tree representations. */ /* Build the bit length tree for the above two trees, and get the index * in bl_order of the last bit length code to send. */ max_blindex = build_bl_tree(s); /* Determine the best encoding. Compute the block lengths in bytes. */ opt_lenb = (s.opt_len + 3 + 7) >>> 3; static_lenb = (s.static_len + 3 + 7) >>> 3; // Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", // opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, // s->last_lit)); if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; } } else { // Assert(buf != (char*)0, "lost buf"); opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ } if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) { /* 4: two words for the lengths */ /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. * Otherwise we can't have processed more than WSIZE input bytes since * the last block flush, because compression would have been * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to * transform a block into a stored block. */ _tr_stored_block(s, buf, stored_len, last); } else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) { send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3); compress_block(s, static_ltree, static_dtree); } else { send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3); send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1); compress_block(s, s.dyn_ltree, s.dyn_dtree); } // Assert (s->compressed_len == s->bits_sent, "bad compressed size"); /* The above check is made mod 2^32, for files larger than 512 MB * and uLong implemented on 32 bits. */ init_block(s); if (last) { bi_windup(s); } // Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, // s->compressed_len-7*last)); } /* =========================================================================== * Save the match info and tally the frequency counts. Return true if * the current block must be flushed. */ function _tr_tally(s, dist, lc) // deflate_state *s; // unsigned dist; /* distance of matched string */ // unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ { //var out_length, in_length, dcode; s.pending_buf[s.d_buf + s.last_lit * 2] = (dist >>> 8) & 0xff; s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff; s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff; s.last_lit++; if (dist === 0) { /* lc is the unmatched char */ s.dyn_ltree[lc * 2]/*.Freq*/++; } else { s.matches++; /* Here, lc is the match length - MIN_MATCH */ dist--; /* dist = match distance - 1 */ //Assert((ush)dist < (ush)MAX_DIST(s) && // (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && // (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2]/*.Freq*/++; s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++; } // (!) This block is disabled in zlib defaults, // don't enable it for binary compatibility //#ifdef TRUNCATE_BLOCK // /* Try to guess if it is profitable to stop the current block here */ // if ((s.last_lit & 0x1fff) === 0 && s.level > 2) { // /* Compute an upper bound for the compressed length */ // out_length = s.last_lit*8; // in_length = s.strstart - s.block_start; // // for (dcode = 0; dcode < D_CODES; dcode++) { // out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]); // } // out_length >>>= 3; // //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", // // s->last_lit, in_length, out_length, // // 100L - out_length*100L/in_length)); // if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) { // return true; // } // } //#endif return (s.last_lit === s.lit_bufsize - 1); /* We avoid equality with lit_bufsize because of wraparound at 64K * on 16 bit machines and because stored blocks are restricted to * 64K-1 bytes. */ } exports._tr_init = _tr_init; exports._tr_stored_block = _tr_stored_block; exports._tr_flush_block = _tr_flush_block; exports._tr_tally = _tr_tally; exports._tr_align = _tr_align; },{"../utils/common":89}],101:[function(require,module,exports){ arguments[4][46][0].apply(exports,arguments) },{"dup":46}],102:[function(require,module,exports){ module.exports = function parseBMFontAscii(data) { if (!data) throw new Error('no data provided') data = data.toString().trim() var output = { pages: [], chars: [], kernings: [] } var lines = data.split(/\r\n?|\n/g) if (lines.length === 0) throw new Error('no data in BMFont file') for (var i = 0; i < lines.length; i++) { var lineData = splitLine(lines[i], i) if (!lineData) //skip empty lines continue if (lineData.key === 'page') { if (typeof lineData.data.id !== 'number') throw new Error('malformed file at line ' + i + ' -- needs page id=N') if (typeof lineData.data.file !== 'string') throw new Error('malformed file at line ' + i + ' -- needs page file="path"') output.pages[lineData.data.id] = lineData.data.file } else if (lineData.key === 'chars' || lineData.key === 'kernings') { //... do nothing for these two ... } else if (lineData.key === 'char') { output.chars.push(lineData.data) } else if (lineData.key === 'kerning') { output.kernings.push(lineData.data) } else { output[lineData.key] = lineData.data } } return output } function splitLine(line, idx) { line = line.replace(/\t+/g, ' ').trim() if (!line) return null var space = line.indexOf(' ') if (space === -1) throw new Error("no named row at line " + idx) var key = line.substring(0, space) line = line.substring(space + 1) //clear "letter" field as it is non-standard and //requires additional complexity to parse " / = symbols line = line.replace(/letter=[\'\"]\S+[\'\"]/gi, '') line = line.split("=") line = line.map(function(str) { return str.trim().match((/(".*?"|[^"\s]+)+(?=\s*|\s*$)/g)) }) var data = [] for (var i = 0; i < line.length; i++) { var dt = line[i] if (i === 0) { data.push({ key: dt[0], data: "" }) } else if (i === line.length - 1) { data[data.length - 1].data = parseData(dt[0]) } else { data[data.length - 1].data = parseData(dt[0]) data.push({ key: dt[1], data: "" }) } } var out = { key: key, data: {} } data.forEach(function(v) { out.data[v.key] = v.data; }) return out } function parseData(data) { if (!data || data.length === 0) return "" if (data.indexOf('"') === 0 || data.indexOf("'") === 0) return data.substring(1, data.length - 1) if (data.indexOf(',') !== -1) return parseIntList(data) return parseInt(data, 10) } function parseIntList(data) { return data.split(',').map(function(val) { return parseInt(val, 10) }) } },{}],103:[function(require,module,exports){ var HEADER = [66, 77, 70] module.exports = function readBMFontBinary(buf) { if (buf.length < 6) throw new Error('invalid buffer length for BMFont') var header = HEADER.every(function(byte, i) { return buf.readUInt8(i) === byte }) if (!header) throw new Error('BMFont missing BMF byte header') var i = 3 var vers = buf.readUInt8(i++) if (vers > 3) throw new Error('Only supports BMFont Binary v3 (BMFont App v1.10)') var target = { kernings: [], chars: [] } for (var b=0; b<5; b++) i += readBlock(target, buf, i) return target } function readBlock(target, buf, i) { if (i > buf.length-1) return 0 var blockID = buf.readUInt8(i++) var blockSize = buf.readInt32LE(i) i += 4 switch(blockID) { case 1: target.info = readInfo(buf, i) break case 2: target.common = readCommon(buf, i) break case 3: target.pages = readPages(buf, i, blockSize) break case 4: target.chars = readChars(buf, i, blockSize) break case 5: target.kernings = readKernings(buf, i, blockSize) break } return 5 + blockSize } function readInfo(buf, i) { var info = {} info.size = buf.readInt16LE(i) var bitField = buf.readUInt8(i+2) info.smooth = (bitField >> 7) & 1 info.unicode = (bitField >> 6) & 1 info.italic = (bitField >> 5) & 1 info.bold = (bitField >> 4) & 1 //fixedHeight is only mentioned in binary spec if ((bitField >> 3) & 1) info.fixedHeight = 1 info.charset = buf.readUInt8(i+3) || '' info.stretchH = buf.readUInt16LE(i+4) info.aa = buf.readUInt8(i+6) info.padding = [ buf.readInt8(i+7), buf.readInt8(i+8), buf.readInt8(i+9), buf.readInt8(i+10) ] info.spacing = [ buf.readInt8(i+11), buf.readInt8(i+12) ] info.outline = buf.readUInt8(i+13) info.face = readStringNT(buf, i+14) return info } function readCommon(buf, i) { var common = {} common.lineHeight = buf.readUInt16LE(i) common.base = buf.readUInt16LE(i+2) common.scaleW = buf.readUInt16LE(i+4) common.scaleH = buf.readUInt16LE(i+6) common.pages = buf.readUInt16LE(i+8) var bitField = buf.readUInt8(i+10) common.packed = 0 common.alphaChnl = buf.readUInt8(i+11) common.redChnl = buf.readUInt8(i+12) common.greenChnl = buf.readUInt8(i+13) common.blueChnl = buf.readUInt8(i+14) return common } function readPages(buf, i, size) { var pages = [] var text = readNameNT(buf, i) var len = text.length+1 var count = size / len for (var c=0; c element') var pages = pageRoot.getElementsByTagName('page') for (var i=0; i 0 var up = 0; for (var i = parts.length - 1; i >= 0; i--) { var last = parts[i]; if (last === '.') { parts.splice(i, 1); } else if (last === '..') { parts.splice(i, 1); up++; } else if (up) { parts.splice(i, 1); up--; } } // if the path is allowed to go above the root, restore leading ..s if (allowAboveRoot) { for (; up--; up) { parts.unshift('..'); } } return parts; } // path.resolve([from ...], to) // posix version exports.resolve = function() { var resolvedPath = '', resolvedAbsolute = false; for (var i = arguments.length - 1; i >= -1 && !resolvedAbsolute; i--) { var path = (i >= 0) ? arguments[i] : process.cwd(); // Skip empty and invalid entries if (typeof path !== 'string') { throw new TypeError('Arguments to path.resolve must be strings'); } else if (!path) { continue; } resolvedPath = path + '/' + resolvedPath; resolvedAbsolute = path.charAt(0) === '/'; } // At this point the path should be resolved to a full absolute path, but // handle relative paths to be safe (might happen when process.cwd() fails) // Normalize the path resolvedPath = normalizeArray(filter(resolvedPath.split('/'), function(p) { return !!p; }), !resolvedAbsolute).join('/'); return ((resolvedAbsolute ? '/' : '') + resolvedPath) || '.'; }; // path.normalize(path) // posix version exports.normalize = function(path) { var isAbsolute = exports.isAbsolute(path), trailingSlash = substr(path, -1) === '/'; // Normalize the path path = normalizeArray(filter(path.split('/'), function(p) { return !!p; }), !isAbsolute).join('/'); if (!path && !isAbsolute) { path = '.'; } if (path && trailingSlash) { path += '/'; } return (isAbsolute ? '/' : '') + path; }; // posix version exports.isAbsolute = function(path) { return path.charAt(0) === '/'; }; // posix version exports.join = function() { var paths = Array.prototype.slice.call(arguments, 0); return exports.normalize(filter(paths, function(p, index) { if (typeof p !== 'string') { throw new TypeError('Arguments to path.join must be strings'); } return p; }).join('/')); }; // path.relative(from, to) // posix version exports.relative = function(from, to) { from = exports.resolve(from).substr(1); to = exports.resolve(to).substr(1); function trim(arr) { var start = 0; for (; start < arr.length; start++) { if (arr[start] !== '') break; } var end = arr.length - 1; for (; end >= 0; end--) { if (arr[end] !== '') break; } if (start > end) return []; return arr.slice(start, end - start + 1); } var fromParts = trim(from.split('/')); var toParts = trim(to.split('/')); var length = Math.min(fromParts.length, toParts.length); var samePartsLength = length; for (var i = 0; i < length; i++) { if (fromParts[i] !== toParts[i]) { samePartsLength = i; break; } } var outputParts = []; for (var i = samePartsLength; i < fromParts.length; i++) { outputParts.push('..'); } outputParts = outputParts.concat(toParts.slice(samePartsLength)); return outputParts.join('/'); }; exports.sep = '/'; exports.delimiter = ':'; exports.dirname = function (path) { if (typeof path !== 'string') path = path + ''; if (path.length === 0) return '.'; var code = path.charCodeAt(0); var hasRoot = code === 47 /*/*/; var end = -1; var matchedSlash = true; for (var i = path.length - 1; i >= 1; --i) { code = path.charCodeAt(i); if (code === 47 /*/*/) { if (!matchedSlash) { end = i; break; } } else { // We saw the first non-path separator matchedSlash = false; } } if (end === -1) return hasRoot ? '/' : '.'; if (hasRoot && end === 1) { // return '//'; // Backwards-compat fix: return '/'; } return path.slice(0, end); }; function basename(path) { if (typeof path !== 'string') path = path + ''; var start = 0; var end = -1; var matchedSlash = true; var i; for (i = path.length - 1; i >= 0; --i) { if (path.charCodeAt(i) === 47 /*/*/) { // If we reached a path separator that was not part of a set of path // separators at the end of the string, stop now if (!matchedSlash) { start = i + 1; break; } } else if (end === -1) { // We saw the first non-path separator, mark this as the end of our // path component matchedSlash = false; end = i + 1; } } if (end === -1) return ''; return path.slice(start, end); } // Uses a mixed approach for backwards-compatibility, as ext behavior changed // in new Node.js versions, so only basename() above is backported here exports.basename = function (path, ext) { var f = basename(path); if (ext && f.substr(-1 * ext.length) === ext) { f = f.substr(0, f.length - ext.length); } return f; }; exports.extname = function (path) { if (typeof path !== 'string') path = path + ''; var startDot = -1; var startPart = 0; var end = -1; var matchedSlash = true; // Track the state of characters (if any) we see before our first dot and // after any path separator we find var preDotState = 0; for (var i = path.length - 1; i >= 0; --i) { var code = path.charCodeAt(i); if (code === 47 /*/*/) { // If we reached a path separator that was not part of a set of path // separators at the end of the string, stop now if (!matchedSlash) { startPart = i + 1; break; } continue; } if (end === -1) { // We saw the first non-path separator, mark this as the end of our // extension matchedSlash = false; end = i + 1; } if (code === 46 /*.*/) { // If this is our first dot, mark it as the start of our extension if (startDot === -1) startDot = i; else if (preDotState !== 1) preDotState = 1; } else if (startDot !== -1) { // We saw a non-dot and non-path separator before our dot, so we should // have a good chance at having a non-empty extension preDotState = -1; } } if (startDot === -1 || end === -1 || // We saw a non-dot character immediately before the dot preDotState === 0 || // The (right-most) trimmed path component is exactly '..' preDotState === 1 && startDot === end - 1 && startDot === startPart + 1) { return ''; } return path.slice(startDot, end); }; function filter (xs, f) { if (xs.filter) return xs.filter(f); var res = []; for (var i = 0; i < xs.length; i++) { if (f(xs[i], i, xs)) res.push(xs[i]); } return res; } // String.prototype.substr - negative index don't work in IE8 var substr = 'ab'.substr(-1) === 'b' ? function (str, start, len) { return str.substr(start, len) } : function (str, start, len) { if (start < 0) start = str.length + start; return str.substr(start, len); } ; }).call(this,require('_process')) },{"_process":133}],108:[function(require,module,exports){ (function (Buffer){ 'use strict';var _typeof=typeof Symbol==='function'&&typeof Symbol.iterator==='symbol'?function(obj){return typeof obj}:function(obj){return obj&&typeof Symbol==='function'&&obj.constructor===Symbol&&obj!==Symbol.prototype?'symbol':typeof obj};var http=require('http');var https=require('https');var url=require('url');var qs=require('querystring');var zlib=require('zlib');var util=require('util');var phin=function phin(opts,cb){if(typeof opts!=='string'){if(!opts.hasOwnProperty('url')){throw new Error('Missing url option from options for request method.')}}var addr=(typeof opts==='undefined'?'undefined':_typeof(opts))==='object'?url.parse(opts.url):url.parse(opts);var options={'hostname':addr.hostname,'port':addr.port||(addr.protocol.toLowerCase()==='http:'?80:443),'path':addr.path,'method':'GET','headers':{},'auth':addr.auth||null,'parse':'none','stream':false};if((typeof opts==='undefined'?'undefined':_typeof(opts))==='object'){options=Object.assign(options,opts)}options.port=Number(options.port);if(options.hasOwnProperty('timeout'))delete options.timeout;if(options.compressed===true){options.headers['accept-encoding']='gzip, deflate'}if(opts.hasOwnProperty('form')){if(_typeof(opts.form)!=='object'){throw new Error('phin \'form\' option must be of type Object if present.')}var formDataString=qs.stringify(opts.form);options.headers['Content-Type']='application/x-www-form-urlencoded';options.headers['Content-Length']=Buffer.byteLength(formDataString);opts.data=formDataString}var req=void 0;var resHandler=function resHandler(res){var stream=res;if(options.compressed===true){if(res.headers['content-encoding']==='gzip'){stream=res.pipe(zlib.createGunzip())}else if(res.headers['content-encoding']==='deflate'){stream=res.pipe(zlib.createInflate())}}if(options.stream===true){res.stream=stream;cb(null,res)}else{res.body=new Buffer([]);stream.on('data',function(chunk){res.body=Buffer.concat([res.body,chunk])});stream.on('end',function(){if(cb){if(options.parse==='json'){try{res.body=JSON.parse(res.body.toString())}catch(err){cb('Invalid JSON received.',res);return}}cb(null,res)}})}};switch(addr.protocol.toLowerCase()){case'http:':req=http.request(options,resHandler);break;case'https:':req=https.request(options,resHandler);break;default:if(cb){cb(new Error('Invalid / unknown URL protocol. Expected HTTP or HTTPS.'),null)}return;}if(typeof opts.timeout==='number'){req.setTimeout(opts.timeout,function(){req.abort();cb(new Error('Timeout has been reached.'),null);cb=null})}req.on('error',function(err){if(cb){cb(err,null)}});if(opts.hasOwnProperty('data')){var postData=opts.data;if(!(opts.data instanceof Buffer)&&_typeof(opts.data)==='object'){var contentType=options.headers['content-type']||options.headers['Content-Type'];if(contentType==='application/x-www-form-urlencoded'){postData=qs.stringify(opts.data)}else{try{postData=JSON.stringify(opts.data)}catch(err){cb(new Error('Couldn\'t stringify object. (Likely due to a circular reference.)'),null)}}}req.write(postData)}req.end()};phin.promisified=function(opts,http){return new Promise(function(resolve,reject){phin(opts,function(err,res){if(err){reject(err)}else{resolve(res)}},http)})};if(util.promisify){phin[util.promisify.custom]=phin.promisified}module.exports=phin; }).call(this,require("buffer").Buffer) },{"buffer":48,"http":156,"https":72,"querystring":137,"url":180,"util":186,"zlib":35}],109:[function(require,module,exports){ 'use strict'; module.exports = pixelmatch; function pixelmatch(img1, img2, output, width, height, options) { if (!options) options = {}; var threshold = options.threshold === undefined ? 0.1 : options.threshold; // maximum acceptable square distance between two colors; // 35215 is the maximum possible value for the YIQ difference metric var maxDelta = 35215 * threshold * threshold, diff = 0; // compare each pixel of one image against the other one for (var y = 0; y < height; y++) { for (var x = 0; x < width; x++) { var pos = (y * width + x) * 4; // squared YUV distance between colors at this pixel position var delta = colorDelta(img1, img2, pos, pos); // the color difference is above the threshold if (delta > maxDelta) { // check it's a real rendering difference or just anti-aliasing if (!options.includeAA && (antialiased(img1, x, y, width, height, img2) || antialiased(img2, x, y, width, height, img1))) { // one of the pixels is anti-aliasing; draw as yellow and do not count as difference if (output) drawPixel(output, pos, 255, 255, 0); } else { // found substantial difference not caused by anti-aliasing; draw it as red if (output) drawPixel(output, pos, 255, 0, 0); diff++; } } else if (output) { // pixels are similar; draw background as grayscale image blended with white var val = blend(grayPixel(img1, pos), 0.1); drawPixel(output, pos, val, val, val); } } } // return the number of different pixels return diff; } // check if a pixel is likely a part of anti-aliasing; // based on "Anti-aliased Pixel and Intensity Slope Detector" paper by V. Vysniauskas, 2009 function antialiased(img, x1, y1, width, height, img2) { var x0 = Math.max(x1 - 1, 0), y0 = Math.max(y1 - 1, 0), x2 = Math.min(x1 + 1, width - 1), y2 = Math.min(y1 + 1, height - 1), pos = (y1 * width + x1) * 4, zeroes = 0, positives = 0, negatives = 0, min = 0, max = 0, minX, minY, maxX, maxY; // go through 8 adjacent pixels for (var x = x0; x <= x2; x++) { for (var y = y0; y <= y2; y++) { if (x === x1 && y === y1) continue; // brightness delta between the center pixel and adjacent one var delta = colorDelta(img, img, pos, (y * width + x) * 4, true); // count the number of equal, darker and brighter adjacent pixels if (delta === 0) zeroes++; else if (delta < 0) negatives++; else if (delta > 0) positives++; // if found more than 2 equal siblings, it's definitely not anti-aliasing if (zeroes > 2) return false; if (!img2) continue; // remember the darkest pixel if (delta < min) { min = delta; minX = x; minY = y; } // remember the brightest pixel if (delta > max) { max = delta; maxX = x; maxY = y; } } } if (!img2) return true; // if there are no both darker and brighter pixels among siblings, it's not anti-aliasing if (negatives === 0 || positives === 0) return false; // if either the darkest or the brightest pixel has more than 2 equal siblings in both images // (definitely not anti-aliased), this pixel is anti-aliased return (!antialiased(img, minX, minY, width, height) && !antialiased(img2, minX, minY, width, height)) || (!antialiased(img, maxX, maxY, width, height) && !antialiased(img2, maxX, maxY, width, height)); } // calculate color difference according to the paper "Measuring perceived color difference // using YIQ NTSC transmission color space in mobile applications" by Y. Kotsarenko and F. Ramos function colorDelta(img1, img2, k, m, yOnly) { var a1 = img1[k + 3] / 255, a2 = img2[m + 3] / 255, r1 = blend(img1[k + 0], a1), g1 = blend(img1[k + 1], a1), b1 = blend(img1[k + 2], a1), r2 = blend(img2[m + 0], a2), g2 = blend(img2[m + 1], a2), b2 = blend(img2[m + 2], a2), y = rgb2y(r1, g1, b1) - rgb2y(r2, g2, b2); if (yOnly) return y; // brightness difference only var i = rgb2i(r1, g1, b1) - rgb2i(r2, g2, b2), q = rgb2q(r1, g1, b1) - rgb2q(r2, g2, b2); return 0.5053 * y * y + 0.299 * i * i + 0.1957 * q * q; } function rgb2y(r, g, b) { return r * 0.29889531 + g * 0.58662247 + b * 0.11448223; } function rgb2i(r, g, b) { return r * 0.59597799 - g * 0.27417610 - b * 0.32180189; } function rgb2q(r, g, b) { return r * 0.21147017 - g * 0.52261711 + b * 0.31114694; } // blend semi-transparent color with white function blend(c, a) { return 255 + (c - 255) * a; } function drawPixel(output, pos, r, g, b) { output[pos + 0] = r; output[pos + 1] = g; output[pos + 2] = b; output[pos + 3] = 255; } function grayPixel(img, i) { var a = img[i + 3] / 255, r = blend(img[i + 0], a), g = blend(img[i + 1], a), b = blend(img[i + 2], a); return rgb2y(r, g, b); } },{}],110:[function(require,module,exports){ (function (Buffer){ 'use strict'; var interlaceUtils = require('./interlace'); var pixelBppMap = { 1: { // L 0: 0, 1: 0, 2: 0, 3: 0xff }, 2: { // LA 0: 0, 1: 0, 2: 0, 3: 1 }, 3: { // RGB 0: 0, 1: 1, 2: 2, 3: 0xff }, 4: { // RGBA 0: 0, 1: 1, 2: 2, 3: 3 } }; function bitRetriever(data, depth) { var leftOver = []; var i = 0; function split() { if (i === data.length) { throw new Error('Ran out of data'); } var byte = data[i]; i++; var byte8, byte7, byte6, byte5, byte4, byte3, byte2, byte1; switch (depth) { default: throw new Error('unrecognised depth'); case 16: byte2 = data[i]; i++; leftOver.push(((byte << 8) + byte2)); break; case 4: byte2 = byte & 0x0f; byte1 = byte >> 4; leftOver.push(byte1, byte2); break; case 2: byte4 = byte & 3; byte3 = byte >> 2 & 3; byte2 = byte >> 4 & 3; byte1 = byte >> 6 & 3; leftOver.push(byte1, byte2, byte3, byte4); break; case 1: byte8 = byte & 1; byte7 = byte >> 1 & 1; byte6 = byte >> 2 & 1; byte5 = byte >> 3 & 1; byte4 = byte >> 4 & 1; byte3 = byte >> 5 & 1; byte2 = byte >> 6 & 1; byte1 = byte >> 7 & 1; leftOver.push(byte1, byte2, byte3, byte4, byte5, byte6, byte7, byte8); break; } } return { get: function(count) { while (leftOver.length < count) { split(); } var returner = leftOver.slice(0, count); leftOver = leftOver.slice(count); return returner; }, resetAfterLine: function() { leftOver.length = 0; }, end: function() { if (i !== data.length) { throw new Error('extra data found'); } } }; } function mapImage8Bit(image, pxData, getPxPos, bpp, data, rawPos) { // eslint-disable-line max-params var imageWidth = image.width; var imageHeight = image.height; var imagePass = image.index; for (var y = 0; y < imageHeight; y++) { for (var x = 0; x < imageWidth; x++) { var pxPos = getPxPos(x, y, imagePass); for (var i = 0; i < 4; i++) { var idx = pixelBppMap[bpp][i]; if (idx === 0xff) { pxData[pxPos + i] = 0xff; } else { var dataPos = idx + rawPos; if (dataPos === data.length) { throw new Error('Ran out of data'); } pxData[pxPos + i] = data[dataPos]; } } rawPos += bpp; //eslint-disable-line no-param-reassign } } return rawPos; } function mapImageCustomBit(image, pxData, getPxPos, bpp, bits, maxBit) { // eslint-disable-line max-params var imageWidth = image.width; var imageHeight = image.height; var imagePass = image.index; for (var y = 0; y < imageHeight; y++) { for (var x = 0; x < imageWidth; x++) { var pixelData = bits.get(bpp); var pxPos = getPxPos(x, y, imagePass); for (var i = 0; i < 4; i++) { var idx = pixelBppMap[bpp][i]; pxData[pxPos + i] = idx !== 0xff ? pixelData[idx] : maxBit; } } bits.resetAfterLine(); } } exports.dataToBitMap = function(data, bitmapInfo) { var width = bitmapInfo.width; var height = bitmapInfo.height; var depth = bitmapInfo.depth; var bpp = bitmapInfo.bpp; var interlace = bitmapInfo.interlace; if (depth !== 8) { var bits = bitRetriever(data, depth); } var pxData; if (depth <= 8) { pxData = new Buffer(width * height * 4); } else { pxData = new Uint16Array(width * height * 4); } var maxBit = Math.pow(2, depth) - 1; var rawPos = 0; var images; var getPxPos; if (interlace) { images = interlaceUtils.getImagePasses(width, height); getPxPos = interlaceUtils.getInterlaceIterator(width, height); } else { var nonInterlacedPxPos = 0; getPxPos = function() { var returner = nonInterlacedPxPos; nonInterlacedPxPos += 4; return returner; }; images = [{ width: width, height: height }]; } for (var imageIndex = 0; imageIndex < images.length; imageIndex++) { if (depth === 8) { rawPos = mapImage8Bit(images[imageIndex], pxData, getPxPos, bpp, data, rawPos); } else { mapImageCustomBit(images[imageIndex], pxData, getPxPos, bpp, bits, maxBit); } } if (depth === 8) { if (rawPos !== data.length) { throw new Error('extra data found'); } } else { bits.end(); } return pxData; }; }).call(this,require("buffer").Buffer) },{"./interlace":120,"buffer":48}],111:[function(require,module,exports){ (function (Buffer){ 'use strict'; var constants = require('./constants'); module.exports = function(dataIn, width, height, options) { var outHasAlpha = [constants.COLORTYPE_COLOR_ALPHA, constants.COLORTYPE_ALPHA].indexOf(options.colorType) !== -1; if (options.colorType === options.inputColorType) { var bigEndian = (function() { var buffer = new ArrayBuffer(2); new DataView(buffer).setInt16(0, 256, true /* littleEndian */); // Int16Array uses the platform's endianness. return new Int16Array(buffer)[0] !== 256; })(); // If no need to convert to grayscale and alpha is present/absent in both, take a fast route if (options.bitDepth === 8 || (options.bitDepth === 16 && bigEndian)){ return dataIn; } } // map to a UInt16 array if data is 16bit, fix endianness below var data = options.bitDepth !== 16 ? dataIn : new Uint16Array(dataIn.buffer); var maxValue = 255; var inBpp = constants.COLORTYPE_TO_BPP_MAP[options.inputColorType]; if (inBpp == 4 && !options.inputHasAlpha) inBpp = 3; var outBpp = constants.COLORTYPE_TO_BPP_MAP[options.colorType]; if (options.bitDepth === 16) { maxValue = 65535; outBpp *= 2; } var outData = new Buffer(width * height * outBpp); var inIndex = 0; var outIndex = 0; var bgColor = options.bgColor || {}; if (bgColor.red === undefined) { bgColor.red = maxValue; } if (bgColor.green === undefined) { bgColor.green = maxValue; } if (bgColor.blue === undefined) { bgColor.blue = maxValue; } function getRGBA(data, inIndex) { var red, green, blue, alpha = maxValue; switch (options.inputColorType) { case constants.COLORTYPE_COLOR_ALPHA: alpha = data[inIndex + 3]; red = data[inIndex]; green = data[inIndex+1]; blue = data[inIndex+2]; break; case constants.COLORTYPE_COLOR: red = data[inIndex]; green = data[inIndex+1]; blue = data[inIndex+2]; break; case constants.COLORTYPE_ALPHA: alpha = data[inIndex + 1]; red = data[inIndex]; green = red; blue = red; break; case constants.COLORTYPE_GRAYSCALE: red = data[inIndex]; green = red; blue = red; break; default: throw new Error('input color type:' + options.inputColorType + ' is not supported at present'); } if (options.inputHasAlpha) { if (!outHasAlpha) { alpha /= maxValue; red = Math.min(Math.max(Math.round((1 - alpha) * bgColor.red + alpha * red), 0), maxValue); green = Math.min(Math.max(Math.round((1 - alpha) * bgColor.green + alpha * green), 0), maxValue); blue = Math.min(Math.max(Math.round((1 - alpha) * bgColor.blue + alpha * blue), 0), maxValue); } } return {red: red, green: green, blue: blue, alpha: alpha}; } for (var y = 0; y < height; y++) { for (var x = 0; x < width; x++) { var rgba = getRGBA(data, inIndex); switch (options.colorType) { case constants.COLORTYPE_COLOR_ALPHA: case constants.COLORTYPE_COLOR: if (options.bitDepth === 8) { outData[outIndex] = rgba.red; outData[outIndex + 1] = rgba.green; outData[outIndex + 2] = rgba.blue; if (outHasAlpha) { outData[outIndex + 3] = rgba.alpha; } } else { outData.writeUInt16BE(rgba.red, outIndex); outData.writeUInt16BE(rgba.green, outIndex + 2); outData.writeUInt16BE(rgba.blue, outIndex + 4); if (outHasAlpha) { outData.writeUInt16BE(rgba.alpha, outIndex + 6); } } break; case constants.COLORTYPE_ALPHA: case constants.COLORTYPE_GRAYSCALE: // Convert to grayscale and alpha var grayscale = (rgba.red + rgba.green + rgba.blue) / 3; if (options.bitDepth === 8) { outData[outIndex] = grayscale; if (outHasAlpha) { outData[outIndex + 1] = rgba.alpha; } } else { outData.writeUInt16BE(grayscale, outIndex); if (outHasAlpha) { outData.writeUInt16BE(rgba.alpha, outIndex + 2); } } break; } inIndex += inBpp; outIndex += outBpp; } } return outData; }; }).call(this,require("buffer").Buffer) },{"./constants":113,"buffer":48}],112:[function(require,module,exports){ (function (process,Buffer){ 'use strict'; var util = require('util'); var Stream = require('stream'); var ChunkStream = module.exports = function() { Stream.call(this); this._buffers = []; this._buffered = 0; this._reads = []; this._paused = false; this._encoding = 'utf8'; this.writable = true; }; util.inherits(ChunkStream, Stream); ChunkStream.prototype.read = function(length, callback) { this._reads.push({ length: Math.abs(length), // if length < 0 then at most this length allowLess: length < 0, func: callback }); process.nextTick(function() { this._process(); // its paused and there is not enought data then ask for more if (this._paused && this._reads.length > 0) { this._paused = false; this.emit('drain'); } }.bind(this)); }; ChunkStream.prototype.write = function(data, encoding) { if (!this.writable) { this.emit('error', new Error('Stream not writable')); return false; } var dataBuffer; if (Buffer.isBuffer(data)) { dataBuffer = data; } else { dataBuffer = new Buffer(data, encoding || this._encoding); } this._buffers.push(dataBuffer); this._buffered += dataBuffer.length; this._process(); // ok if there are no more read requests if (this._reads && this._reads.length === 0) { this._paused = true; } return this.writable && !this._paused; }; ChunkStream.prototype.end = function(data, encoding) { if (data) { this.write(data, encoding); } this.writable = false; // already destroyed if (!this._buffers) { return; } // enqueue or handle end if (this._buffers.length === 0) { this._end(); } else { this._buffers.push(null); this._process(); } }; ChunkStream.prototype.destroySoon = ChunkStream.prototype.end; ChunkStream.prototype._end = function() { if (this._reads.length > 0) { this.emit('error', new Error('There are some read requests waiting on finished stream') ); } this.destroy(); }; ChunkStream.prototype.destroy = function() { if (!this._buffers) { return; } this.writable = false; this._reads = null; this._buffers = null; this.emit('close'); }; ChunkStream.prototype._processReadAllowingLess = function(read) { // ok there is any data so that we can satisfy this request this._reads.shift(); // == read // first we need to peek into first buffer var smallerBuf = this._buffers[0]; // ok there is more data than we need if (smallerBuf.length > read.length) { this._buffered -= read.length; this._buffers[0] = smallerBuf.slice(read.length); read.func.call(this, smallerBuf.slice(0, read.length)); } else { // ok this is less than maximum length so use it all this._buffered -= smallerBuf.length; this._buffers.shift(); // == smallerBuf read.func.call(this, smallerBuf); } }; ChunkStream.prototype._processRead = function(read) { this._reads.shift(); // == read var pos = 0; var count = 0; var data = new Buffer(read.length); // create buffer for all data while (pos < read.length) { var buf = this._buffers[count++]; var len = Math.min(buf.length, read.length - pos); buf.copy(data, pos, 0, len); pos += len; // last buffer wasn't used all so just slice it and leave if (len !== buf.length) { this._buffers[--count] = buf.slice(len); } } // remove all used buffers if (count > 0) { this._buffers.splice(0, count); } this._buffered -= read.length; read.func.call(this, data); }; ChunkStream.prototype._process = function() { try { // as long as there is any data and read requests while (this._buffered > 0 && this._reads && this._reads.length > 0) { var read = this._reads[0]; // read any data (but no more than length) if (read.allowLess) { this._processReadAllowingLess(read); } else if (this._buffered >= read.length) { // ok we can meet some expectations this._processRead(read); } else { // not enought data to satisfy first request in queue // so we need to wait for more break; } } if (this._buffers && this._buffers.length > 0 && this._buffers[0] === null) { this._end(); } } catch (ex) { this.emit('error', ex); } }; }).call(this,require('_process'),require("buffer").Buffer) },{"_process":133,"buffer":48,"stream":155,"util":186}],113:[function(require,module,exports){ 'use strict'; module.exports = { PNG_SIGNATURE: [0x89, 0x50, 0x4e, 0x47, 0x0d, 0x0a, 0x1a, 0x0a], TYPE_IHDR: 0x49484452, TYPE_IEND: 0x49454e44, TYPE_IDAT: 0x49444154, TYPE_PLTE: 0x504c5445, TYPE_tRNS: 0x74524e53, // eslint-disable-line camelcase TYPE_gAMA: 0x67414d41, // eslint-disable-line camelcase // color-type bits COLORTYPE_GRAYSCALE: 0, COLORTYPE_PALETTE: 1, COLORTYPE_COLOR: 2, COLORTYPE_ALPHA: 4, // e.g. grayscale and alpha // color-type combinations COLORTYPE_PALETTE_COLOR: 3, COLORTYPE_COLOR_ALPHA: 6, COLORTYPE_TO_BPP_MAP: { 0: 1, 2: 3, 3: 1, 4: 2, 6: 4 }, GAMMA_DIVISION: 100000 }; },{}],114:[function(require,module,exports){ 'use strict'; var crcTable = []; (function() { for (var i = 0; i < 256; i++) { var currentCrc = i; for (var j = 0; j < 8; j++) { if (currentCrc & 1) { currentCrc = 0xedb88320 ^ (currentCrc >>> 1); } else { currentCrc = currentCrc >>> 1; } } crcTable[i] = currentCrc; } }()); var CrcCalculator = module.exports = function() { this._crc = -1; }; CrcCalculator.prototype.write = function(data) { for (var i = 0; i < data.length; i++) { this._crc = crcTable[(this._crc ^ data[i]) & 0xff] ^ (this._crc >>> 8); } return true; }; CrcCalculator.prototype.crc32 = function() { return this._crc ^ -1; }; CrcCalculator.crc32 = function(buf) { var crc = -1; for (var i = 0; i < buf.length; i++) { crc = crcTable[(crc ^ buf[i]) & 0xff] ^ (crc >>> 8); } return crc ^ -1; }; },{}],115:[function(require,module,exports){ (function (Buffer){ 'use strict'; var paethPredictor = require('./paeth-predictor'); function filterNone(pxData, pxPos, byteWidth, rawData, rawPos) { for (var x = 0; x < byteWidth; x++) { rawData[rawPos + x] = pxData[pxPos + x]; } } function filterSumNone(pxData, pxPos, byteWidth) { var sum = 0; var length = pxPos + byteWidth; for (var i = pxPos; i < length; i++) { sum += Math.abs(pxData[i]); } return sum; } function filterSub(pxData, pxPos, byteWidth, rawData, rawPos, bpp) { for (var x = 0; x < byteWidth; x++) { var left = x >= bpp ? pxData[pxPos + x - bpp] : 0; var val = pxData[pxPos + x] - left; rawData[rawPos + x] = val; } } function filterSumSub(pxData, pxPos, byteWidth, bpp) { var sum = 0; for (var x = 0; x < byteWidth; x++) { var left = x >= bpp ? pxData[pxPos + x - bpp] : 0; var val = pxData[pxPos + x] - left; sum += Math.abs(val); } return sum; } function filterUp(pxData, pxPos, byteWidth, rawData, rawPos) { for (var x = 0; x < byteWidth; x++) { var up = pxPos > 0 ? pxData[pxPos + x - byteWidth] : 0; var val = pxData[pxPos + x] - up; rawData[rawPos + x] = val; } } function filterSumUp(pxData, pxPos, byteWidth) { var sum = 0; var length = pxPos + byteWidth; for (var x = pxPos; x < length; x++) { var up = pxPos > 0 ? pxData[x - byteWidth] : 0; var val = pxData[x] - up; sum += Math.abs(val); } return sum; } function filterAvg(pxData, pxPos, byteWidth, rawData, rawPos, bpp) { for (var x = 0; x < byteWidth; x++) { var left = x >= bpp ? pxData[pxPos + x - bpp] : 0; var up = pxPos > 0 ? pxData[pxPos + x - byteWidth] : 0; var val = pxData[pxPos + x] - ((left + up) >> 1); rawData[rawPos + x] = val; } } function filterSumAvg(pxData, pxPos, byteWidth, bpp) { var sum = 0; for (var x = 0; x < byteWidth; x++) { var left = x >= bpp ? pxData[pxPos + x - bpp] : 0; var up = pxPos > 0 ? pxData[pxPos + x - byteWidth] : 0; var val = pxData[pxPos + x] - ((left + up) >> 1); sum += Math.abs(val); } return sum; } function filterPaeth(pxData, pxPos, byteWidth, rawData, rawPos, bpp) { for (var x = 0; x < byteWidth; x++) { var left = x >= bpp ? pxData[pxPos + x - bpp] : 0; var up = pxPos > 0 ? pxData[pxPos + x - byteWidth] : 0; var upleft = pxPos > 0 && x >= bpp ? pxData[pxPos + x - (byteWidth + bpp)] : 0; var val = pxData[pxPos + x] - paethPredictor(left, up, upleft); rawData[rawPos + x] = val; } } function filterSumPaeth(pxData, pxPos, byteWidth, bpp) { var sum = 0; for (var x = 0; x < byteWidth; x++) { var left = x >= bpp ? pxData[pxPos + x - bpp] : 0; var up = pxPos > 0 ? pxData[pxPos + x - byteWidth] : 0; var upleft = pxPos > 0 && x >= bpp ? pxData[pxPos + x - (byteWidth + bpp)] : 0; var val = pxData[pxPos + x] - paethPredictor(left, up, upleft); sum += Math.abs(val); } return sum; } var filters = { 0: filterNone, 1: filterSub, 2: filterUp, 3: filterAvg, 4: filterPaeth }; var filterSums = { 0: filterSumNone, 1: filterSumSub, 2: filterSumUp, 3: filterSumAvg, 4: filterSumPaeth }; module.exports = function(pxData, width, height, options, bpp) { var filterTypes; if (!('filterType' in options) || options.filterType === -1) { filterTypes = [0, 1, 2, 3, 4]; } else if (typeof options.filterType === 'number') { filterTypes = [options.filterType]; } else { throw new Error('unrecognised filter types'); } if (options.bitDepth === 16) bpp *= 2; var byteWidth = width * bpp; var rawPos = 0; var pxPos = 0; var rawData = new Buffer((byteWidth + 1) * height); var sel = filterTypes[0]; for (var y = 0; y < height; y++) { if (filterTypes.length > 1) { // find best filter for this line (with lowest sum of values) var min = Infinity; for (var i = 0; i < filterTypes.length; i++) { var sum = filterSums[filterTypes[i]](pxData, pxPos, byteWidth, bpp); if (sum < min) { sel = filterTypes[i]; min = sum; } } } rawData[rawPos] = sel; rawPos++; filters[sel](pxData, pxPos, byteWidth, rawData, rawPos, bpp); rawPos += byteWidth; pxPos += byteWidth; } return rawData; }; }).call(this,require("buffer").Buffer) },{"./paeth-predictor":124,"buffer":48}],116:[function(require,module,exports){ (function (Buffer){ 'use strict'; var util = require('util'); var ChunkStream = require('./chunkstream'); var Filter = require('./filter-parse'); var FilterAsync = module.exports = function(bitmapInfo) { ChunkStream.call(this); var buffers = []; var that = this; this._filter = new Filter(bitmapInfo, { read: this.read.bind(this), write: function(buffer) { buffers.push(buffer); }, complete: function() { that.emit('complete', Buffer.concat(buffers)); } }); this._filter.start(); }; util.inherits(FilterAsync, ChunkStream); }).call(this,require("buffer").Buffer) },{"./chunkstream":112,"./filter-parse":118,"buffer":48,"util":186}],117:[function(require,module,exports){ (function (Buffer){ 'use strict'; var SyncReader = require('./sync-reader'); var Filter = require('./filter-parse'); exports.process = function(inBuffer, bitmapInfo) { var outBuffers = []; var reader = new SyncReader(inBuffer); var filter = new Filter(bitmapInfo, { read: reader.read.bind(reader), write: function(bufferPart) { outBuffers.push(bufferPart); }, complete: function() { } }); filter.start(); reader.process(); return Buffer.concat(outBuffers); }; }).call(this,require("buffer").Buffer) },{"./filter-parse":118,"./sync-reader":131,"buffer":48}],118:[function(require,module,exports){ (function (Buffer){ 'use strict'; var interlaceUtils = require('./interlace'); var paethPredictor = require('./paeth-predictor'); function getByteWidth(width, bpp, depth) { var byteWidth = width * bpp; if (depth !== 8) { byteWidth = Math.ceil(byteWidth / (8 / depth)); } return byteWidth; } var Filter = module.exports = function(bitmapInfo, dependencies) { var width = bitmapInfo.width; var height = bitmapInfo.height; var interlace = bitmapInfo.interlace; var bpp = bitmapInfo.bpp; var depth = bitmapInfo.depth; this.read = dependencies.read; this.write = dependencies.write; this.complete = dependencies.complete; this._imageIndex = 0; this._images = []; if (interlace) { var passes = interlaceUtils.getImagePasses(width, height); for (var i = 0; i < passes.length; i++) { this._images.push({ byteWidth: getByteWidth(passes[i].width, bpp, depth), height: passes[i].height, lineIndex: 0 }); } } else { this._images.push({ byteWidth: getByteWidth(width, bpp, depth), height: height, lineIndex: 0 }); } // when filtering the line we look at the pixel to the left // the spec also says it is done on a byte level regardless of the number of pixels // so if the depth is byte compatible (8 or 16) we subtract the bpp in order to compare back // a pixel rather than just a different byte part. However if we are sub byte, we ignore. if (depth === 8) { this._xComparison = bpp; } else if (depth === 16) { this._xComparison = bpp * 2; } else { this._xComparison = 1; } }; Filter.prototype.start = function() { this.read(this._images[this._imageIndex].byteWidth + 1, this._reverseFilterLine.bind(this)); }; Filter.prototype._unFilterType1 = function(rawData, unfilteredLine, byteWidth) { var xComparison = this._xComparison; var xBiggerThan = xComparison - 1; for (var x = 0; x < byteWidth; x++) { var rawByte = rawData[1 + x]; var f1Left = x > xBiggerThan ? unfilteredLine[x - xComparison] : 0; unfilteredLine[x] = rawByte + f1Left; } }; Filter.prototype._unFilterType2 = function(rawData, unfilteredLine, byteWidth) { var lastLine = this._lastLine; for (var x = 0; x < byteWidth; x++) { var rawByte = rawData[1 + x]; var f2Up = lastLine ? lastLine[x] : 0; unfilteredLine[x] = rawByte + f2Up; } }; Filter.prototype._unFilterType3 = function(rawData, unfilteredLine, byteWidth) { var xComparison = this._xComparison; var xBiggerThan = xComparison - 1; var lastLine = this._lastLine; for (var x = 0; x < byteWidth; x++) { var rawByte = rawData[1 + x]; var f3Up = lastLine ? lastLine[x] : 0; var f3Left = x > xBiggerThan ? unfilteredLine[x - xComparison] : 0; var f3Add = Math.floor((f3Left + f3Up) / 2); unfilteredLine[x] = rawByte + f3Add; } }; Filter.prototype._unFilterType4 = function(rawData, unfilteredLine, byteWidth) { var xComparison = this._xComparison; var xBiggerThan = xComparison - 1; var lastLine = this._lastLine; for (var x = 0; x < byteWidth; x++) { var rawByte = rawData[1 + x]; var f4Up = lastLine ? lastLine[x] : 0; var f4Left = x > xBiggerThan ? unfilteredLine[x - xComparison] : 0; var f4UpLeft = x > xBiggerThan && lastLine ? lastLine[x - xComparison] : 0; var f4Add = paethPredictor(f4Left, f4Up, f4UpLeft); unfilteredLine[x] = rawByte + f4Add; } }; Filter.prototype._reverseFilterLine = function(rawData) { var filter = rawData[0]; var unfilteredLine; var currentImage = this._images[this._imageIndex]; var byteWidth = currentImage.byteWidth; if (filter === 0) { unfilteredLine = rawData.slice(1, byteWidth + 1); } else { unfilteredLine = new Buffer(byteWidth); switch (filter) { case 1: this._unFilterType1(rawData, unfilteredLine, byteWidth); break; case 2: this._unFilterType2(rawData, unfilteredLine, byteWidth); break; case 3: this._unFilterType3(rawData, unfilteredLine, byteWidth); break; case 4: this._unFilterType4(rawData, unfilteredLine, byteWidth); break; default: throw new Error('Unrecognised filter type - ' + filter); } } this.write(unfilteredLine); currentImage.lineIndex++; if (currentImage.lineIndex >= currentImage.height) { this._lastLine = null; this._imageIndex++; currentImage = this._images[this._imageIndex]; } else { this._lastLine = unfilteredLine; } if (currentImage) { // read, using the byte width that may be from the new current image this.read(currentImage.byteWidth + 1, this._reverseFilterLine.bind(this)); } else { this._lastLine = null; this.complete(); } }; }).call(this,require("buffer").Buffer) },{"./interlace":120,"./paeth-predictor":124,"buffer":48}],119:[function(require,module,exports){ (function (Buffer){ 'use strict'; function dePalette(indata, outdata, width, height, palette) { var pxPos = 0; // use values from palette for (var y = 0; y < height; y++) { for (var x = 0; x < width; x++) { var color = palette[indata[pxPos]]; if (!color) { throw new Error('index ' + indata[pxPos] + ' not in palette'); } for (var i = 0; i < 4; i++) { outdata[pxPos + i] = color[i]; } pxPos += 4; } } } function replaceTransparentColor(indata, outdata, width, height, transColor) { var pxPos = 0; for (var y = 0; y < height; y++) { for (var x = 0; x < width; x++) { var makeTrans = false; if (transColor.length === 1) { if (transColor[0] === indata[pxPos]) { makeTrans = true; } } else if (transColor[0] === indata[pxPos] && transColor[1] === indata[pxPos + 1] && transColor[2] === indata[pxPos + 2]) { makeTrans = true; } if (makeTrans) { for (var i = 0; i < 4; i++) { outdata[pxPos + i] = 0; } } pxPos += 4; } } } function scaleDepth(indata, outdata, width, height, depth) { var maxOutSample = 255; var maxInSample = Math.pow(2, depth) - 1; var pxPos = 0; for (var y = 0; y < height; y++) { for (var x = 0; x < width; x++) { for (var i = 0; i < 4; i++) { outdata[pxPos + i] = Math.floor((indata[pxPos + i] * maxOutSample) / maxInSample + 0.5); } pxPos += 4; } } } module.exports = function(indata, imageData) { var depth = imageData.depth; var width = imageData.width; var height = imageData.height; var colorType = imageData.colorType; var transColor = imageData.transColor; var palette = imageData.palette; var outdata = indata; // only different for 16 bits if (colorType === 3) { // paletted dePalette(indata, outdata, width, height, palette); } else { if (transColor) { replaceTransparentColor(indata, outdata, width, height, transColor); } // if it needs scaling if (depth !== 8) { // if we need to change the buffer size if (depth === 16) { outdata = new Buffer(width * height * 4); } scaleDepth(indata, outdata, width, height, depth); } } return outdata; }; }).call(this,require("buffer").Buffer) },{"buffer":48}],120:[function(require,module,exports){ 'use strict'; // Adam 7 // 0 1 2 3 4 5 6 7 // 0 x 6 4 6 x 6 4 6 // 1 7 7 7 7 7 7 7 7 // 2 5 6 5 6 5 6 5 6 // 3 7 7 7 7 7 7 7 7 // 4 3 6 4 6 3 6 4 6 // 5 7 7 7 7 7 7 7 7 // 6 5 6 5 6 5 6 5 6 // 7 7 7 7 7 7 7 7 7 var imagePasses = [ { // pass 1 - 1px x: [0], y: [0] }, { // pass 2 - 1px x: [4], y: [0] }, { // pass 3 - 2px x: [0, 4], y: [4] }, { // pass 4 - 4px x: [2, 6], y: [0, 4] }, { // pass 5 - 8px x: [0, 2, 4, 6], y: [2, 6] }, { // pass 6 - 16px x: [1, 3, 5, 7], y: [0, 2, 4, 6] }, { // pass 7 - 32px x: [0, 1, 2, 3, 4, 5, 6, 7], y: [1, 3, 5, 7] } ]; exports.getImagePasses = function(width, height) { var images = []; var xLeftOver = width % 8; var yLeftOver = height % 8; var xRepeats = (width - xLeftOver) / 8; var yRepeats = (height - yLeftOver) / 8; for (var i = 0; i < imagePasses.length; i++) { var pass = imagePasses[i]; var passWidth = xRepeats * pass.x.length; var passHeight = yRepeats * pass.y.length; for (var j = 0; j < pass.x.length; j++) { if (pass.x[j] < xLeftOver) { passWidth++; } else { break; } } for (j = 0; j < pass.y.length; j++) { if (pass.y[j] < yLeftOver) { passHeight++; } else { break; } } if (passWidth > 0 && passHeight > 0) { images.push({ width: passWidth, height: passHeight, index: i }); } } return images; }; exports.getInterlaceIterator = function(width) { return function(x, y, pass) { var outerXLeftOver = x % imagePasses[pass].x.length; var outerX = (((x - outerXLeftOver) / imagePasses[pass].x.length) * 8) + imagePasses[pass].x[outerXLeftOver]; var outerYLeftOver = y % imagePasses[pass].y.length; var outerY = (((y - outerYLeftOver) / imagePasses[pass].y.length) * 8) + imagePasses[pass].y[outerYLeftOver]; return (outerX * 4) + (outerY * width * 4); }; }; },{}],121:[function(require,module,exports){ (function (Buffer){ 'use strict'; var util = require('util'); var Stream = require('stream'); var constants = require('./constants'); var Packer = require('./packer'); var PackerAsync = module.exports = function(opt) { Stream.call(this); var options = opt || {}; this._packer = new Packer(options); this._deflate = this._packer.createDeflate(); this.readable = true; }; util.inherits(PackerAsync, Stream); PackerAsync.prototype.pack = function(data, width, height, gamma) { // Signature this.emit('data', new Buffer(constants.PNG_SIGNATURE)); this.emit('data', this._packer.packIHDR(width, height)); if (gamma) { this.emit('data', this._packer.packGAMA(gamma)); } var filteredData = this._packer.filterData(data, width, height); // compress it this._deflate.on('error', this.emit.bind(this, 'error')); this._deflate.on('data', function(compressedData) { this.emit('data', this._packer.packIDAT(compressedData)); }.bind(this)); this._deflate.on('end', function() { this.emit('data', this._packer.packIEND()); this.emit('end'); }.bind(this)); this._deflate.end(filteredData); }; }).call(this,require("buffer").Buffer) },{"./constants":113,"./packer":123,"buffer":48,"stream":155,"util":186}],122:[function(require,module,exports){ (function (Buffer){ 'use strict'; var hasSyncZlib = true; var zlib = require('zlib'); if (!zlib.deflateSync) { hasSyncZlib = false; } var constants = require('./constants'); var Packer = require('./packer'); module.exports = function(metaData, opt) { if (!hasSyncZlib) { throw new Error('To use the sync capability of this library in old node versions, please pin pngjs to v2.3.0'); } var options = opt || {}; var packer = new Packer(options); var chunks = []; // Signature chunks.push(new Buffer(constants.PNG_SIGNATURE)); // Header chunks.push(packer.packIHDR(metaData.width, metaData.height)); if (metaData.gamma) { chunks.push(packer.packGAMA(metaData.gamma)); } var filteredData = packer.filterData(metaData.data, metaData.width, metaData.height); // compress it var compressedData = zlib.deflateSync(filteredData, packer.getDeflateOptions()); filteredData = null; if (!compressedData || !compressedData.length) { throw new Error('bad png - invalid compressed data response'); } chunks.push(packer.packIDAT(compressedData)); // End chunks.push(packer.packIEND()); return Buffer.concat(chunks); }; }).call(this,require("buffer").Buffer) },{"./constants":113,"./packer":123,"buffer":48,"zlib":35}],123:[function(require,module,exports){ (function (Buffer){ 'use strict'; var constants = require('./constants'); var CrcStream = require('./crc'); var bitPacker = require('./bitpacker'); var filter = require('./filter-pack'); var zlib = require('zlib'); var Packer = module.exports = function(options) { this._options = options; options.deflateChunkSize = options.deflateChunkSize || 32 * 1024; options.deflateLevel = options.deflateLevel != null ? options.deflateLevel : 9; options.deflateStrategy = options.deflateStrategy != null ? options.deflateStrategy : 3; options.inputHasAlpha = options.inputHasAlpha != null ? options.inputHasAlpha : true; options.deflateFactory = options.deflateFactory || zlib.createDeflate; options.bitDepth = options.bitDepth || 8; // This is outputColorType options.colorType = (typeof options.colorType === 'number') ? options.colorType : constants.COLORTYPE_COLOR_ALPHA; options.inputColorType = (typeof options.inputColorType === 'number') ? options.inputColorType : constants.COLORTYPE_COLOR_ALPHA; if ([ constants.COLORTYPE_GRAYSCALE, constants.COLORTYPE_COLOR, constants.COLORTYPE_COLOR_ALPHA, constants.COLORTYPE_ALPHA ].indexOf(options.colorType) === -1) { throw new Error('option color type:' + options.colorType + ' is not supported at present'); } if ([ constants.COLORTYPE_GRAYSCALE, constants.COLORTYPE_COLOR, constants.COLORTYPE_COLOR_ALPHA, constants.COLORTYPE_ALPHA ].indexOf(options.inputColorType) === -1) { throw new Error('option input color type:' + options.inputColorType + ' is not supported at present'); } if (options.bitDepth !== 8 && options.bitDepth !== 16) { throw new Error('option bit depth:' + options.bitDepth + ' is not supported at present'); } }; Packer.prototype.getDeflateOptions = function() { return { chunkSize: this._options.deflateChunkSize, level: this._options.deflateLevel, strategy: this._options.deflateStrategy }; }; Packer.prototype.createDeflate = function() { return this._options.deflateFactory(this.getDeflateOptions()); }; Packer.prototype.filterData = function(data, width, height) { // convert to correct format for filtering (e.g. right bpp and bit depth) var packedData = bitPacker(data, width, height, this._options); // filter pixel data var bpp = constants.COLORTYPE_TO_BPP_MAP[this._options.colorType]; var filteredData = filter(packedData, width, height, this._options, bpp); return filteredData; }; Packer.prototype._packChunk = function(type, data) { var len = (data ? data.length : 0); var buf = new Buffer(len + 12); buf.writeUInt32BE(len, 0); buf.writeUInt32BE(type, 4); if (data) { data.copy(buf, 8); } buf.writeInt32BE(CrcStream.crc32(buf.slice(4, buf.length - 4)), buf.length - 4); return buf; }; Packer.prototype.packGAMA = function(gamma) { var buf = new Buffer(4); buf.writeUInt32BE(Math.floor(gamma * constants.GAMMA_DIVISION), 0); return this._packChunk(constants.TYPE_gAMA, buf); }; Packer.prototype.packIHDR = function(width, height) { var buf = new Buffer(13); buf.writeUInt32BE(width, 0); buf.writeUInt32BE(height, 4); buf[8] = this._options.bitDepth; // Bit depth buf[9] = this._options.colorType; // colorType buf[10] = 0; // compression buf[11] = 0; // filter buf[12] = 0; // interlace return this._packChunk(constants.TYPE_IHDR, buf); }; Packer.prototype.packIDAT = function(data) { return this._packChunk(constants.TYPE_IDAT, data); }; Packer.prototype.packIEND = function() { return this._packChunk(constants.TYPE_IEND, null); }; }).call(this,require("buffer").Buffer) },{"./bitpacker":111,"./constants":113,"./crc":114,"./filter-pack":115,"buffer":48,"zlib":35}],124:[function(require,module,exports){ 'use strict'; module.exports = function paethPredictor(left, above, upLeft) { var paeth = left + above - upLeft; var pLeft = Math.abs(paeth - left); var pAbove = Math.abs(paeth - above); var pUpLeft = Math.abs(paeth - upLeft); if (pLeft <= pAbove && pLeft <= pUpLeft) { return left; } if (pAbove <= pUpLeft) { return above; } return upLeft; }; },{}],125:[function(require,module,exports){ 'use strict'; var util = require('util'); var zlib = require('zlib'); var ChunkStream = require('./chunkstream'); var FilterAsync = require('./filter-parse-async'); var Parser = require('./parser'); var bitmapper = require('./bitmapper'); var formatNormaliser = require('./format-normaliser'); var ParserAsync = module.exports = function(options) { ChunkStream.call(this); this._parser = new Parser(options, { read: this.read.bind(this), error: this._handleError.bind(this), metadata: this._handleMetaData.bind(this), gamma: this.emit.bind(this, 'gamma'), palette: this._handlePalette.bind(this), transColor: this._handleTransColor.bind(this), finished: this._finished.bind(this), inflateData: this._inflateData.bind(this) }); this._options = options; this.writable = true; this._parser.start(); }; util.inherits(ParserAsync, ChunkStream); ParserAsync.prototype._handleError = function(err) { this.emit('error', err); this.writable = false; this.destroy(); if (this._inflate && this._inflate.destroy) { this._inflate.destroy(); } if (this._filter) { this._filter.destroy(); // For backward compatibility with Node 7 and below. // Suppress errors due to _inflate calling write() even after // it's destroy()'ed. this._filter.on('error', function() {}); } this.errord = true; }; ParserAsync.prototype._inflateData = function(data) { if (!this._inflate) { if (this._bitmapInfo.interlace) { this._inflate = zlib.createInflate(); this._inflate.on('error', this.emit.bind(this, 'error')); this._filter.on('complete', this._complete.bind(this)); this._inflate.pipe(this._filter); } else { var rowSize = ((this._bitmapInfo.width * this._bitmapInfo.bpp * this._bitmapInfo.depth + 7) >> 3) + 1; var imageSize = rowSize * this._bitmapInfo.height; var chunkSize = Math.max(imageSize, zlib.Z_MIN_CHUNK); this._inflate = zlib.createInflate({ chunkSize: chunkSize }); var leftToInflate = imageSize; var emitError = this.emit.bind(this, 'error'); this._inflate.on('error', function(err) { if (!leftToInflate) { return; } emitError(err); }); this._filter.on('complete', this._complete.bind(this)); var filterWrite = this._filter.write.bind(this._filter); this._inflate.on('data', function(chunk) { if (!leftToInflate) { return; } if (chunk.length > leftToInflate) { chunk = chunk.slice(0, leftToInflate); } leftToInflate -= chunk.length; filterWrite(chunk); }); this._inflate.on('end', this._filter.end.bind(this._filter)); } } this._inflate.write(data); }; ParserAsync.prototype._handleMetaData = function(metaData) { this.emit('metadata', metaData); this._bitmapInfo = Object.create(metaData); this._filter = new FilterAsync(this._bitmapInfo); }; ParserAsync.prototype._handleTransColor = function(transColor) { this._bitmapInfo.transColor = transColor; }; ParserAsync.prototype._handlePalette = function(palette) { this._bitmapInfo.palette = palette; }; ParserAsync.prototype._finished = function() { if (this.errord) { return; } if (!this._inflate) { this.emit('error', 'No Inflate block'); } else { // no more data to inflate this._inflate.end(); } this.destroySoon(); }; ParserAsync.prototype._complete = function(filteredData) { if (this.errord) { return; } try { var bitmapData = bitmapper.dataToBitMap(filteredData, this._bitmapInfo); var normalisedBitmapData = formatNormaliser(bitmapData, this._bitmapInfo); bitmapData = null; } catch (ex) { this._handleError(ex); return; } this.emit('parsed', normalisedBitmapData); }; },{"./bitmapper":110,"./chunkstream":112,"./filter-parse-async":116,"./format-normaliser":119,"./parser":127,"util":186,"zlib":35}],126:[function(require,module,exports){ (function (Buffer){ 'use strict'; var hasSyncZlib = true; var zlib = require('zlib'); var inflateSync = require('./sync-inflate'); if (!zlib.deflateSync) { hasSyncZlib = false; } var SyncReader = require('./sync-reader'); var FilterSync = require('./filter-parse-sync'); var Parser = require('./parser'); var bitmapper = require('./bitmapper'); var formatNormaliser = require('./format-normaliser'); module.exports = function(buffer, options) { if (!hasSyncZlib) { throw new Error('To use the sync capability of this library in old node versions, please pin pngjs to v2.3.0'); } var err; function handleError(_err_) { err = _err_; } var metaData; function handleMetaData(_metaData_) { metaData = _metaData_; } function handleTransColor(transColor) { metaData.transColor = transColor; } function handlePalette(palette) { metaData.palette = palette; } var gamma; function handleGamma(_gamma_) { gamma = _gamma_; } var inflateDataList = []; function handleInflateData(inflatedData) { inflateDataList.push(inflatedData); } var reader = new SyncReader(buffer); var parser = new Parser(options, { read: reader.read.bind(reader), error: handleError, metadata: handleMetaData, gamma: handleGamma, palette: handlePalette, transColor: handleTransColor, inflateData: handleInflateData }); parser.start(); reader.process(); if (err) { throw err; } //join together the inflate datas var inflateData = Buffer.concat(inflateDataList); inflateDataList.length = 0; var inflatedData; if (metaData.interlace) { inflatedData = zlib.inflateSync(inflateData); } else { var rowSize = ((metaData.width * metaData.bpp * metaData.depth + 7) >> 3) + 1; var imageSize = rowSize * metaData.height; inflatedData = inflateSync(inflateData, { chunkSize: imageSize, maxLength: imageSize }); } inflateData = null; if (!inflatedData || !inflatedData.length) { throw new Error('bad png - invalid inflate data response'); } var unfilteredData = FilterSync.process(inflatedData, metaData); inflateData = null; var bitmapData = bitmapper.dataToBitMap(unfilteredData, metaData); unfilteredData = null; var normalisedBitmapData = formatNormaliser(bitmapData, metaData); metaData.data = normalisedBitmapData; metaData.gamma = gamma || 0; return metaData; }; }).call(this,require("buffer").Buffer) },{"./bitmapper":110,"./filter-parse-sync":117,"./format-normaliser":119,"./parser":127,"./sync-inflate":130,"./sync-reader":131,"buffer":48,"zlib":35}],127:[function(require,module,exports){ (function (Buffer){ 'use strict'; var constants = require('./constants'); var CrcCalculator = require('./crc'); var Parser = module.exports = function(options, dependencies) { this._options = options; options.checkCRC = options.checkCRC !== false; this._hasIHDR = false; this._hasIEND = false; // input flags/metadata this._palette = []; this._colorType = 0; this._chunks = {}; this._chunks[constants.TYPE_IHDR] = this._handleIHDR.bind(this); this._chunks[constants.TYPE_IEND] = this._handleIEND.bind(this); this._chunks[constants.TYPE_IDAT] = this._handleIDAT.bind(this); this._chunks[constants.TYPE_PLTE] = this._handlePLTE.bind(this); this._chunks[constants.TYPE_tRNS] = this._handleTRNS.bind(this); this._chunks[constants.TYPE_gAMA] = this._handleGAMA.bind(this); this.read = dependencies.read; this.error = dependencies.error; this.metadata = dependencies.metadata; this.gamma = dependencies.gamma; this.transColor = dependencies.transColor; this.palette = dependencies.palette; this.parsed = dependencies.parsed; this.inflateData = dependencies.inflateData; this.finished = dependencies.finished; }; Parser.prototype.start = function() { this.read(constants.PNG_SIGNATURE.length, this._parseSignature.bind(this) ); }; Parser.prototype._parseSignature = function(data) { var signature = constants.PNG_SIGNATURE; for (var i = 0; i < signature.length; i++) { if (data[i] !== signature[i]) { this.error(new Error('Invalid file signature')); return; } } this.read(8, this._parseChunkBegin.bind(this)); }; Parser.prototype._parseChunkBegin = function(data) { // chunk content length var length = data.readUInt32BE(0); // chunk type var type = data.readUInt32BE(4); var name = ''; for (var i = 4; i < 8; i++) { name += String.fromCharCode(data[i]); } //console.log('chunk ', name, length); // chunk flags var ancillary = Boolean(data[4] & 0x20); // or critical // priv = Boolean(data[5] & 0x20), // or public // safeToCopy = Boolean(data[7] & 0x20); // or unsafe if (!this._hasIHDR && type !== constants.TYPE_IHDR) { this.error(new Error('Expected IHDR on beggining')); return; } this._crc = new CrcCalculator(); this._crc.write(new Buffer(name)); if (this._chunks[type]) { return this._chunks[type](length); } if (!ancillary) { this.error(new Error('Unsupported critical chunk type ' + name)); return; } this.read(length + 4, this._skipChunk.bind(this)); }; Parser.prototype._skipChunk = function(/*data*/) { this.read(8, this._parseChunkBegin.bind(this)); }; Parser.prototype._handleChunkEnd = function() { this.read(4, this._parseChunkEnd.bind(this)); }; Parser.prototype._parseChunkEnd = function(data) { var fileCrc = data.readInt32BE(0); var calcCrc = this._crc.crc32(); // check CRC if (this._options.checkCRC && calcCrc !== fileCrc) { this.error(new Error('Crc error - ' + fileCrc + ' - ' + calcCrc)); return; } if (!this._hasIEND) { this.read(8, this._parseChunkBegin.bind(this)); } }; Parser.prototype._handleIHDR = function(length) { this.read(length, this._parseIHDR.bind(this)); }; Parser.prototype._parseIHDR = function(data) { this._crc.write(data); var width = data.readUInt32BE(0); var height = data.readUInt32BE(4); var depth = data[8]; var colorType = data[9]; // bits: 1 palette, 2 color, 4 alpha var compr = data[10]; var filter = data[11]; var interlace = data[12]; // console.log(' width', width, 'height', height, // 'depth', depth, 'colorType', colorType, // 'compr', compr, 'filter', filter, 'interlace', interlace // ); if (depth !== 8 && depth !== 4 && depth !== 2 && depth !== 1 && depth !== 16) { this.error(new Error('Unsupported bit depth ' + depth)); return; } if (!(colorType in constants.COLORTYPE_TO_BPP_MAP)) { this.error(new Error('Unsupported color type')); return; } if (compr !== 0) { this.error(new Error('Unsupported compression method')); return; } if (filter !== 0) { this.error(new Error('Unsupported filter method')); return; } if (interlace !== 0 && interlace !== 1) { this.error(new Error('Unsupported interlace method')); return; } this._colorType = colorType; var bpp = constants.COLORTYPE_TO_BPP_MAP[this._colorType]; this._hasIHDR = true; this.metadata({ width: width, height: height, depth: depth, interlace: Boolean(interlace), palette: Boolean(colorType & constants.COLORTYPE_PALETTE), color: Boolean(colorType & constants.COLORTYPE_COLOR), alpha: Boolean(colorType & constants.COLORTYPE_ALPHA), bpp: bpp, colorType: colorType }); this._handleChunkEnd(); }; Parser.prototype._handlePLTE = function(length) { this.read(length, this._parsePLTE.bind(this)); }; Parser.prototype._parsePLTE = function(data) { this._crc.write(data); var entries = Math.floor(data.length / 3); // console.log('Palette:', entries); for (var i = 0; i < entries; i++) { this._palette.push([ data[i * 3], data[i * 3 + 1], data[i * 3 + 2], 0xff ]); } this.palette(this._palette); this._handleChunkEnd(); }; Parser.prototype._handleTRNS = function(length) { this.read(length, this._parseTRNS.bind(this)); }; Parser.prototype._parseTRNS = function(data) { this._crc.write(data); // palette if (this._colorType === constants.COLORTYPE_PALETTE_COLOR) { if (this._palette.length === 0) { this.error(new Error('Transparency chunk must be after palette')); return; } if (data.length > this._palette.length) { this.error(new Error('More transparent colors than palette size')); return; } for (var i = 0; i < data.length; i++) { this._palette[i][3] = data[i]; } this.palette(this._palette); } // for colorType 0 (grayscale) and 2 (rgb) // there might be one gray/color defined as transparent if (this._colorType === constants.COLORTYPE_GRAYSCALE) { // grey, 2 bytes this.transColor([data.readUInt16BE(0)]); } if (this._colorType === constants.COLORTYPE_COLOR) { this.transColor([data.readUInt16BE(0), data.readUInt16BE(2), data.readUInt16BE(4)]); } this._handleChunkEnd(); }; Parser.prototype._handleGAMA = function(length) { this.read(length, this._parseGAMA.bind(this)); }; Parser.prototype._parseGAMA = function(data) { this._crc.write(data); this.gamma(data.readUInt32BE(0) / constants.GAMMA_DIVISION); this._handleChunkEnd(); }; Parser.prototype._handleIDAT = function(length) { this.read(-length, this._parseIDAT.bind(this, length)); }; Parser.prototype._parseIDAT = function(length, data) { this._crc.write(data); if (this._colorType === constants.COLORTYPE_PALETTE_COLOR && this._palette.length === 0) { throw new Error('Expected palette not found'); } this.inflateData(data); var leftOverLength = length - data.length; if (leftOverLength > 0) { this._handleIDAT(leftOverLength); } else { this._handleChunkEnd(); } }; Parser.prototype._handleIEND = function(length) { this.read(length, this._parseIEND.bind(this)); }; Parser.prototype._parseIEND = function(data) { this._crc.write(data); this._hasIEND = true; this._handleChunkEnd(); if (this.finished) { this.finished(); } }; }).call(this,require("buffer").Buffer) },{"./constants":113,"./crc":114,"buffer":48}],128:[function(require,module,exports){ 'use strict'; var parse = require('./parser-sync'); var pack = require('./packer-sync'); exports.read = function(buffer, options) { return parse(buffer, options || {}); }; exports.write = function(png, options) { return pack(png, options); }; },{"./packer-sync":122,"./parser-sync":126}],129:[function(require,module,exports){ (function (process,Buffer){ 'use strict'; var util = require('util'); var Stream = require('stream'); var Parser = require('./parser-async'); var Packer = require('./packer-async'); var PNGSync = require('./png-sync'); var PNG = exports.PNG = function(options) { Stream.call(this); options = options || {}; // eslint-disable-line no-param-reassign // coerce pixel dimensions to integers (also coerces undefined -> 0): this.width = options.width | 0; this.height = options.height | 0; this.data = this.width > 0 && this.height > 0 ? new Buffer(4 * this.width * this.height) : null; if (options.fill && this.data) { this.data.fill(0); } this.gamma = 0; this.readable = this.writable = true; this._parser = new Parser(options); this._parser.on('error', this.emit.bind(this, 'error')); this._parser.on('close', this._handleClose.bind(this)); this._parser.on('metadata', this._metadata.bind(this)); this._parser.on('gamma', this._gamma.bind(this)); this._parser.on('parsed', function(data) { this.data = data; this.emit('parsed', data); }.bind(this)); this._packer = new Packer(options); this._packer.on('data', this.emit.bind(this, 'data')); this._packer.on('end', this.emit.bind(this, 'end')); this._parser.on('close', this._handleClose.bind(this)); this._packer.on('error', this.emit.bind(this, 'error')); }; util.inherits(PNG, Stream); PNG.sync = PNGSync; PNG.prototype.pack = function() { if (!this.data || !this.data.length) { this.emit('error', 'No data provided'); return this; } process.nextTick(function() { this._packer.pack(this.data, this.width, this.height, this.gamma); }.bind(this)); return this; }; PNG.prototype.parse = function(data, callback) { if (callback) { var onParsed, onError; onParsed = function(parsedData) { this.removeListener('error', onError); this.data = parsedData; callback(null, this); }.bind(this); onError = function(err) { this.removeListener('parsed', onParsed); callback(err, null); }.bind(this); this.once('parsed', onParsed); this.once('error', onError); } this.end(data); return this; }; PNG.prototype.write = function(data) { this._parser.write(data); return true; }; PNG.prototype.end = function(data) { this._parser.end(data); }; PNG.prototype._metadata = function(metadata) { this.width = metadata.width; this.height = metadata.height; this.emit('metadata', metadata); }; PNG.prototype._gamma = function(gamma) { this.gamma = gamma; }; PNG.prototype._handleClose = function() { if (!this._parser.writable && !this._packer.readable) { this.emit('close'); } }; PNG.bitblt = function(src, dst, srcX, srcY, width, height, deltaX, deltaY) { // eslint-disable-line max-params // coerce pixel dimensions to integers (also coerces undefined -> 0): /* eslint-disable no-param-reassign */ srcX |= 0; srcY |= 0; width |= 0; height |= 0; deltaX |= 0; deltaY |= 0; /* eslint-enable no-param-reassign */ if (srcX > src.width || srcY > src.height || srcX + width > src.width || srcY + height > src.height) { throw new Error('bitblt reading outside image'); } if (deltaX > dst.width || deltaY > dst.height || deltaX + width > dst.width || deltaY + height > dst.height) { throw new Error('bitblt writing outside image'); } for (var y = 0; y < height; y++) { src.data.copy(dst.data, ((deltaY + y) * dst.width + deltaX) << 2, ((srcY + y) * src.width + srcX) << 2, ((srcY + y) * src.width + srcX + width) << 2 ); } }; PNG.prototype.bitblt = function(dst, srcX, srcY, width, height, deltaX, deltaY) { // eslint-disable-line max-params PNG.bitblt(this, dst, srcX, srcY, width, height, deltaX, deltaY); return this; }; PNG.adjustGamma = function(src) { if (src.gamma) { for (var y = 0; y < src.height; y++) { for (var x = 0; x < src.width; x++) { var idx = (src.width * y + x) << 2; for (var i = 0; i < 3; i++) { var sample = src.data[idx + i] / 255; sample = Math.pow(sample, 1 / 2.2 / src.gamma); src.data[idx + i] = Math.round(sample * 255); } } } src.gamma = 0; } }; PNG.prototype.adjustGamma = function() { PNG.adjustGamma(this); }; }).call(this,require('_process'),require("buffer").Buffer) },{"./packer-async":121,"./parser-async":125,"./png-sync":128,"_process":133,"buffer":48,"stream":155,"util":186}],130:[function(require,module,exports){ (function (process,Buffer){ 'use strict'; var assert = require('assert').ok; var zlib = require('zlib'); var util = require('util'); var kMaxLength = require('buffer').kMaxLength; function Inflate(opts) { if (!(this instanceof Inflate)) { return new Inflate(opts); } if (opts && opts.chunkSize < zlib.Z_MIN_CHUNK) { opts.chunkSize = zlib.Z_MIN_CHUNK; } zlib.Inflate.call(this, opts); // Node 8 --> 9 compatibility check this._offset = this._offset === undefined ? this._outOffset : this._offset; this._buffer = this._buffer || this._outBuffer; if (opts && opts.maxLength != null) { this._maxLength = opts.maxLength; } } function createInflate(opts) { return new Inflate(opts); } function _close(engine, callback) { if (callback) { process.nextTick(callback); } // Caller may invoke .close after a zlib error (which will null _handle). if (!engine._handle) { return; } engine._handle.close(); engine._handle = null; } Inflate.prototype._processChunk = function(chunk, flushFlag, asyncCb) { if (typeof asyncCb === 'function') { return zlib.Inflate._processChunk.call(this, chunk, flushFlag, asyncCb); } var self = this; var availInBefore = chunk && chunk.length; var availOutBefore = this._chunkSize - this._offset; var leftToInflate = this._maxLength; var inOff = 0; var buffers = []; var nread = 0; var error; this.on('error', function(err) { error = err; }); function handleChunk(availInAfter, availOutAfter) { if (self._hadError) { return; } var have = availOutBefore - availOutAfter; assert(have >= 0, 'have should not go down'); if (have > 0) { var out = self._buffer.slice(self._offset, self._offset + have); self._offset += have; if (out.length > leftToInflate) { out = out.slice(0, leftToInflate); } buffers.push(out); nread += out.length; leftToInflate -= out.length; if (leftToInflate === 0) { return false; } } if (availOutAfter === 0 || self._offset >= self._chunkSize) { availOutBefore = self._chunkSize; self._offset = 0; self._buffer = Buffer.allocUnsafe(self._chunkSize); } if (availOutAfter === 0) { inOff += (availInBefore - availInAfter); availInBefore = availInAfter; return true; } return false; } assert(this._handle, 'zlib binding closed'); do { var res = this._handle.writeSync(flushFlag, chunk, // in inOff, // in_off availInBefore, // in_len this._buffer, // out this._offset, //out_off availOutBefore); // out_len // Node 8 --> 9 compatibility check res = res || this._writeState; } while (!this._hadError && handleChunk(res[0], res[1])); if (this._hadError) { throw error; } if (nread >= kMaxLength) { _close(this); throw new RangeError('Cannot create final Buffer. It would be larger than 0x' + kMaxLength.toString(16) + ' bytes'); } var buf = Buffer.concat(buffers, nread); _close(this); return buf; }; util.inherits(Inflate, zlib.Inflate); function zlibBufferSync(engine, buffer) { if (typeof buffer === 'string') { buffer = Buffer.from(buffer); } if (!(buffer instanceof Buffer)) { throw new TypeError('Not a string or buffer'); } var flushFlag = engine._finishFlushFlag; if (flushFlag == null) { flushFlag = zlib.Z_FINISH; } return engine._processChunk(buffer, flushFlag); } function inflateSync(buffer, opts) { return zlibBufferSync(new Inflate(opts), buffer); } module.exports = exports = inflateSync; exports.Inflate = Inflate; exports.createInflate = createInflate; exports.inflateSync = inflateSync; }).call(this,require('_process'),require("buffer").Buffer) },{"_process":133,"assert":25,"buffer":48,"util":186,"zlib":35}],131:[function(require,module,exports){ 'use strict'; var SyncReader = module.exports = function(buffer) { this._buffer = buffer; this._reads = []; }; SyncReader.prototype.read = function(length, callback) { this._reads.push({ length: Math.abs(length), // if length < 0 then at most this length allowLess: length < 0, func: callback }); }; SyncReader.prototype.process = function() { // as long as there is any data and read requests while (this._reads.length > 0 && this._buffer.length) { var read = this._reads[0]; if (this._buffer.length && (this._buffer.length >= read.length || read.allowLess)) { // ok there is any data so that we can satisfy this request this._reads.shift(); // == read var buf = this._buffer; this._buffer = buf.slice(read.length); read.func.call(this, buf.slice(0, read.length)); } else { break; } } if (this._reads.length > 0) { return new Error('There are some read requests waitng on finished stream'); } if (this._buffer.length > 0) { return new Error('unrecognised content at end of stream'); } }; },{}],132:[function(require,module,exports){ (function (process){ 'use strict'; if (typeof process === 'undefined' || !process.version || process.version.indexOf('v0.') === 0 || process.version.indexOf('v1.') === 0 && process.version.indexOf('v1.8.') !== 0) { module.exports = { nextTick: nextTick }; } else { module.exports = process } function nextTick(fn, arg1, arg2, arg3) { if (typeof fn !== 'function') { throw new TypeError('"callback" argument must be a function'); } var len = arguments.length; var args, i; switch (len) { case 0: case 1: return process.nextTick(fn); case 2: return process.nextTick(function afterTickOne() { fn.call(null, arg1); }); case 3: return process.nextTick(function afterTickTwo() { fn.call(null, arg1, arg2); }); case 4: return process.nextTick(function afterTickThree() { fn.call(null, arg1, arg2, arg3); }); default: args = new Array(len - 1); i = 0; while (i < args.length) { args[i++] = arguments[i]; } return process.nextTick(function afterTick() { fn.apply(null, args); }); } } }).call(this,require('_process')) },{"_process":133}],133:[function(require,module,exports){ // shim for using process in browser var process = module.exports = {}; // cached from whatever global is present so that test runners that stub it // don't break things. But we need to wrap it in a try catch in case it is // wrapped in strict mode code which doesn't define any globals. It's inside a // function because try/catches deoptimize in certain engines. var cachedSetTimeout; var cachedClearTimeout; function defaultSetTimout() { throw new Error('setTimeout has not been defined'); } function defaultClearTimeout () { throw new Error('clearTimeout has not been defined'); } (function () { try { if (typeof setTimeout === 'function') { cachedSetTimeout = setTimeout; } else { cachedSetTimeout = defaultSetTimout; } } catch (e) { cachedSetTimeout = defaultSetTimout; } try { if (typeof clearTimeout === 'function') { cachedClearTimeout = clearTimeout; } else { cachedClearTimeout = defaultClearTimeout; } } catch (e) { cachedClearTimeout = defaultClearTimeout; } } ()) function runTimeout(fun) { if (cachedSetTimeout === setTimeout) { //normal enviroments in sane situations return setTimeout(fun, 0); } // if setTimeout wasn't available but was latter defined if ((cachedSetTimeout === defaultSetTimout || !cachedSetTimeout) && setTimeout) { cachedSetTimeout = setTimeout; return setTimeout(fun, 0); } try { // when when somebody has screwed with setTimeout but no I.E. maddness return cachedSetTimeout(fun, 0); } catch(e){ try { // When we are in I.E. but the script has been evaled so I.E. doesn't trust the global object when called normally return cachedSetTimeout.call(null, fun, 0); } catch(e){ // same as above but when it's a version of I.E. that must have the global object for 'this', hopfully our context correct otherwise it will throw a global error return cachedSetTimeout.call(this, fun, 0); } } } function runClearTimeout(marker) { if (cachedClearTimeout === clearTimeout) { //normal enviroments in sane situations return clearTimeout(marker); } // if clearTimeout wasn't available but was latter defined if ((cachedClearTimeout === defaultClearTimeout || !cachedClearTimeout) && clearTimeout) { cachedClearTimeout = clearTimeout; return clearTimeout(marker); } try { // when when somebody has screwed with setTimeout but no I.E. maddness return cachedClearTimeout(marker); } catch (e){ try { // When we are in I.E. but the script has been evaled so I.E. doesn't trust the global object when called normally return cachedClearTimeout.call(null, marker); } catch (e){ // same as above but when it's a version of I.E. that must have the global object for 'this', hopfully our context correct otherwise it will throw a global error. // Some versions of I.E. have different rules for clearTimeout vs setTimeout return cachedClearTimeout.call(this, marker); } } } var queue = []; var draining = false; var currentQueue; var queueIndex = -1; function cleanUpNextTick() { if (!draining || !currentQueue) { return; } draining = false; if (currentQueue.length) { queue = currentQueue.concat(queue); } else { queueIndex = -1; } if (queue.length) { drainQueue(); } } function drainQueue() { if (draining) { return; } var timeout = runTimeout(cleanUpNextTick); draining = true; var len = queue.length; while(len) { currentQueue = queue; queue = []; while (++queueIndex < len) { if (currentQueue) { currentQueue[queueIndex].run(); } } queueIndex = -1; len = queue.length; } currentQueue = null; draining = false; runClearTimeout(timeout); } process.nextTick = function (fun) { var args = new Array(arguments.length - 1); if (arguments.length > 1) { for (var i = 1; i < arguments.length; i++) { args[i - 1] = arguments[i]; } } queue.push(new Item(fun, args)); if (queue.length === 1 && !draining) { runTimeout(drainQueue); } }; // v8 likes predictible objects function Item(fun, array) { this.fun = fun; this.array = array; } Item.prototype.run = function () { this.fun.apply(null, this.array); }; process.title = 'browser'; process.browser = true; process.env = {}; process.argv = []; process.version = ''; // empty string to avoid regexp issues process.versions = {}; function noop() {} process.on = noop; process.addListener = noop; process.once = noop; process.off = noop; process.removeListener = noop; process.removeAllListeners = noop; process.emit = noop; process.prependListener = noop; process.prependOnceListener = noop; process.listeners = function (name) { return [] } process.binding = function (name) { throw new Error('process.binding is not supported'); }; process.cwd = function () { return '/' }; process.chdir = function (dir) { throw new Error('process.chdir is not supported'); }; process.umask = function() { return 0; }; },{}],134:[function(require,module,exports){ (function (global){ /*! https://mths.be/punycode v1.4.1 by @mathias */ ;(function(root) { /** Detect free variables */ var freeExports = typeof exports == 'object' && exports && !exports.nodeType && exports; var freeModule = typeof module == 'object' && module && !module.nodeType && module; var freeGlobal = typeof global == 'object' && global; if ( freeGlobal.global === freeGlobal || freeGlobal.window === freeGlobal || freeGlobal.self === freeGlobal ) { root = freeGlobal; } /** * The `punycode` object. * @name punycode * @type Object */ var punycode, /** Highest positive signed 32-bit float value */ maxInt = 2147483647, // aka. 0x7FFFFFFF or 2^31-1 /** Bootstring parameters */ base = 36, tMin = 1, tMax = 26, skew = 38, damp = 700, initialBias = 72, initialN = 128, // 0x80 delimiter = '-', // '\x2D' /** Regular expressions */ regexPunycode = /^xn--/, regexNonASCII = /[^\x20-\x7E]/, // unprintable ASCII chars + non-ASCII chars regexSeparators = /[\x2E\u3002\uFF0E\uFF61]/g, // RFC 3490 separators /** Error messages */ errors = { 'overflow': 'Overflow: input needs wider integers to process', 'not-basic': 'Illegal input >= 0x80 (not a basic code point)', 'invalid-input': 'Invalid input' }, /** Convenience shortcuts */ baseMinusTMin = base - tMin, floor = Math.floor, stringFromCharCode = String.fromCharCode, /** Temporary variable */ key; /*--------------------------------------------------------------------------*/ /** * A generic error utility function. * @private * @param {String} type The error type. * @returns {Error} Throws a `RangeError` with the applicable error message. */ function error(type) { throw new RangeError(errors[type]); } /** * A generic `Array#map` utility function. * @private * @param {Array} array The array to iterate over. * @param {Function} callback The function that gets called for every array * item. * @returns {Array} A new array of values returned by the callback function. */ function map(array, fn) { var length = array.length; var result = []; while (length--) { result[length] = fn(array[length]); } return result; } /** * A simple `Array#map`-like wrapper to work with domain name strings or email * addresses. * @private * @param {String} domain The domain name or email address. * @param {Function} callback The function that gets called for every * character. * @returns {Array} A new string of characters returned by the callback * function. */ function mapDomain(string, fn) { var parts = string.split('@'); var result = ''; if (parts.length > 1) { // In email addresses, only the domain name should be punycoded. Leave // the local part (i.e. everything up to `@`) intact. result = parts[0] + '@'; string = parts[1]; } // Avoid `split(regex)` for IE8 compatibility. See #17. string = string.replace(regexSeparators, '\x2E'); var labels = string.split('.'); var encoded = map(labels, fn).join('.'); return result + encoded; } /** * Creates an array containing the numeric code points of each Unicode * character in the string. While JavaScript uses UCS-2 internally, * this function will convert a pair of surrogate halves (each of which * UCS-2 exposes as separate characters) into a single code point, * matching UTF-16. * @see `punycode.ucs2.encode` * @see * @memberOf punycode.ucs2 * @name decode * @param {String} string The Unicode input string (UCS-2). * @returns {Array} The new array of code points. */ function ucs2decode(string) { var output = [], counter = 0, length = string.length, value, extra; while (counter < length) { value = string.charCodeAt(counter++); if (value >= 0xD800 && value <= 0xDBFF && counter < length) { // high surrogate, and there is a next character extra = string.charCodeAt(counter++); if ((extra & 0xFC00) == 0xDC00) { // low surrogate output.push(((value & 0x3FF) << 10) + (extra & 0x3FF) + 0x10000); } else { // unmatched surrogate; only append this code unit, in case the next // code unit is the high surrogate of a surrogate pair output.push(value); counter--; } } else { output.push(value); } } return output; } /** * Creates a string based on an array of numeric code points. * @see `punycode.ucs2.decode` * @memberOf punycode.ucs2 * @name encode * @param {Array} codePoints The array of numeric code points. * @returns {String} The new Unicode string (UCS-2). */ function ucs2encode(array) { return map(array, function(value) { var output = ''; if (value > 0xFFFF) { value -= 0x10000; output += stringFromCharCode(value >>> 10 & 0x3FF | 0xD800); value = 0xDC00 | value & 0x3FF; } output += stringFromCharCode(value); return output; }).join(''); } /** * Converts a basic code point into a digit/integer. * @see `digitToBasic()` * @private * @param {Number} codePoint The basic numeric code point value. * @returns {Number} The numeric value of a basic code point (for use in * representing integers) in the range `0` to `base - 1`, or `base` if * the code point does not represent a value. */ function basicToDigit(codePoint) { if (codePoint - 48 < 10) { return codePoint - 22; } if (codePoint - 65 < 26) { return codePoint - 65; } if (codePoint - 97 < 26) { return codePoint - 97; } return base; } /** * Converts a digit/integer into a basic code point. * @see `basicToDigit()` * @private * @param {Number} digit The numeric value of a basic code point. * @returns {Number} The basic code point whose value (when used for * representing integers) is `digit`, which needs to be in the range * `0` to `base - 1`. If `flag` is non-zero, the uppercase form is * used; else, the lowercase form is used. The behavior is undefined * if `flag` is non-zero and `digit` has no uppercase form. */ function digitToBasic(digit, flag) { // 0..25 map to ASCII a..z or A..Z // 26..35 map to ASCII 0..9 return digit + 22 + 75 * (digit < 26) - ((flag != 0) << 5); } /** * Bias adaptation function as per section 3.4 of RFC 3492. * https://tools.ietf.org/html/rfc3492#section-3.4 * @private */ function adapt(delta, numPoints, firstTime) { var k = 0; delta = firstTime ? floor(delta / damp) : delta >> 1; delta += floor(delta / numPoints); for (/* no initialization */; delta > baseMinusTMin * tMax >> 1; k += base) { delta = floor(delta / baseMinusTMin); } return floor(k + (baseMinusTMin + 1) * delta / (delta + skew)); } /** * Converts a Punycode string of ASCII-only symbols to a string of Unicode * symbols. * @memberOf punycode * @param {String} input The Punycode string of ASCII-only symbols. * @returns {String} The resulting string of Unicode symbols. */ function decode(input) { // Don't use UCS-2 var output = [], inputLength = input.length, out, i = 0, n = initialN, bias = initialBias, basic, j, index, oldi, w, k, digit, t, /** Cached calculation results */ baseMinusT; // Handle the basic code points: let `basic` be the number of input code // points before the last delimiter, or `0` if there is none, then copy // the first basic code points to the output. basic = input.lastIndexOf(delimiter); if (basic < 0) { basic = 0; } for (j = 0; j < basic; ++j) { // if it's not a basic code point if (input.charCodeAt(j) >= 0x80) { error('not-basic'); } output.push(input.charCodeAt(j)); } // Main decoding loop: start just after the last delimiter if any basic code // points were copied; start at the beginning otherwise. for (index = basic > 0 ? basic + 1 : 0; index < inputLength; /* no final expression */) { // `index` is the index of the next character to be consumed. // Decode a generalized variable-length integer into `delta`, // which gets added to `i`. The overflow checking is easier // if we increase `i` as we go, then subtract off its starting // value at the end to obtain `delta`. for (oldi = i, w = 1, k = base; /* no condition */; k += base) { if (index >= inputLength) { error('invalid-input'); } digit = basicToDigit(input.charCodeAt(index++)); if (digit >= base || digit > floor((maxInt - i) / w)) { error('overflow'); } i += digit * w; t = k <= bias ? tMin : (k >= bias + tMax ? tMax : k - bias); if (digit < t) { break; } baseMinusT = base - t; if (w > floor(maxInt / baseMinusT)) { error('overflow'); } w *= baseMinusT; } out = output.length + 1; bias = adapt(i - oldi, out, oldi == 0); // `i` was supposed to wrap around from `out` to `0`, // incrementing `n` each time, so we'll fix that now: if (floor(i / out) > maxInt - n) { error('overflow'); } n += floor(i / out); i %= out; // Insert `n` at position `i` of the output output.splice(i++, 0, n); } return ucs2encode(output); } /** * Converts a string of Unicode symbols (e.g. a domain name label) to a * Punycode string of ASCII-only symbols. * @memberOf punycode * @param {String} input The string of Unicode symbols. * @returns {String} The resulting Punycode string of ASCII-only symbols. */ function encode(input) { var n, delta, handledCPCount, basicLength, bias, j, m, q, k, t, currentValue, output = [], /** `inputLength` will hold the number of code points in `input`. */ inputLength, /** Cached calculation results */ handledCPCountPlusOne, baseMinusT, qMinusT; // Convert the input in UCS-2 to Unicode input = ucs2decode(input); // Cache the length inputLength = input.length; // Initialize the state n = initialN; delta = 0; bias = initialBias; // Handle the basic code points for (j = 0; j < inputLength; ++j) { currentValue = input[j]; if (currentValue < 0x80) { output.push(stringFromCharCode(currentValue)); } } handledCPCount = basicLength = output.length; // `handledCPCount` is the number of code points that have been handled; // `basicLength` is the number of basic code points. // Finish the basic string - if it is not empty - with a delimiter if (basicLength) { output.push(delimiter); } // Main encoding loop: while (handledCPCount < inputLength) { // All non-basic code points < n have been handled already. Find the next // larger one: for (m = maxInt, j = 0; j < inputLength; ++j) { currentValue = input[j]; if (currentValue >= n && currentValue < m) { m = currentValue; } } // Increase `delta` enough to advance the decoder's state to , // but guard against overflow handledCPCountPlusOne = handledCPCount + 1; if (m - n > floor((maxInt - delta) / handledCPCountPlusOne)) { error('overflow'); } delta += (m - n) * handledCPCountPlusOne; n = m; for (j = 0; j < inputLength; ++j) { currentValue = input[j]; if (currentValue < n && ++delta > maxInt) { error('overflow'); } if (currentValue == n) { // Represent delta as a generalized variable-length integer for (q = delta, k = base; /* no condition */; k += base) { t = k <= bias ? tMin : (k >= bias + tMax ? tMax : k - bias); if (q < t) { break; } qMinusT = q - t; baseMinusT = base - t; output.push( stringFromCharCode(digitToBasic(t + qMinusT % baseMinusT, 0)) ); q = floor(qMinusT / baseMinusT); } output.push(stringFromCharCode(digitToBasic(q, 0))); bias = adapt(delta, handledCPCountPlusOne, handledCPCount == basicLength); delta = 0; ++handledCPCount; } } ++delta; ++n; } return output.join(''); } /** * Converts a Punycode string representing a domain name or an email address * to Unicode. Only the Punycoded parts of the input will be converted, i.e. * it doesn't matter if you call it on a string that has already been * converted to Unicode. * @memberOf punycode * @param {String} input The Punycoded domain name or email address to * convert to Unicode. * @returns {String} The Unicode representation of the given Punycode * string. */ function toUnicode(input) { return mapDomain(input, function(string) { return regexPunycode.test(string) ? decode(string.slice(4).toLowerCase()) : string; }); } /** * Converts a Unicode string representing a domain name or an email address to * Punycode. Only the non-ASCII parts of the domain name will be converted, * i.e. it doesn't matter if you call it with a domain that's already in * ASCII. * @memberOf punycode * @param {String} input The domain name or email address to convert, as a * Unicode string. * @returns {String} The Punycode representation of the given domain name or * email address. */ function toASCII(input) { return mapDomain(input, function(string) { return regexNonASCII.test(string) ? 'xn--' + encode(string) : string; }); } /*--------------------------------------------------------------------------*/ /** Define the public API */ punycode = { /** * A string representing the current Punycode.js version number. * @memberOf punycode * @type String */ 'version': '1.4.1', /** * An object of methods to convert from JavaScript's internal character * representation (UCS-2) to Unicode code points, and back. * @see * @memberOf punycode * @type Object */ 'ucs2': { 'decode': ucs2decode, 'encode': ucs2encode }, 'decode': decode, 'encode': encode, 'toASCII': toASCII, 'toUnicode': toUnicode }; /** Expose `punycode` */ // Some AMD build optimizers, like r.js, check for specific condition patterns // like the following: if ( typeof define == 'function' && typeof define.amd == 'object' && define.amd ) { define('punycode', function() { return punycode; }); } else if (freeExports && freeModule) { if (module.exports == freeExports) { // in Node.js, io.js, or RingoJS v0.8.0+ freeModule.exports = punycode; } else { // in Narwhal or RingoJS v0.7.0- for (key in punycode) { punycode.hasOwnProperty(key) && (freeExports[key] = punycode[key]); } } } else { // in Rhino or a web browser root.punycode = punycode; } }(this)); }).call(this,typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {}) },{}],135:[function(require,module,exports){ // Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. 'use strict'; // If obj.hasOwnProperty has been overridden, then calling // obj.hasOwnProperty(prop) will break. // See: https://github.com/joyent/node/issues/1707 function hasOwnProperty(obj, prop) { return Object.prototype.hasOwnProperty.call(obj, prop); } module.exports = function(qs, sep, eq, options) { sep = sep || '&'; eq = eq || '='; var obj = {}; if (typeof qs !== 'string' || qs.length === 0) { return obj; } var regexp = /\+/g; qs = qs.split(sep); var maxKeys = 1000; if (options && typeof options.maxKeys === 'number') { maxKeys = options.maxKeys; } var len = qs.length; // maxKeys <= 0 means that we should not limit keys count if (maxKeys > 0 && len > maxKeys) { len = maxKeys; } for (var i = 0; i < len; ++i) { var x = qs[i].replace(regexp, '%20'), idx = x.indexOf(eq), kstr, vstr, k, v; if (idx >= 0) { kstr = x.substr(0, idx); vstr = x.substr(idx + 1); } else { kstr = x; vstr = ''; } k = decodeURIComponent(kstr); v = decodeURIComponent(vstr); if (!hasOwnProperty(obj, k)) { obj[k] = v; } else if (isArray(obj[k])) { obj[k].push(v); } else { obj[k] = [obj[k], v]; } } return obj; }; var isArray = Array.isArray || function (xs) { return Object.prototype.toString.call(xs) === '[object Array]'; }; },{}],136:[function(require,module,exports){ // Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. 'use strict'; var stringifyPrimitive = function(v) { switch (typeof v) { case 'string': return v; case 'boolean': return v ? 'true' : 'false'; case 'number': return isFinite(v) ? v : ''; default: return ''; } }; module.exports = function(obj, sep, eq, name) { sep = sep || '&'; eq = eq || '='; if (obj === null) { obj = undefined; } if (typeof obj === 'object') { return map(objectKeys(obj), function(k) { var ks = encodeURIComponent(stringifyPrimitive(k)) + eq; if (isArray(obj[k])) { return map(obj[k], function(v) { return ks + encodeURIComponent(stringifyPrimitive(v)); }).join(sep); } else { return ks + encodeURIComponent(stringifyPrimitive(obj[k])); } }).join(sep); } if (!name) return ''; return encodeURIComponent(stringifyPrimitive(name)) + eq + encodeURIComponent(stringifyPrimitive(obj)); }; var isArray = Array.isArray || function (xs) { return Object.prototype.toString.call(xs) === '[object Array]'; }; function map (xs, f) { if (xs.map) return xs.map(f); var res = []; for (var i = 0; i < xs.length; i++) { res.push(f(xs[i], i)); } return res; } var objectKeys = Object.keys || function (obj) { var res = []; for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) res.push(key); } return res; }; },{}],137:[function(require,module,exports){ 'use strict'; exports.decode = exports.parse = require('./decode'); exports.encode = exports.stringify = require('./encode'); },{"./decode":135,"./encode":136}],138:[function(require,module,exports){ module.exports = require('./lib/_stream_duplex.js'); },{"./lib/_stream_duplex.js":139}],139:[function(require,module,exports){ // Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. // a duplex stream is just a stream that is both readable and writable. // Since JS doesn't have multiple prototypal inheritance, this class // prototypally inherits from Readable, and then parasitically from // Writable. 'use strict'; /**/ var pna = require('process-nextick-args'); /**/ /**/ var objectKeys = Object.keys || function (obj) { var keys = []; for (var key in obj) { keys.push(key); }return keys; }; /**/ module.exports = Duplex; /**/ var util = require('core-util-is'); util.inherits = require('inherits'); /**/ var Readable = require('./_stream_readable'); var Writable = require('./_stream_writable'); util.inherits(Duplex, Readable); { // avoid scope creep, the keys array can then be collected var keys = objectKeys(Writable.prototype); for (var v = 0; v < keys.length; v++) { var method = keys[v]; if (!Duplex.prototype[method]) Duplex.prototype[method] = Writable.prototype[method]; } } function Duplex(options) { if (!(this instanceof Duplex)) return new Duplex(options); Readable.call(this, options); Writable.call(this, options); if (options && options.readable === false) this.readable = false; if (options && options.writable === false) this.writable = false; this.allowHalfOpen = true; if (options && options.allowHalfOpen === false) this.allowHalfOpen = false; this.once('end', onend); } Object.defineProperty(Duplex.prototype, 'writableHighWaterMark', { // making it explicit this property is not enumerable // because otherwise some prototype manipulation in // userland will fail enumerable: false, get: function () { return this._writableState.highWaterMark; } }); // the no-half-open enforcer function onend() { // if we allow half-open state, or if the writable side ended, // then we're ok. if (this.allowHalfOpen || this._writableState.ended) return; // no more data can be written. // But allow more writes to happen in this tick. pna.nextTick(onEndNT, this); } function onEndNT(self) { self.end(); } Object.defineProperty(Duplex.prototype, 'destroyed', { get: function () { if (this._readableState === undefined || this._writableState === undefined) { return false; } return this._readableState.destroyed && this._writableState.destroyed; }, set: function (value) { // we ignore the value if the stream // has not been initialized yet if (this._readableState === undefined || this._writableState === undefined) { return; } // backward compatibility, the user is explicitly // managing destroyed this._readableState.destroyed = value; this._writableState.destroyed = value; } }); Duplex.prototype._destroy = function (err, cb) { this.push(null); this.end(); pna.nextTick(cb, err); }; },{"./_stream_readable":141,"./_stream_writable":143,"core-util-is":51,"inherits":75,"process-nextick-args":132}],140:[function(require,module,exports){ // Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. // a passthrough stream. // basically just the most minimal sort of Transform stream. // Every written chunk gets output as-is. 'use strict'; module.exports = PassThrough; var Transform = require('./_stream_transform'); /**/ var util = require('core-util-is'); util.inherits = require('inherits'); /**/ util.inherits(PassThrough, Transform); function PassThrough(options) { if (!(this instanceof PassThrough)) return new PassThrough(options); Transform.call(this, options); } PassThrough.prototype._transform = function (chunk, encoding, cb) { cb(null, chunk); }; },{"./_stream_transform":142,"core-util-is":51,"inherits":75}],141:[function(require,module,exports){ (function (process,global){ // Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. 'use strict'; /**/ var pna = require('process-nextick-args'); /**/ module.exports = Readable; /**/ var isArray = require('isarray'); /**/ /**/ var Duplex; /**/ Readable.ReadableState = ReadableState; /**/ var EE = require('events').EventEmitter; var EElistenerCount = function (emitter, type) { return emitter.listeners(type).length; }; /**/ /**/ var Stream = require('./internal/streams/stream'); /**/ /**/ var Buffer = require('safe-buffer').Buffer; var OurUint8Array = global.Uint8Array || function () {}; function _uint8ArrayToBuffer(chunk) { return Buffer.from(chunk); } function _isUint8Array(obj) { return Buffer.isBuffer(obj) || obj instanceof OurUint8Array; } /**/ /**/ var util = require('core-util-is'); util.inherits = require('inherits'); /**/ /**/ var debugUtil = require('util'); var debug = void 0; if (debugUtil && debugUtil.debuglog) { debug = debugUtil.debuglog('stream'); } else { debug = function () {}; } /**/ var BufferList = require('./internal/streams/BufferList'); var destroyImpl = require('./internal/streams/destroy'); var StringDecoder; util.inherits(Readable, Stream); var kProxyEvents = ['error', 'close', 'destroy', 'pause', 'resume']; function prependListener(emitter, event, fn) { // Sadly this is not cacheable as some libraries bundle their own // event emitter implementation with them. if (typeof emitter.prependListener === 'function') return emitter.prependListener(event, fn); // This is a hack to make sure that our error handler is attached before any // userland ones. NEVER DO THIS. This is here only because this code needs // to continue to work with older versions of Node.js that do not include // the prependListener() method. The goal is to eventually remove this hack. if (!emitter._events || !emitter._events[event]) emitter.on(event, fn);else if (isArray(emitter._events[event])) emitter._events[event].unshift(fn);else emitter._events[event] = [fn, emitter._events[event]]; } function ReadableState(options, stream) { Duplex = Duplex || require('./_stream_duplex'); options = options || {}; // Duplex streams are both readable and writable, but share // the same options object. // However, some cases require setting options to different // values for the readable and the writable sides of the duplex stream. // These options can be provided separately as readableXXX and writableXXX. var isDuplex = stream instanceof Duplex; // object stream flag. Used to make read(n) ignore n and to // make all the buffer merging and length checks go away this.objectMode = !!options.objectMode; if (isDuplex) this.objectMode = this.objectMode || !!options.readableObjectMode; // the point at which it stops calling _read() to fill the buffer // Note: 0 is a valid value, means "don't call _read preemptively ever" var hwm = options.highWaterMark; var readableHwm = options.readableHighWaterMark; var defaultHwm = this.objectMode ? 16 : 16 * 1024; if (hwm || hwm === 0) this.highWaterMark = hwm;else if (isDuplex && (readableHwm || readableHwm === 0)) this.highWaterMark = readableHwm;else this.highWaterMark = defaultHwm; // cast to ints. this.highWaterMark = Math.floor(this.highWaterMark); // A linked list is used to store data chunks instead of an array because the // linked list can remove elements from the beginning faster than // array.shift() this.buffer = new BufferList(); this.length = 0; this.pipes = null; this.pipesCount = 0; this.flowing = null; this.ended = false; this.endEmitted = false; this.reading = false; // a flag to be able to tell if the event 'readable'/'data' is emitted // immediately, or on a later tick. We set this to true at first, because // any actions that shouldn't happen until "later" should generally also // not happen before the first read call. this.sync = true; // whenever we return null, then we set a flag to say // that we're awaiting a 'readable' event emission. this.needReadable = false; this.emittedReadable = false; this.readableListening = false; this.resumeScheduled = false; // has it been destroyed this.destroyed = false; // Crypto is kind of old and crusty. Historically, its default string // encoding is 'binary' so we have to make this configurable. // Everything else in the universe uses 'utf8', though. this.defaultEncoding = options.defaultEncoding || 'utf8'; // the number of writers that are awaiting a drain event in .pipe()s this.awaitDrain = 0; // if true, a maybeReadMore has been scheduled this.readingMore = false; this.decoder = null; this.encoding = null; if (options.encoding) { if (!StringDecoder) StringDecoder = require('string_decoder/').StringDecoder; this.decoder = new StringDecoder(options.encoding); this.encoding = options.encoding; } } function Readable(options) { Duplex = Duplex || require('./_stream_duplex'); if (!(this instanceof Readable)) return new Readable(options); this._readableState = new ReadableState(options, this); // legacy this.readable = true; if (options) { if (typeof options.read === 'function') this._read = options.read; if (typeof options.destroy === 'function') this._destroy = options.destroy; } Stream.call(this); } Object.defineProperty(Readable.prototype, 'destroyed', { get: function () { if (this._readableState === undefined) { return false; } return this._readableState.destroyed; }, set: function (value) { // we ignore the value if the stream // has not been initialized yet if (!this._readableState) { return; } // backward compatibility, the user is explicitly // managing destroyed this._readableState.destroyed = value; } }); Readable.prototype.destroy = destroyImpl.destroy; Readable.prototype._undestroy = destroyImpl.undestroy; Readable.prototype._destroy = function (err, cb) { this.push(null); cb(err); }; // Manually shove something into the read() buffer. // This returns true if the highWaterMark has not been hit yet, // similar to how Writable.write() returns true if you should // write() some more. Readable.prototype.push = function (chunk, encoding) { var state = this._readableState; var skipChunkCheck; if (!state.objectMode) { if (typeof chunk === 'string') { encoding = encoding || state.defaultEncoding; if (encoding !== state.encoding) { chunk = Buffer.from(chunk, encoding); encoding = ''; } skipChunkCheck = true; } } else { skipChunkCheck = true; } return readableAddChunk(this, chunk, encoding, false, skipChunkCheck); }; // Unshift should *always* be something directly out of read() Readable.prototype.unshift = function (chunk) { return readableAddChunk(this, chunk, null, true, false); }; function readableAddChunk(stream, chunk, encoding, addToFront, skipChunkCheck) { var state = stream._readableState; if (chunk === null) { state.reading = false; onEofChunk(stream, state); } else { var er; if (!skipChunkCheck) er = chunkInvalid(state, chunk); if (er) { stream.emit('error', er); } else if (state.objectMode || chunk && chunk.length > 0) { if (typeof chunk !== 'string' && !state.objectMode && Object.getPrototypeOf(chunk) !== Buffer.prototype) { chunk = _uint8ArrayToBuffer(chunk); } if (addToFront) { if (state.endEmitted) stream.emit('error', new Error('stream.unshift() after end event'));else addChunk(stream, state, chunk, true); } else if (state.ended) { stream.emit('error', new Error('stream.push() after EOF')); } else { state.reading = false; if (state.decoder && !encoding) { chunk = state.decoder.write(chunk); if (state.objectMode || chunk.length !== 0) addChunk(stream, state, chunk, false);else maybeReadMore(stream, state); } else { addChunk(stream, state, chunk, false); } } } else if (!addToFront) { state.reading = false; } } return needMoreData(state); } function addChunk(stream, state, chunk, addToFront) { if (state.flowing && state.length === 0 && !state.sync) { stream.emit('data', chunk); stream.read(0); } else { // update the buffer info. state.length += state.objectMode ? 1 : chunk.length; if (addToFront) state.buffer.unshift(chunk);else state.buffer.push(chunk); if (state.needReadable) emitReadable(stream); } maybeReadMore(stream, state); } function chunkInvalid(state, chunk) { var er; if (!_isUint8Array(chunk) && typeof chunk !== 'string' && chunk !== undefined && !state.objectMode) { er = new TypeError('Invalid non-string/buffer chunk'); } return er; } // if it's past the high water mark, we can push in some more. // Also, if we have no data yet, we can stand some // more bytes. This is to work around cases where hwm=0, // such as the repl. Also, if the push() triggered a // readable event, and the user called read(largeNumber) such that // needReadable was set, then we ought to push more, so that another // 'readable' event will be triggered. function needMoreData(state) { return !state.ended && (state.needReadable || state.length < state.highWaterMark || state.length === 0); } Readable.prototype.isPaused = function () { return this._readableState.flowing === false; }; // backwards compatibility. Readable.prototype.setEncoding = function (enc) { if (!StringDecoder) StringDecoder = require('string_decoder/').StringDecoder; this._readableState.decoder = new StringDecoder(enc); this._readableState.encoding = enc; return this; }; // Don't raise the hwm > 8MB var MAX_HWM = 0x800000; function computeNewHighWaterMark(n) { if (n >= MAX_HWM) { n = MAX_HWM; } else { // Get the next highest power of 2 to prevent increasing hwm excessively in // tiny amounts n--; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; n++; } return n; } // This function is designed to be inlinable, so please take care when making // changes to the function body. function howMuchToRead(n, state) { if (n <= 0 || state.length === 0 && state.ended) return 0; if (state.objectMode) return 1; if (n !== n) { // Only flow one buffer at a time if (state.flowing && state.length) return state.buffer.head.data.length;else return state.length; } // If we're asking for more than the current hwm, then raise the hwm. if (n > state.highWaterMark) state.highWaterMark = computeNewHighWaterMark(n); if (n <= state.length) return n; // Don't have enough if (!state.ended) { state.needReadable = true; return 0; } return state.length; } // you can override either this method, or the async _read(n) below. Readable.prototype.read = function (n) { debug('read', n); n = parseInt(n, 10); var state = this._readableState; var nOrig = n; if (n !== 0) state.emittedReadable = false; // if we're doing read(0) to trigger a readable event, but we // already have a bunch of data in the buffer, then just trigger // the 'readable' event and move on. if (n === 0 && state.needReadable && (state.length >= state.highWaterMark || state.ended)) { debug('read: emitReadable', state.length, state.ended); if (state.length === 0 && state.ended) endReadable(this);else emitReadable(this); return null; } n = howMuchToRead(n, state); // if we've ended, and we're now clear, then finish it up. if (n === 0 && state.ended) { if (state.length === 0) endReadable(this); return null; } // All the actual chunk generation logic needs to be // *below* the call to _read. The reason is that in certain // synthetic stream cases, such as passthrough streams, _read // may be a completely synchronous operation which may change // the state of the read buffer, providing enough data when // before there was *not* enough. // // So, the steps are: // 1. Figure out what the state of things will be after we do // a read from the buffer. // // 2. If that resulting state will trigger a _read, then call _read. // Note that this may be asynchronous, or synchronous. Yes, it is // deeply ugly to write APIs this way, but that still doesn't mean // that the Readable class should behave improperly, as streams are // designed to be sync/async agnostic. // Take note if the _read call is sync or async (ie, if the read call // has returned yet), so that we know whether or not it's safe to emit // 'readable' etc. // // 3. Actually pull the requested chunks out of the buffer and return. // if we need a readable event, then we need to do some reading. var doRead = state.needReadable; debug('need readable', doRead); // if we currently have less than the highWaterMark, then also read some if (state.length === 0 || state.length - n < state.highWaterMark) { doRead = true; debug('length less than watermark', doRead); } // however, if we've ended, then there's no point, and if we're already // reading, then it's unnecessary. if (state.ended || state.reading) { doRead = false; debug('reading or ended', doRead); } else if (doRead) { debug('do read'); state.reading = true; state.sync = true; // if the length is currently zero, then we *need* a readable event. if (state.length === 0) state.needReadable = true; // call internal read method this._read(state.highWaterMark); state.sync = false; // If _read pushed data synchronously, then `reading` will be false, // and we need to re-evaluate how much data we can return to the user. if (!state.reading) n = howMuchToRead(nOrig, state); } var ret; if (n > 0) ret = fromList(n, state);else ret = null; if (ret === null) { state.needReadable = true; n = 0; } else { state.length -= n; } if (state.length === 0) { // If we have nothing in the buffer, then we want to know // as soon as we *do* get something into the buffer. if (!state.ended) state.needReadable = true; // If we tried to read() past the EOF, then emit end on the next tick. if (nOrig !== n && state.ended) endReadable(this); } if (ret !== null) this.emit('data', ret); return ret; }; function onEofChunk(stream, state) { if (state.ended) return; if (state.decoder) { var chunk = state.decoder.end(); if (chunk && chunk.length) { state.buffer.push(chunk); state.length += state.objectMode ? 1 : chunk.length; } } state.ended = true; // emit 'readable' now to make sure it gets picked up. emitReadable(stream); } // Don't emit readable right away in sync mode, because this can trigger // another read() call => stack overflow. This way, it might trigger // a nextTick recursion warning, but that's not so bad. function emitReadable(stream) { var state = stream._readableState; state.needReadable = false; if (!state.emittedReadable) { debug('emitReadable', state.flowing); state.emittedReadable = true; if (state.sync) pna.nextTick(emitReadable_, stream);else emitReadable_(stream); } } function emitReadable_(stream) { debug('emit readable'); stream.emit('readable'); flow(stream); } // at this point, the user has presumably seen the 'readable' event, // and called read() to consume some data. that may have triggered // in turn another _read(n) call, in which case reading = true if // it's in progress. // However, if we're not ended, or reading, and the length < hwm, // then go ahead and try to read some more preemptively. function maybeReadMore(stream, state) { if (!state.readingMore) { state.readingMore = true; pna.nextTick(maybeReadMore_, stream, state); } } function maybeReadMore_(stream, state) { var len = state.length; while (!state.reading && !state.flowing && !state.ended && state.length < state.highWaterMark) { debug('maybeReadMore read 0'); stream.read(0); if (len === state.length) // didn't get any data, stop spinning. break;else len = state.length; } state.readingMore = false; } // abstract method. to be overridden in specific implementation classes. // call cb(er, data) where data is <= n in length. // for virtual (non-string, non-buffer) streams, "length" is somewhat // arbitrary, and perhaps not very meaningful. Readable.prototype._read = function (n) { this.emit('error', new Error('_read() is not implemented')); }; Readable.prototype.pipe = function (dest, pipeOpts) { var src = this; var state = this._readableState; switch (state.pipesCount) { case 0: state.pipes = dest; break; case 1: state.pipes = [state.pipes, dest]; break; default: state.pipes.push(dest); break; } state.pipesCount += 1; debug('pipe count=%d opts=%j', state.pipesCount, pipeOpts); var doEnd = (!pipeOpts || pipeOpts.end !== false) && dest !== process.stdout && dest !== process.stderr; var endFn = doEnd ? onend : unpipe; if (state.endEmitted) pna.nextTick(endFn);else src.once('end', endFn); dest.on('unpipe', onunpipe); function onunpipe(readable, unpipeInfo) { debug('onunpipe'); if (readable === src) { if (unpipeInfo && unpipeInfo.hasUnpiped === false) { unpipeInfo.hasUnpiped = true; cleanup(); } } } function onend() { debug('onend'); dest.end(); } // when the dest drains, it reduces the awaitDrain counter // on the source. This would be more elegant with a .once() // handler in flow(), but adding and removing repeatedly is // too slow. var ondrain = pipeOnDrain(src); dest.on('drain', ondrain); var cleanedUp = false; function cleanup() { debug('cleanup'); // cleanup event handlers once the pipe is broken dest.removeListener('close', onclose); dest.removeListener('finish', onfinish); dest.removeListener('drain', ondrain); dest.removeListener('error', onerror); dest.removeListener('unpipe', onunpipe); src.removeListener('end', onend); src.removeListener('end', unpipe); src.removeListener('data', ondata); cleanedUp = true; // if the reader is waiting for a drain event from this // specific writer, then it would cause it to never start // flowing again. // So, if this is awaiting a drain, then we just call it now. // If we don't know, then assume that we are waiting for one. if (state.awaitDrain && (!dest._writableState || dest._writableState.needDrain)) ondrain(); } // If the user pushes more data while we're writing to dest then we'll end up // in ondata again. However, we only want to increase awaitDrain once because // dest will only emit one 'drain' event for the multiple writes. // => Introduce a guard on increasing awaitDrain. var increasedAwaitDrain = false; src.on('data', ondata); function ondata(chunk) { debug('ondata'); increasedAwaitDrain = false; var ret = dest.write(chunk); if (false === ret && !increasedAwaitDrain) { // If the user unpiped during `dest.write()`, it is possible // to get stuck in a permanently paused state if that write // also returned false. // => Check whether `dest` is still a piping destination. if ((state.pipesCount === 1 && state.pipes === dest || state.pipesCount > 1 && indexOf(state.pipes, dest) !== -1) && !cleanedUp) { debug('false write response, pause', src._readableState.awaitDrain); src._readableState.awaitDrain++; increasedAwaitDrain = true; } src.pause(); } } // if the dest has an error, then stop piping into it. // however, don't suppress the throwing behavior for this. function onerror(er) { debug('onerror', er); unpipe(); dest.removeListener('error', onerror); if (EElistenerCount(dest, 'error') === 0) dest.emit('error', er); } // Make sure our error handler is attached before userland ones. prependListener(dest, 'error', onerror); // Both close and finish should trigger unpipe, but only once. function onclose() { dest.removeListener('finish', onfinish); unpipe(); } dest.once('close', onclose); function onfinish() { debug('onfinish'); dest.removeListener('close', onclose); unpipe(); } dest.once('finish', onfinish); function unpipe() { debug('unpipe'); src.unpipe(dest); } // tell the dest that it's being piped to dest.emit('pipe', src); // start the flow if it hasn't been started already. if (!state.flowing) { debug('pipe resume'); src.resume(); } return dest; }; function pipeOnDrain(src) { return function () { var state = src._readableState; debug('pipeOnDrain', state.awaitDrain); if (state.awaitDrain) state.awaitDrain--; if (state.awaitDrain === 0 && EElistenerCount(src, 'data')) { state.flowing = true; flow(src); } }; } Readable.prototype.unpipe = function (dest) { var state = this._readableState; var unpipeInfo = { hasUnpiped: false }; // if we're not piping anywhere, then do nothing. if (state.pipesCount === 0) return this; // just one destination. most common case. if (state.pipesCount === 1) { // passed in one, but it's not the right one. if (dest && dest !== state.pipes) return this; if (!dest) dest = state.pipes; // got a match. state.pipes = null; state.pipesCount = 0; state.flowing = false; if (dest) dest.emit('unpipe', this, unpipeInfo); return this; } // slow case. multiple pipe destinations. if (!dest) { // remove all. var dests = state.pipes; var len = state.pipesCount; state.pipes = null; state.pipesCount = 0; state.flowing = false; for (var i = 0; i < len; i++) { dests[i].emit('unpipe', this, unpipeInfo); }return this; } // try to find the right one. var index = indexOf(state.pipes, dest); if (index === -1) return this; state.pipes.splice(index, 1); state.pipesCount -= 1; if (state.pipesCount === 1) state.pipes = state.pipes[0]; dest.emit('unpipe', this, unpipeInfo); return this; }; // set up data events if they are asked for // Ensure readable listeners eventually get something Readable.prototype.on = function (ev, fn) { var res = Stream.prototype.on.call(this, ev, fn); if (ev === 'data') { // Start flowing on next tick if stream isn't explicitly paused if (this._readableState.flowing !== false) this.resume(); } else if (ev === 'readable') { var state = this._readableState; if (!state.endEmitted && !state.readableListening) { state.readableListening = state.needReadable = true; state.emittedReadable = false; if (!state.reading) { pna.nextTick(nReadingNextTick, this); } else if (state.length) { emitReadable(this); } } } return res; }; Readable.prototype.addListener = Readable.prototype.on; function nReadingNextTick(self) { debug('readable nexttick read 0'); self.read(0); } // pause() and resume() are remnants of the legacy readable stream API // If the user uses them, then switch into old mode. Readable.prototype.resume = function () { var state = this._readableState; if (!state.flowing) { debug('resume'); state.flowing = true; resume(this, state); } return this; }; function resume(stream, state) { if (!state.resumeScheduled) { state.resumeScheduled = true; pna.nextTick(resume_, stream, state); } } function resume_(stream, state) { if (!state.reading) { debug('resume read 0'); stream.read(0); } state.resumeScheduled = false; state.awaitDrain = 0; stream.emit('resume'); flow(stream); if (state.flowing && !state.reading) stream.read(0); } Readable.prototype.pause = function () { debug('call pause flowing=%j', this._readableState.flowing); if (false !== this._readableState.flowing) { debug('pause'); this._readableState.flowing = false; this.emit('pause'); } return this; }; function flow(stream) { var state = stream._readableState; debug('flow', state.flowing); while (state.flowing && stream.read() !== null) {} } // wrap an old-style stream as the async data source. // This is *not* part of the readable stream interface. // It is an ugly unfortunate mess of history. Readable.prototype.wrap = function (stream) { var _this = this; var state = this._readableState; var paused = false; stream.on('end', function () { debug('wrapped end'); if (state.decoder && !state.ended) { var chunk = state.decoder.end(); if (chunk && chunk.length) _this.push(chunk); } _this.push(null); }); stream.on('data', function (chunk) { debug('wrapped data'); if (state.decoder) chunk = state.decoder.write(chunk); // don't skip over falsy values in objectMode if (state.objectMode && (chunk === null || chunk === undefined)) return;else if (!state.objectMode && (!chunk || !chunk.length)) return; var ret = _this.push(chunk); if (!ret) { paused = true; stream.pause(); } }); // proxy all the other methods. // important when wrapping filters and duplexes. for (var i in stream) { if (this[i] === undefined && typeof stream[i] === 'function') { this[i] = function (method) { return function () { return stream[method].apply(stream, arguments); }; }(i); } } // proxy certain important events. for (var n = 0; n < kProxyEvents.length; n++) { stream.on(kProxyEvents[n], this.emit.bind(this, kProxyEvents[n])); } // when we try to consume some more bytes, simply unpause the // underlying stream. this._read = function (n) { debug('wrapped _read', n); if (paused) { paused = false; stream.resume(); } }; return this; }; Object.defineProperty(Readable.prototype, 'readableHighWaterMark', { // making it explicit this property is not enumerable // because otherwise some prototype manipulation in // userland will fail enumerable: false, get: function () { return this._readableState.highWaterMark; } }); // exposed for testing purposes only. Readable._fromList = fromList; // Pluck off n bytes from an array of buffers. // Length is the combined lengths of all the buffers in the list. // This function is designed to be inlinable, so please take care when making // changes to the function body. function fromList(n, state) { // nothing buffered if (state.length === 0) return null; var ret; if (state.objectMode) ret = state.buffer.shift();else if (!n || n >= state.length) { // read it all, truncate the list if (state.decoder) ret = state.buffer.join('');else if (state.buffer.length === 1) ret = state.buffer.head.data;else ret = state.buffer.concat(state.length); state.buffer.clear(); } else { // read part of list ret = fromListPartial(n, state.buffer, state.decoder); } return ret; } // Extracts only enough buffered data to satisfy the amount requested. // This function is designed to be inlinable, so please take care when making // changes to the function body. function fromListPartial(n, list, hasStrings) { var ret; if (n < list.head.data.length) { // slice is the same for buffers and strings ret = list.head.data.slice(0, n); list.head.data = list.head.data.slice(n); } else if (n === list.head.data.length) { // first chunk is a perfect match ret = list.shift(); } else { // result spans more than one buffer ret = hasStrings ? copyFromBufferString(n, list) : copyFromBuffer(n, list); } return ret; } // Copies a specified amount of characters from the list of buffered data // chunks. // This function is designed to be inlinable, so please take care when making // changes to the function body. function copyFromBufferString(n, list) { var p = list.head; var c = 1; var ret = p.data; n -= ret.length; while (p = p.next) { var str = p.data; var nb = n > str.length ? str.length : n; if (nb === str.length) ret += str;else ret += str.slice(0, n); n -= nb; if (n === 0) { if (nb === str.length) { ++c; if (p.next) list.head = p.next;else list.head = list.tail = null; } else { list.head = p; p.data = str.slice(nb); } break; } ++c; } list.length -= c; return ret; } // Copies a specified amount of bytes from the list of buffered data chunks. // This function is designed to be inlinable, so please take care when making // changes to the function body. function copyFromBuffer(n, list) { var ret = Buffer.allocUnsafe(n); var p = list.head; var c = 1; p.data.copy(ret); n -= p.data.length; while (p = p.next) { var buf = p.data; var nb = n > buf.length ? buf.length : n; buf.copy(ret, ret.length - n, 0, nb); n -= nb; if (n === 0) { if (nb === buf.length) { ++c; if (p.next) list.head = p.next;else list.head = list.tail = null; } else { list.head = p; p.data = buf.slice(nb); } break; } ++c; } list.length -= c; return ret; } function endReadable(stream) { var state = stream._readableState; // If we get here before consuming all the bytes, then that is a // bug in node. Should never happen. if (state.length > 0) throw new Error('"endReadable()" called on non-empty stream'); if (!state.endEmitted) { state.ended = true; pna.nextTick(endReadableNT, state, stream); } } function endReadableNT(state, stream) { // Check that we didn't get one last unshift. if (!state.endEmitted && state.length === 0) { state.endEmitted = true; stream.readable = false; stream.emit('end'); } } function indexOf(xs, x) { for (var i = 0, l = xs.length; i < l; i++) { if (xs[i] === x) return i; } return -1; } }).call(this,require('_process'),typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {}) },{"./_stream_duplex":139,"./internal/streams/BufferList":144,"./internal/streams/destroy":145,"./internal/streams/stream":146,"_process":133,"core-util-is":51,"events":52,"inherits":75,"isarray":79,"process-nextick-args":132,"safe-buffer":147,"string_decoder/":148,"util":33}],142:[function(require,module,exports){ // Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. // a transform stream is a readable/writable stream where you do // something with the data. Sometimes it's called a "filter", // but that's not a great name for it, since that implies a thing where // some bits pass through, and others are simply ignored. (That would // be a valid example of a transform, of course.) // // While the output is causally related to the input, it's not a // necessarily symmetric or synchronous transformation. For example, // a zlib stream might take multiple plain-text writes(), and then // emit a single compressed chunk some time in the future. // // Here's how this works: // // The Transform stream has all the aspects of the readable and writable // stream classes. When you write(chunk), that calls _write(chunk,cb) // internally, and returns false if there's a lot of pending writes // buffered up. When you call read(), that calls _read(n) until // there's enough pending readable data buffered up. // // In a transform stream, the written data is placed in a buffer. When // _read(n) is called, it transforms the queued up data, calling the // buffered _write cb's as it consumes chunks. If consuming a single // written chunk would result in multiple output chunks, then the first // outputted bit calls the readcb, and subsequent chunks just go into // the read buffer, and will cause it to emit 'readable' if necessary. // // This way, back-pressure is actually determined by the reading side, // since _read has to be called to start processing a new chunk. However, // a pathological inflate type of transform can cause excessive buffering // here. For example, imagine a stream where every byte of input is // interpreted as an integer from 0-255, and then results in that many // bytes of output. Writing the 4 bytes {ff,ff,ff,ff} would result in // 1kb of data being output. In this case, you could write a very small // amount of input, and end up with a very large amount of output. In // such a pathological inflating mechanism, there'd be no way to tell // the system to stop doing the transform. A single 4MB write could // cause the system to run out of memory. // // However, even in such a pathological case, only a single written chunk // would be consumed, and then the rest would wait (un-transformed) until // the results of the previous transformed chunk were consumed. 'use strict'; module.exports = Transform; var Duplex = require('./_stream_duplex'); /**/ var util = require('core-util-is'); util.inherits = require('inherits'); /**/ util.inherits(Transform, Duplex); function afterTransform(er, data) { var ts = this._transformState; ts.transforming = false; var cb = ts.writecb; if (!cb) { return this.emit('error', new Error('write callback called multiple times')); } ts.writechunk = null; ts.writecb = null; if (data != null) // single equals check for both `null` and `undefined` this.push(data); cb(er); var rs = this._readableState; rs.reading = false; if (rs.needReadable || rs.length < rs.highWaterMark) { this._read(rs.highWaterMark); } } function Transform(options) { if (!(this instanceof Transform)) return new Transform(options); Duplex.call(this, options); this._transformState = { afterTransform: afterTransform.bind(this), needTransform: false, transforming: false, writecb: null, writechunk: null, writeencoding: null }; // start out asking for a readable event once data is transformed. this._readableState.needReadable = true; // we have implemented the _read method, and done the other things // that Readable wants before the first _read call, so unset the // sync guard flag. this._readableState.sync = false; if (options) { if (typeof options.transform === 'function') this._transform = options.transform; if (typeof options.flush === 'function') this._flush = options.flush; } // When the writable side finishes, then flush out anything remaining. this.on('prefinish', prefinish); } function prefinish() { var _this = this; if (typeof this._flush === 'function') { this._flush(function (er, data) { done(_this, er, data); }); } else { done(this, null, null); } } Transform.prototype.push = function (chunk, encoding) { this._transformState.needTransform = false; return Duplex.prototype.push.call(this, chunk, encoding); }; // This is the part where you do stuff! // override this function in implementation classes. // 'chunk' is an input chunk. // // Call `push(newChunk)` to pass along transformed output // to the readable side. You may call 'push' zero or more times. // // Call `cb(err)` when you are done with this chunk. If you pass // an error, then that'll put the hurt on the whole operation. If you // never call cb(), then you'll never get another chunk. Transform.prototype._transform = function (chunk, encoding, cb) { throw new Error('_transform() is not implemented'); }; Transform.prototype._write = function (chunk, encoding, cb) { var ts = this._transformState; ts.writecb = cb; ts.writechunk = chunk; ts.writeencoding = encoding; if (!ts.transforming) { var rs = this._readableState; if (ts.needTransform || rs.needReadable || rs.length < rs.highWaterMark) this._read(rs.highWaterMark); } }; // Doesn't matter what the args are here. // _transform does all the work. // That we got here means that the readable side wants more data. Transform.prototype._read = function (n) { var ts = this._transformState; if (ts.writechunk !== null && ts.writecb && !ts.transforming) { ts.transforming = true; this._transform(ts.writechunk, ts.writeencoding, ts.afterTransform); } else { // mark that we need a transform, so that any data that comes in // will get processed, now that we've asked for it. ts.needTransform = true; } }; Transform.prototype._destroy = function (err, cb) { var _this2 = this; Duplex.prototype._destroy.call(this, err, function (err2) { cb(err2); _this2.emit('close'); }); }; function done(stream, er, data) { if (er) return stream.emit('error', er); if (data != null) // single equals check for both `null` and `undefined` stream.push(data); // if there's nothing in the write buffer, then that means // that nothing more will ever be provided if (stream._writableState.length) throw new Error('Calling transform done when ws.length != 0'); if (stream._transformState.transforming) throw new Error('Calling transform done when still transforming'); return stream.push(null); } },{"./_stream_duplex":139,"core-util-is":51,"inherits":75}],143:[function(require,module,exports){ (function (process,global,setImmediate){ // Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. // A bit simpler than readable streams. // Implement an async ._write(chunk, encoding, cb), and it'll handle all // the drain event emission and buffering. 'use strict'; /**/ var pna = require('process-nextick-args'); /**/ module.exports = Writable; /* */ function WriteReq(chunk, encoding, cb) { this.chunk = chunk; this.encoding = encoding; this.callback = cb; this.next = null; } // It seems a linked list but it is not // there will be only 2 of these for each stream function CorkedRequest(state) { var _this = this; this.next = null; this.entry = null; this.finish = function () { onCorkedFinish(_this, state); }; } /* */ /**/ var asyncWrite = !process.browser && ['v0.10', 'v0.9.'].indexOf(process.version.slice(0, 5)) > -1 ? setImmediate : pna.nextTick; /**/ /**/ var Duplex; /**/ Writable.WritableState = WritableState; /**/ var util = require('core-util-is'); util.inherits = require('inherits'); /**/ /**/ var internalUtil = { deprecate: require('util-deprecate') }; /**/ /**/ var Stream = require('./internal/streams/stream'); /**/ /**/ var Buffer = require('safe-buffer').Buffer; var OurUint8Array = global.Uint8Array || function () {}; function _uint8ArrayToBuffer(chunk) { return Buffer.from(chunk); } function _isUint8Array(obj) { return Buffer.isBuffer(obj) || obj instanceof OurUint8Array; } /**/ var destroyImpl = require('./internal/streams/destroy'); util.inherits(Writable, Stream); function nop() {} function WritableState(options, stream) { Duplex = Duplex || require('./_stream_duplex'); options = options || {}; // Duplex streams are both readable and writable, but share // the same options object. // However, some cases require setting options to different // values for the readable and the writable sides of the duplex stream. // These options can be provided separately as readableXXX and writableXXX. var isDuplex = stream instanceof Duplex; // object stream flag to indicate whether or not this stream // contains buffers or objects. this.objectMode = !!options.objectMode; if (isDuplex) this.objectMode = this.objectMode || !!options.writableObjectMode; // the point at which write() starts returning false // Note: 0 is a valid value, means that we always return false if // the entire buffer is not flushed immediately on write() var hwm = options.highWaterMark; var writableHwm = options.writableHighWaterMark; var defaultHwm = this.objectMode ? 16 : 16 * 1024; if (hwm || hwm === 0) this.highWaterMark = hwm;else if (isDuplex && (writableHwm || writableHwm === 0)) this.highWaterMark = writableHwm;else this.highWaterMark = defaultHwm; // cast to ints. this.highWaterMark = Math.floor(this.highWaterMark); // if _final has been called this.finalCalled = false; // drain event flag. this.needDrain = false; // at the start of calling end() this.ending = false; // when end() has been called, and returned this.ended = false; // when 'finish' is emitted this.finished = false; // has it been destroyed this.destroyed = false; // should we decode strings into buffers before passing to _write? // this is here so that some node-core streams can optimize string // handling at a lower level. var noDecode = options.decodeStrings === false; this.decodeStrings = !noDecode; // Crypto is kind of old and crusty. Historically, its default string // encoding is 'binary' so we have to make this configurable. // Everything else in the universe uses 'utf8', though. this.defaultEncoding = options.defaultEncoding || 'utf8'; // not an actual buffer we keep track of, but a measurement // of how much we're waiting to get pushed to some underlying // socket or file. this.length = 0; // a flag to see when we're in the middle of a write. this.writing = false; // when true all writes will be buffered until .uncork() call this.corked = 0; // a flag to be able to tell if the onwrite cb is called immediately, // or on a later tick. We set this to true at first, because any // actions that shouldn't happen until "later" should generally also // not happen before the first write call. this.sync = true; // a flag to know if we're processing previously buffered items, which // may call the _write() callback in the same tick, so that we don't // end up in an overlapped onwrite situation. this.bufferProcessing = false; // the callback that's passed to _write(chunk,cb) this.onwrite = function (er) { onwrite(stream, er); }; // the callback that the user supplies to write(chunk,encoding,cb) this.writecb = null; // the amount that is being written when _write is called. this.writelen = 0; this.bufferedRequest = null; this.lastBufferedRequest = null; // number of pending user-supplied write callbacks // this must be 0 before 'finish' can be emitted this.pendingcb = 0; // emit prefinish if the only thing we're waiting for is _write cbs // This is relevant for synchronous Transform streams this.prefinished = false; // True if the error was already emitted and should not be thrown again this.errorEmitted = false; // count buffered requests this.bufferedRequestCount = 0; // allocate the first CorkedRequest, there is always // one allocated and free to use, and we maintain at most two this.corkedRequestsFree = new CorkedRequest(this); } WritableState.prototype.getBuffer = function getBuffer() { var current = this.bufferedRequest; var out = []; while (current) { out.push(current); current = current.next; } return out; }; (function () { try { Object.defineProperty(WritableState.prototype, 'buffer', { get: internalUtil.deprecate(function () { return this.getBuffer(); }, '_writableState.buffer is deprecated. Use _writableState.getBuffer ' + 'instead.', 'DEP0003') }); } catch (_) {} })(); // Test _writableState for inheritance to account for Duplex streams, // whose prototype chain only points to Readable. var realHasInstance; if (typeof Symbol === 'function' && Symbol.hasInstance && typeof Function.prototype[Symbol.hasInstance] === 'function') { realHasInstance = Function.prototype[Symbol.hasInstance]; Object.defineProperty(Writable, Symbol.hasInstance, { value: function (object) { if (realHasInstance.call(this, object)) return true; if (this !== Writable) return false; return object && object._writableState instanceof WritableState; } }); } else { realHasInstance = function (object) { return object instanceof this; }; } function Writable(options) { Duplex = Duplex || require('./_stream_duplex'); // Writable ctor is applied to Duplexes, too. // `realHasInstance` is necessary because using plain `instanceof` // would return false, as no `_writableState` property is attached. // Trying to use the custom `instanceof` for Writable here will also break the // Node.js LazyTransform implementation, which has a non-trivial getter for // `_writableState` that would lead to infinite recursion. if (!realHasInstance.call(Writable, this) && !(this instanceof Duplex)) { return new Writable(options); } this._writableState = new WritableState(options, this); // legacy. this.writable = true; if (options) { if (typeof options.write === 'function') this._write = options.write; if (typeof options.writev === 'function') this._writev = options.writev; if (typeof options.destroy === 'function') this._destroy = options.destroy; if (typeof options.final === 'function') this._final = options.final; } Stream.call(this); } // Otherwise people can pipe Writable streams, which is just wrong. Writable.prototype.pipe = function () { this.emit('error', new Error('Cannot pipe, not readable')); }; function writeAfterEnd(stream, cb) { var er = new Error('write after end'); // TODO: defer error events consistently everywhere, not just the cb stream.emit('error', er); pna.nextTick(cb, er); } // Checks that a user-supplied chunk is valid, especially for the particular // mode the stream is in. Currently this means that `null` is never accepted // and undefined/non-string values are only allowed in object mode. function validChunk(stream, state, chunk, cb) { var valid = true; var er = false; if (chunk === null) { er = new TypeError('May not write null values to stream'); } else if (typeof chunk !== 'string' && chunk !== undefined && !state.objectMode) { er = new TypeError('Invalid non-string/buffer chunk'); } if (er) { stream.emit('error', er); pna.nextTick(cb, er); valid = false; } return valid; } Writable.prototype.write = function (chunk, encoding, cb) { var state = this._writableState; var ret = false; var isBuf = !state.objectMode && _isUint8Array(chunk); if (isBuf && !Buffer.isBuffer(chunk)) { chunk = _uint8ArrayToBuffer(chunk); } if (typeof encoding === 'function') { cb = encoding; encoding = null; } if (isBuf) encoding = 'buffer';else if (!encoding) encoding = state.defaultEncoding; if (typeof cb !== 'function') cb = nop; if (state.ended) writeAfterEnd(this, cb);else if (isBuf || validChunk(this, state, chunk, cb)) { state.pendingcb++; ret = writeOrBuffer(this, state, isBuf, chunk, encoding, cb); } return ret; }; Writable.prototype.cork = function () { var state = this._writableState; state.corked++; }; Writable.prototype.uncork = function () { var state = this._writableState; if (state.corked) { state.corked--; if (!state.writing && !state.corked && !state.finished && !state.bufferProcessing && state.bufferedRequest) clearBuffer(this, state); } }; Writable.prototype.setDefaultEncoding = function setDefaultEncoding(encoding) { // node::ParseEncoding() requires lower case. if (typeof encoding === 'string') encoding = encoding.toLowerCase(); if (!(['hex', 'utf8', 'utf-8', 'ascii', 'binary', 'base64', 'ucs2', 'ucs-2', 'utf16le', 'utf-16le', 'raw'].indexOf((encoding + '').toLowerCase()) > -1)) throw new TypeError('Unknown encoding: ' + encoding); this._writableState.defaultEncoding = encoding; return this; }; function decodeChunk(state, chunk, encoding) { if (!state.objectMode && state.decodeStrings !== false && typeof chunk === 'string') { chunk = Buffer.from(chunk, encoding); } return chunk; } Object.defineProperty(Writable.prototype, 'writableHighWaterMark', { // making it explicit this property is not enumerable // because otherwise some prototype manipulation in // userland will fail enumerable: false, get: function () { return this._writableState.highWaterMark; } }); // if we're already writing something, then just put this // in the queue, and wait our turn. Otherwise, call _write // If we return false, then we need a drain event, so set that flag. function writeOrBuffer(stream, state, isBuf, chunk, encoding, cb) { if (!isBuf) { var newChunk = decodeChunk(state, chunk, encoding); if (chunk !== newChunk) { isBuf = true; encoding = 'buffer'; chunk = newChunk; } } var len = state.objectMode ? 1 : chunk.length; state.length += len; var ret = state.length < state.highWaterMark; // we must ensure that previous needDrain will not be reset to false. if (!ret) state.needDrain = true; if (state.writing || state.corked) { var last = state.lastBufferedRequest; state.lastBufferedRequest = { chunk: chunk, encoding: encoding, isBuf: isBuf, callback: cb, next: null }; if (last) { last.next = state.lastBufferedRequest; } else { state.bufferedRequest = state.lastBufferedRequest; } state.bufferedRequestCount += 1; } else { doWrite(stream, state, false, len, chunk, encoding, cb); } return ret; } function doWrite(stream, state, writev, len, chunk, encoding, cb) { state.writelen = len; state.writecb = cb; state.writing = true; state.sync = true; if (writev) stream._writev(chunk, state.onwrite);else stream._write(chunk, encoding, state.onwrite); state.sync = false; } function onwriteError(stream, state, sync, er, cb) { --state.pendingcb; if (sync) { // defer the callback if we are being called synchronously // to avoid piling up things on the stack pna.nextTick(cb, er); // this can emit finish, and it will always happen // after error pna.nextTick(finishMaybe, stream, state); stream._writableState.errorEmitted = true; stream.emit('error', er); } else { // the caller expect this to happen before if // it is async cb(er); stream._writableState.errorEmitted = true; stream.emit('error', er); // this can emit finish, but finish must // always follow error finishMaybe(stream, state); } } function onwriteStateUpdate(state) { state.writing = false; state.writecb = null; state.length -= state.writelen; state.writelen = 0; } function onwrite(stream, er) { var state = stream._writableState; var sync = state.sync; var cb = state.writecb; onwriteStateUpdate(state); if (er) onwriteError(stream, state, sync, er, cb);else { // Check if we're actually ready to finish, but don't emit yet var finished = needFinish(state); if (!finished && !state.corked && !state.bufferProcessing && state.bufferedRequest) { clearBuffer(stream, state); } if (sync) { /**/ asyncWrite(afterWrite, stream, state, finished, cb); /**/ } else { afterWrite(stream, state, finished, cb); } } } function afterWrite(stream, state, finished, cb) { if (!finished) onwriteDrain(stream, state); state.pendingcb--; cb(); finishMaybe(stream, state); } // Must force callback to be called on nextTick, so that we don't // emit 'drain' before the write() consumer gets the 'false' return // value, and has a chance to attach a 'drain' listener. function onwriteDrain(stream, state) { if (state.length === 0 && state.needDrain) { state.needDrain = false; stream.emit('drain'); } } // if there's something in the buffer waiting, then process it function clearBuffer(stream, state) { state.bufferProcessing = true; var entry = state.bufferedRequest; if (stream._writev && entry && entry.next) { // Fast case, write everything using _writev() var l = state.bufferedRequestCount; var buffer = new Array(l); var holder = state.corkedRequestsFree; holder.entry = entry; var count = 0; var allBuffers = true; while (entry) { buffer[count] = entry; if (!entry.isBuf) allBuffers = false; entry = entry.next; count += 1; } buffer.allBuffers = allBuffers; doWrite(stream, state, true, state.length, buffer, '', holder.finish); // doWrite is almost always async, defer these to save a bit of time // as the hot path ends with doWrite state.pendingcb++; state.lastBufferedRequest = null; if (holder.next) { state.corkedRequestsFree = holder.next; holder.next = null; } else { state.corkedRequestsFree = new CorkedRequest(state); } state.bufferedRequestCount = 0; } else { // Slow case, write chunks one-by-one while (entry) { var chunk = entry.chunk; var encoding = entry.encoding; var cb = entry.callback; var len = state.objectMode ? 1 : chunk.length; doWrite(stream, state, false, len, chunk, encoding, cb); entry = entry.next; state.bufferedRequestCount--; // if we didn't call the onwrite immediately, then // it means that we need to wait until it does. // also, that means that the chunk and cb are currently // being processed, so move the buffer counter past them. if (state.writing) { break; } } if (entry === null) state.lastBufferedRequest = null; } state.bufferedRequest = entry; state.bufferProcessing = false; } Writable.prototype._write = function (chunk, encoding, cb) { cb(new Error('_write() is not implemented')); }; Writable.prototype._writev = null; Writable.prototype.end = function (chunk, encoding, cb) { var state = this._writableState; if (typeof chunk === 'function') { cb = chunk; chunk = null; encoding = null; } else if (typeof encoding === 'function') { cb = encoding; encoding = null; } if (chunk !== null && chunk !== undefined) this.write(chunk, encoding); // .end() fully uncorks if (state.corked) { state.corked = 1; this.uncork(); } // ignore unnecessary end() calls. if (!state.ending && !state.finished) endWritable(this, state, cb); }; function needFinish(state) { return state.ending && state.length === 0 && state.bufferedRequest === null && !state.finished && !state.writing; } function callFinal(stream, state) { stream._final(function (err) { state.pendingcb--; if (err) { stream.emit('error', err); } state.prefinished = true; stream.emit('prefinish'); finishMaybe(stream, state); }); } function prefinish(stream, state) { if (!state.prefinished && !state.finalCalled) { if (typeof stream._final === 'function') { state.pendingcb++; state.finalCalled = true; pna.nextTick(callFinal, stream, state); } else { state.prefinished = true; stream.emit('prefinish'); } } } function finishMaybe(stream, state) { var need = needFinish(state); if (need) { prefinish(stream, state); if (state.pendingcb === 0) { state.finished = true; stream.emit('finish'); } } return need; } function endWritable(stream, state, cb) { state.ending = true; finishMaybe(stream, state); if (cb) { if (state.finished) pna.nextTick(cb);else stream.once('finish', cb); } state.ended = true; stream.writable = false; } function onCorkedFinish(corkReq, state, err) { var entry = corkReq.entry; corkReq.entry = null; while (entry) { var cb = entry.callback; state.pendingcb--; cb(err); entry = entry.next; } if (state.corkedRequestsFree) { state.corkedRequestsFree.next = corkReq; } else { state.corkedRequestsFree = corkReq; } } Object.defineProperty(Writable.prototype, 'destroyed', { get: function () { if (this._writableState === undefined) { return false; } return this._writableState.destroyed; }, set: function (value) { // we ignore the value if the stream // has not been initialized yet if (!this._writableState) { return; } // backward compatibility, the user is explicitly // managing destroyed this._writableState.destroyed = value; } }); Writable.prototype.destroy = destroyImpl.destroy; Writable.prototype._undestroy = destroyImpl.undestroy; Writable.prototype._destroy = function (err, cb) { this.end(); cb(err); }; }).call(this,require('_process'),typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {},require("timers").setImmediate) },{"./_stream_duplex":139,"./internal/streams/destroy":145,"./internal/streams/stream":146,"_process":133,"core-util-is":51,"inherits":75,"process-nextick-args":132,"safe-buffer":147,"timers":176,"util-deprecate":183}],144:[function(require,module,exports){ 'use strict'; function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } var Buffer = require('safe-buffer').Buffer; var util = require('util'); function copyBuffer(src, target, offset) { src.copy(target, offset); } module.exports = function () { function BufferList() { _classCallCheck(this, BufferList); this.head = null; this.tail = null; this.length = 0; } BufferList.prototype.push = function push(v) { var entry = { data: v, next: null }; if (this.length > 0) this.tail.next = entry;else this.head = entry; this.tail = entry; ++this.length; }; BufferList.prototype.unshift = function unshift(v) { var entry = { data: v, next: this.head }; if (this.length === 0) this.tail = entry; this.head = entry; ++this.length; }; BufferList.prototype.shift = function shift() { if (this.length === 0) return; var ret = this.head.data; if (this.length === 1) this.head = this.tail = null;else this.head = this.head.next; --this.length; return ret; }; BufferList.prototype.clear = function clear() { this.head = this.tail = null; this.length = 0; }; BufferList.prototype.join = function join(s) { if (this.length === 0) return ''; var p = this.head; var ret = '' + p.data; while (p = p.next) { ret += s + p.data; }return ret; }; BufferList.prototype.concat = function concat(n) { if (this.length === 0) return Buffer.alloc(0); if (this.length === 1) return this.head.data; var ret = Buffer.allocUnsafe(n >>> 0); var p = this.head; var i = 0; while (p) { copyBuffer(p.data, ret, i); i += p.data.length; p = p.next; } return ret; }; return BufferList; }(); if (util && util.inspect && util.inspect.custom) { module.exports.prototype[util.inspect.custom] = function () { var obj = util.inspect({ length: this.length }); return this.constructor.name + ' ' + obj; }; } },{"safe-buffer":147,"util":33}],145:[function(require,module,exports){ 'use strict'; /**/ var pna = require('process-nextick-args'); /**/ // undocumented cb() API, needed for core, not for public API function destroy(err, cb) { var _this = this; var readableDestroyed = this._readableState && this._readableState.destroyed; var writableDestroyed = this._writableState && this._writableState.destroyed; if (readableDestroyed || writableDestroyed) { if (cb) { cb(err); } else if (err && (!this._writableState || !this._writableState.errorEmitted)) { pna.nextTick(emitErrorNT, this, err); } return this; } // we set destroyed to true before firing error callbacks in order // to make it re-entrance safe in case destroy() is called within callbacks if (this._readableState) { this._readableState.destroyed = true; } // if this is a duplex stream mark the writable part as destroyed as well if (this._writableState) { this._writableState.destroyed = true; } this._destroy(err || null, function (err) { if (!cb && err) { pna.nextTick(emitErrorNT, _this, err); if (_this._writableState) { _this._writableState.errorEmitted = true; } } else if (cb) { cb(err); } }); return this; } function undestroy() { if (this._readableState) { this._readableState.destroyed = false; this._readableState.reading = false; this._readableState.ended = false; this._readableState.endEmitted = false; } if (this._writableState) { this._writableState.destroyed = false; this._writableState.ended = false; this._writableState.ending = false; this._writableState.finished = false; this._writableState.errorEmitted = false; } } function emitErrorNT(self, err) { self.emit('error', err); } module.exports = { destroy: destroy, undestroy: undestroy }; },{"process-nextick-args":132}],146:[function(require,module,exports){ module.exports = require('events').EventEmitter; },{"events":52}],147:[function(require,module,exports){ /* eslint-disable node/no-deprecated-api */ var buffer = require('buffer') var Buffer = buffer.Buffer // alternative to using Object.keys for old browsers function copyProps (src, dst) { for (var key in src) { dst[key] = src[key] } } if (Buffer.from && Buffer.alloc && Buffer.allocUnsafe && Buffer.allocUnsafeSlow) { module.exports = buffer } else { // Copy properties from require('buffer') copyProps(buffer, exports) exports.Buffer = SafeBuffer } function SafeBuffer (arg, encodingOrOffset, length) { return Buffer(arg, encodingOrOffset, length) } // Copy static methods from Buffer copyProps(Buffer, SafeBuffer) SafeBuffer.from = function (arg, encodingOrOffset, length) { if (typeof arg === 'number') { throw new TypeError('Argument must not be a number') } return Buffer(arg, encodingOrOffset, length) } SafeBuffer.alloc = function (size, fill, encoding) { if (typeof size !== 'number') { throw new TypeError('Argument must be a number') } var buf = Buffer(size) if (fill !== undefined) { if (typeof encoding === 'string') { buf.fill(fill, encoding) } else { buf.fill(fill) } } else { buf.fill(0) } return buf } SafeBuffer.allocUnsafe = function (size) { if (typeof size !== 'number') { throw new TypeError('Argument must be a number') } return Buffer(size) } SafeBuffer.allocUnsafeSlow = function (size) { if (typeof size !== 'number') { throw new TypeError('Argument must be a number') } return buffer.SlowBuffer(size) } },{"buffer":48}],148:[function(require,module,exports){ // Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. 'use strict'; /**/ var Buffer = require('safe-buffer').Buffer; /**/ var isEncoding = Buffer.isEncoding || function (encoding) { encoding = '' + encoding; switch (encoding && encoding.toLowerCase()) { case 'hex':case 'utf8':case 'utf-8':case 'ascii':case 'binary':case 'base64':case 'ucs2':case 'ucs-2':case 'utf16le':case 'utf-16le':case 'raw': return true; default: return false; } }; function _normalizeEncoding(enc) { if (!enc) return 'utf8'; var retried; while (true) { switch (enc) { case 'utf8': case 'utf-8': return 'utf8'; case 'ucs2': case 'ucs-2': case 'utf16le': case 'utf-16le': return 'utf16le'; case 'latin1': case 'binary': return 'latin1'; case 'base64': case 'ascii': case 'hex': return enc; default: if (retried) return; // undefined enc = ('' + enc).toLowerCase(); retried = true; } } }; // Do not cache `Buffer.isEncoding` when checking encoding names as some // modules monkey-patch it to support additional encodings function normalizeEncoding(enc) { var nenc = _normalizeEncoding(enc); if (typeof nenc !== 'string' && (Buffer.isEncoding === isEncoding || !isEncoding(enc))) throw new Error('Unknown encoding: ' + enc); return nenc || enc; } // StringDecoder provides an interface for efficiently splitting a series of // buffers into a series of JS strings without breaking apart multi-byte // characters. exports.StringDecoder = StringDecoder; function StringDecoder(encoding) { this.encoding = normalizeEncoding(encoding); var nb; switch (this.encoding) { case 'utf16le': this.text = utf16Text; this.end = utf16End; nb = 4; break; case 'utf8': this.fillLast = utf8FillLast; nb = 4; break; case 'base64': this.text = base64Text; this.end = base64End; nb = 3; break; default: this.write = simpleWrite; this.end = simpleEnd; return; } this.lastNeed = 0; this.lastTotal = 0; this.lastChar = Buffer.allocUnsafe(nb); } StringDecoder.prototype.write = function (buf) { if (buf.length === 0) return ''; var r; var i; if (this.lastNeed) { r = this.fillLast(buf); if (r === undefined) return ''; i = this.lastNeed; this.lastNeed = 0; } else { i = 0; } if (i < buf.length) return r ? r + this.text(buf, i) : this.text(buf, i); return r || ''; }; StringDecoder.prototype.end = utf8End; // Returns only complete characters in a Buffer StringDecoder.prototype.text = utf8Text; // Attempts to complete a partial non-UTF-8 character using bytes from a Buffer StringDecoder.prototype.fillLast = function (buf) { if (this.lastNeed <= buf.length) { buf.copy(this.lastChar, this.lastTotal - this.lastNeed, 0, this.lastNeed); return this.lastChar.toString(this.encoding, 0, this.lastTotal); } buf.copy(this.lastChar, this.lastTotal - this.lastNeed, 0, buf.length); this.lastNeed -= buf.length; }; // Checks the type of a UTF-8 byte, whether it's ASCII, a leading byte, or a // continuation byte. If an invalid byte is detected, -2 is returned. function utf8CheckByte(byte) { if (byte <= 0x7F) return 0;else if (byte >> 5 === 0x06) return 2;else if (byte >> 4 === 0x0E) return 3;else if (byte >> 3 === 0x1E) return 4; return byte >> 6 === 0x02 ? -1 : -2; } // Checks at most 3 bytes at the end of a Buffer in order to detect an // incomplete multi-byte UTF-8 character. The total number of bytes (2, 3, or 4) // needed to complete the UTF-8 character (if applicable) are returned. function utf8CheckIncomplete(self, buf, i) { var j = buf.length - 1; if (j < i) return 0; var nb = utf8CheckByte(buf[j]); if (nb >= 0) { if (nb > 0) self.lastNeed = nb - 1; return nb; } if (--j < i || nb === -2) return 0; nb = utf8CheckByte(buf[j]); if (nb >= 0) { if (nb > 0) self.lastNeed = nb - 2; return nb; } if (--j < i || nb === -2) return 0; nb = utf8CheckByte(buf[j]); if (nb >= 0) { if (nb > 0) { if (nb === 2) nb = 0;else self.lastNeed = nb - 3; } return nb; } return 0; } // Validates as many continuation bytes for a multi-byte UTF-8 character as // needed or are available. If we see a non-continuation byte where we expect // one, we "replace" the validated continuation bytes we've seen so far with // a single UTF-8 replacement character ('\ufffd'), to match v8's UTF-8 decoding // behavior. The continuation byte check is included three times in the case // where all of the continuation bytes for a character exist in the same buffer. // It is also done this way as a slight performance increase instead of using a // loop. function utf8CheckExtraBytes(self, buf, p) { if ((buf[0] & 0xC0) !== 0x80) { self.lastNeed = 0; return '\ufffd'; } if (self.lastNeed > 1 && buf.length > 1) { if ((buf[1] & 0xC0) !== 0x80) { self.lastNeed = 1; return '\ufffd'; } if (self.lastNeed > 2 && buf.length > 2) { if ((buf[2] & 0xC0) !== 0x80) { self.lastNeed = 2; return '\ufffd'; } } } } // Attempts to complete a multi-byte UTF-8 character using bytes from a Buffer. function utf8FillLast(buf) { var p = this.lastTotal - this.lastNeed; var r = utf8CheckExtraBytes(this, buf, p); if (r !== undefined) return r; if (this.lastNeed <= buf.length) { buf.copy(this.lastChar, p, 0, this.lastNeed); return this.lastChar.toString(this.encoding, 0, this.lastTotal); } buf.copy(this.lastChar, p, 0, buf.length); this.lastNeed -= buf.length; } // Returns all complete UTF-8 characters in a Buffer. If the Buffer ended on a // partial character, the character's bytes are buffered until the required // number of bytes are available. function utf8Text(buf, i) { var total = utf8CheckIncomplete(this, buf, i); if (!this.lastNeed) return buf.toString('utf8', i); this.lastTotal = total; var end = buf.length - (total - this.lastNeed); buf.copy(this.lastChar, 0, end); return buf.toString('utf8', i, end); } // For UTF-8, a replacement character is added when ending on a partial // character. function utf8End(buf) { var r = buf && buf.length ? this.write(buf) : ''; if (this.lastNeed) return r + '\ufffd'; return r; } // UTF-16LE typically needs two bytes per character, but even if we have an even // number of bytes available, we need to check if we end on a leading/high // surrogate. In that case, we need to wait for the next two bytes in order to // decode the last character properly. function utf16Text(buf, i) { if ((buf.length - i) % 2 === 0) { var r = buf.toString('utf16le', i); if (r) { var c = r.charCodeAt(r.length - 1); if (c >= 0xD800 && c <= 0xDBFF) { this.lastNeed = 2; this.lastTotal = 4; this.lastChar[0] = buf[buf.length - 2]; this.lastChar[1] = buf[buf.length - 1]; return r.slice(0, -1); } } return r; } this.lastNeed = 1; this.lastTotal = 2; this.lastChar[0] = buf[buf.length - 1]; return buf.toString('utf16le', i, buf.length - 1); } // For UTF-16LE we do not explicitly append special replacement characters if we // end on a partial character, we simply let v8 handle that. function utf16End(buf) { var r = buf && buf.length ? this.write(buf) : ''; if (this.lastNeed) { var end = this.lastTotal - this.lastNeed; return r + this.lastChar.toString('utf16le', 0, end); } return r; } function base64Text(buf, i) { var n = (buf.length - i) % 3; if (n === 0) return buf.toString('base64', i); this.lastNeed = 3 - n; this.lastTotal = 3; if (n === 1) { this.lastChar[0] = buf[buf.length - 1]; } else { this.lastChar[0] = buf[buf.length - 2]; this.lastChar[1] = buf[buf.length - 1]; } return buf.toString('base64', i, buf.length - n); } function base64End(buf) { var r = buf && buf.length ? this.write(buf) : ''; if (this.lastNeed) return r + this.lastChar.toString('base64', 0, 3 - this.lastNeed); return r; } // Pass bytes on through for single-byte encodings (e.g. ascii, latin1, hex) function simpleWrite(buf) { return buf.toString(this.encoding); } function simpleEnd(buf) { return buf && buf.length ? this.write(buf) : ''; } },{"safe-buffer":147}],149:[function(require,module,exports){ module.exports = require('./readable').PassThrough },{"./readable":150}],150:[function(require,module,exports){ exports = module.exports = require('./lib/_stream_readable.js'); exports.Stream = exports; exports.Readable = exports; exports.Writable = require('./lib/_stream_writable.js'); exports.Duplex = require('./lib/_stream_duplex.js'); exports.Transform = require('./lib/_stream_transform.js'); exports.PassThrough = require('./lib/_stream_passthrough.js'); },{"./lib/_stream_duplex.js":139,"./lib/_stream_passthrough.js":140,"./lib/_stream_readable.js":141,"./lib/_stream_transform.js":142,"./lib/_stream_writable.js":143}],151:[function(require,module,exports){ module.exports = require('./readable').Transform },{"./readable":150}],152:[function(require,module,exports){ module.exports = require('./lib/_stream_writable.js'); },{"./lib/_stream_writable.js":143}],153:[function(require,module,exports){ /** * Copyright (c) 2014-present, Facebook, Inc. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ var runtime = (function (exports) { "use strict"; var Op = Object.prototype; var hasOwn = Op.hasOwnProperty; var undefined; // More compressible than void 0. var $Symbol = typeof Symbol === "function" ? Symbol : {}; var iteratorSymbol = $Symbol.iterator || "@@iterator"; var asyncIteratorSymbol = $Symbol.asyncIterator || "@@asyncIterator"; var toStringTagSymbol = $Symbol.toStringTag || "@@toStringTag"; function wrap(innerFn, outerFn, self, tryLocsList) { // If outerFn provided and outerFn.prototype is a Generator, then outerFn.prototype instanceof Generator. var protoGenerator = outerFn && outerFn.prototype instanceof Generator ? outerFn : Generator; var generator = Object.create(protoGenerator.prototype); var context = new Context(tryLocsList || []); // The ._invoke method unifies the implementations of the .next, // .throw, and .return methods. generator._invoke = makeInvokeMethod(innerFn, self, context); return generator; } exports.wrap = wrap; // Try/catch helper to minimize deoptimizations. Returns a completion // record like context.tryEntries[i].completion. This interface could // have been (and was previously) designed to take a closure to be // invoked without arguments, but in all the cases we care about we // already have an existing method we want to call, so there's no need // to create a new function object. We can even get away with assuming // the method takes exactly one argument, since that happens to be true // in every case, so we don't have to touch the arguments object. The // only additional allocation required is the completion record, which // has a stable shape and so hopefully should be cheap to allocate. function tryCatch(fn, obj, arg) { try { return { type: "normal", arg: fn.call(obj, arg) }; } catch (err) { return { type: "throw", arg: err }; } } var GenStateSuspendedStart = "suspendedStart"; var GenStateSuspendedYield = "suspendedYield"; var GenStateExecuting = "executing"; var GenStateCompleted = "completed"; // Returning this object from the innerFn has the same effect as // breaking out of the dispatch switch statement. var ContinueSentinel = {}; // Dummy constructor functions that we use as the .constructor and // .constructor.prototype properties for functions that return Generator // objects. For full spec compliance, you may wish to configure your // minifier not to mangle the names of these two functions. function Generator() {} function GeneratorFunction() {} function GeneratorFunctionPrototype() {} // This is a polyfill for %IteratorPrototype% for environments that // don't natively support it. var IteratorPrototype = {}; IteratorPrototype[iteratorSymbol] = function () { return this; }; var getProto = Object.getPrototypeOf; var NativeIteratorPrototype = getProto && getProto(getProto(values([]))); if (NativeIteratorPrototype && NativeIteratorPrototype !== Op && hasOwn.call(NativeIteratorPrototype, iteratorSymbol)) { // This environment has a native %IteratorPrototype%; use it instead // of the polyfill. IteratorPrototype = NativeIteratorPrototype; } var Gp = GeneratorFunctionPrototype.prototype = Generator.prototype = Object.create(IteratorPrototype); GeneratorFunction.prototype = Gp.constructor = GeneratorFunctionPrototype; GeneratorFunctionPrototype.constructor = GeneratorFunction; GeneratorFunctionPrototype[toStringTagSymbol] = GeneratorFunction.displayName = "GeneratorFunction"; // Helper for defining the .next, .throw, and .return methods of the // Iterator interface in terms of a single ._invoke method. function defineIteratorMethods(prototype) { ["next", "throw", "return"].forEach(function(method) { prototype[method] = function(arg) { return this._invoke(method, arg); }; }); } exports.isGeneratorFunction = function(genFun) { var ctor = typeof genFun === "function" && genFun.constructor; return ctor ? ctor === GeneratorFunction || // For the native GeneratorFunction constructor, the best we can // do is to check its .name property. (ctor.displayName || ctor.name) === "GeneratorFunction" : false; }; exports.mark = function(genFun) { if (Object.setPrototypeOf) { Object.setPrototypeOf(genFun, GeneratorFunctionPrototype); } else { genFun.__proto__ = GeneratorFunctionPrototype; if (!(toStringTagSymbol in genFun)) { genFun[toStringTagSymbol] = "GeneratorFunction"; } } genFun.prototype = Object.create(Gp); return genFun; }; // Within the body of any async function, `await x` is transformed to // `yield regeneratorRuntime.awrap(x)`, so that the runtime can test // `hasOwn.call(value, "__await")` to determine if the yielded value is // meant to be awaited. exports.awrap = function(arg) { return { __await: arg }; }; function AsyncIterator(generator) { function invoke(method, arg, resolve, reject) { var record = tryCatch(generator[method], generator, arg); if (record.type === "throw") { reject(record.arg); } else { var result = record.arg; var value = result.value; if (value && typeof value === "object" && hasOwn.call(value, "__await")) { return Promise.resolve(value.__await).then(function(value) { invoke("next", value, resolve, reject); }, function(err) { invoke("throw", err, resolve, reject); }); } return Promise.resolve(value).then(function(unwrapped) { // When a yielded Promise is resolved, its final value becomes // the .value of the Promise<{value,done}> result for the // current iteration. result.value = unwrapped; resolve(result); }, function(error) { // If a rejected Promise was yielded, throw the rejection back // into the async generator function so it can be handled there. return invoke("throw", error, resolve, reject); }); } } var previousPromise; function enqueue(method, arg) { function callInvokeWithMethodAndArg() { return new Promise(function(resolve, reject) { invoke(method, arg, resolve, reject); }); } return previousPromise = // If enqueue has been called before, then we want to wait until // all previous Promises have been resolved before calling invoke, // so that results are always delivered in the correct order. If // enqueue has not been called before, then it is important to // call invoke immediately, without waiting on a callback to fire, // so that the async generator function has the opportunity to do // any necessary setup in a predictable way. This predictability // is why the Promise constructor synchronously invokes its // executor callback, and why async functions synchronously // execute code before the first await. Since we implement simple // async functions in terms of async generators, it is especially // important to get this right, even though it requires care. previousPromise ? previousPromise.then( callInvokeWithMethodAndArg, // Avoid propagating failures to Promises returned by later // invocations of the iterator. callInvokeWithMethodAndArg ) : callInvokeWithMethodAndArg(); } // Define the unified helper method that is used to implement .next, // .throw, and .return (see defineIteratorMethods). this._invoke = enqueue; } defineIteratorMethods(AsyncIterator.prototype); AsyncIterator.prototype[asyncIteratorSymbol] = function () { return this; }; exports.AsyncIterator = AsyncIterator; // Note that simple async functions are implemented on top of // AsyncIterator objects; they just return a Promise for the value of // the final result produced by the iterator. exports.async = function(innerFn, outerFn, self, tryLocsList) { var iter = new AsyncIterator( wrap(innerFn, outerFn, self, tryLocsList) ); return exports.isGeneratorFunction(outerFn) ? iter // If outerFn is a generator, return the full iterator. : iter.next().then(function(result) { return result.done ? result.value : iter.next(); }); }; function makeInvokeMethod(innerFn, self, context) { var state = GenStateSuspendedStart; return function invoke(method, arg) { if (state === GenStateExecuting) { throw new Error("Generator is already running"); } if (state === GenStateCompleted) { if (method === "throw") { throw arg; } // Be forgiving, per 25.3.3.3.3 of the spec: // https://people.mozilla.org/~jorendorff/es6-draft.html#sec-generatorresume return doneResult(); } context.method = method; context.arg = arg; while (true) { var delegate = context.delegate; if (delegate) { var delegateResult = maybeInvokeDelegate(delegate, context); if (delegateResult) { if (delegateResult === ContinueSentinel) continue; return delegateResult; } } if (context.method === "next") { // Setting context._sent for legacy support of Babel's // function.sent implementation. context.sent = context._sent = context.arg; } else if (context.method === "throw") { if (state === GenStateSuspendedStart) { state = GenStateCompleted; throw context.arg; } context.dispatchException(context.arg); } else if (context.method === "return") { context.abrupt("return", context.arg); } state = GenStateExecuting; var record = tryCatch(innerFn, self, context); if (record.type === "normal") { // If an exception is thrown from innerFn, we leave state === // GenStateExecuting and loop back for another invocation. state = context.done ? GenStateCompleted : GenStateSuspendedYield; if (record.arg === ContinueSentinel) { continue; } return { value: record.arg, done: context.done }; } else if (record.type === "throw") { state = GenStateCompleted; // Dispatch the exception by looping back around to the // context.dispatchException(context.arg) call above. context.method = "throw"; context.arg = record.arg; } } }; } // Call delegate.iterator[context.method](context.arg) and handle the // result, either by returning a { value, done } result from the // delegate iterator, or by modifying context.method and context.arg, // setting context.delegate to null, and returning the ContinueSentinel. function maybeInvokeDelegate(delegate, context) { var method = delegate.iterator[context.method]; if (method === undefined) { // A .throw or .return when the delegate iterator has no .throw // method always terminates the yield* loop. context.delegate = null; if (context.method === "throw") { // Note: ["return"] must be used for ES3 parsing compatibility. if (delegate.iterator["return"]) { // If the delegate iterator has a return method, give it a // chance to clean up. context.method = "return"; context.arg = undefined; maybeInvokeDelegate(delegate, context); if (context.method === "throw") { // If maybeInvokeDelegate(context) changed context.method from // "return" to "throw", let that override the TypeError below. return ContinueSentinel; } } context.method = "throw"; context.arg = new TypeError( "The iterator does not provide a 'throw' method"); } return ContinueSentinel; } var record = tryCatch(method, delegate.iterator, context.arg); if (record.type === "throw") { context.method = "throw"; context.arg = record.arg; context.delegate = null; return ContinueSentinel; } var info = record.arg; if (! info) { context.method = "throw"; context.arg = new TypeError("iterator result is not an object"); context.delegate = null; return ContinueSentinel; } if (info.done) { // Assign the result of the finished delegate to the temporary // variable specified by delegate.resultName (see delegateYield). context[delegate.resultName] = info.value; // Resume execution at the desired location (see delegateYield). context.next = delegate.nextLoc; // If context.method was "throw" but the delegate handled the // exception, let the outer generator proceed normally. If // context.method was "next", forget context.arg since it has been // "consumed" by the delegate iterator. If context.method was // "return", allow the original .return call to continue in the // outer generator. if (context.method !== "return") { context.method = "next"; context.arg = undefined; } } else { // Re-yield the result returned by the delegate method. return info; } // The delegate iterator is finished, so forget it and continue with // the outer generator. context.delegate = null; return ContinueSentinel; } // Define Generator.prototype.{next,throw,return} in terms of the // unified ._invoke helper method. defineIteratorMethods(Gp); Gp[toStringTagSymbol] = "Generator"; // A Generator should always return itself as the iterator object when the // @@iterator function is called on it. Some browsers' implementations of the // iterator prototype chain incorrectly implement this, causing the Generator // object to not be returned from this call. This ensures that doesn't happen. // See https://github.com/facebook/regenerator/issues/274 for more details. Gp[iteratorSymbol] = function() { return this; }; Gp.toString = function() { return "[object Generator]"; }; function pushTryEntry(locs) { var entry = { tryLoc: locs[0] }; if (1 in locs) { entry.catchLoc = locs[1]; } if (2 in locs) { entry.finallyLoc = locs[2]; entry.afterLoc = locs[3]; } this.tryEntries.push(entry); } function resetTryEntry(entry) { var record = entry.completion || {}; record.type = "normal"; delete record.arg; entry.completion = record; } function Context(tryLocsList) { // The root entry object (effectively a try statement without a catch // or a finally block) gives us a place to store values thrown from // locations where there is no enclosing try statement. this.tryEntries = [{ tryLoc: "root" }]; tryLocsList.forEach(pushTryEntry, this); this.reset(true); } exports.keys = function(object) { var keys = []; for (var key in object) { keys.push(key); } keys.reverse(); // Rather than returning an object with a next method, we keep // things simple and return the next function itself. return function next() { while (keys.length) { var key = keys.pop(); if (key in object) { next.value = key; next.done = false; return next; } } // To avoid creating an additional object, we just hang the .value // and .done properties off the next function object itself. This // also ensures that the minifier will not anonymize the function. next.done = true; return next; }; }; function values(iterable) { if (iterable) { var iteratorMethod = iterable[iteratorSymbol]; if (iteratorMethod) { return iteratorMethod.call(iterable); } if (typeof iterable.next === "function") { return iterable; } if (!isNaN(iterable.length)) { var i = -1, next = function next() { while (++i < iterable.length) { if (hasOwn.call(iterable, i)) { next.value = iterable[i]; next.done = false; return next; } } next.value = undefined; next.done = true; return next; }; return next.next = next; } } // Return an iterator with no values. return { next: doneResult }; } exports.values = values; function doneResult() { return { value: undefined, done: true }; } Context.prototype = { constructor: Context, reset: function(skipTempReset) { this.prev = 0; this.next = 0; // Resetting context._sent for legacy support of Babel's // function.sent implementation. this.sent = this._sent = undefined; this.done = false; this.delegate = null; this.method = "next"; this.arg = undefined; this.tryEntries.forEach(resetTryEntry); if (!skipTempReset) { for (var name in this) { // Not sure about the optimal order of these conditions: if (name.charAt(0) === "t" && hasOwn.call(this, name) && !isNaN(+name.slice(1))) { this[name] = undefined; } } } }, stop: function() { this.done = true; var rootEntry = this.tryEntries[0]; var rootRecord = rootEntry.completion; if (rootRecord.type === "throw") { throw rootRecord.arg; } return this.rval; }, dispatchException: function(exception) { if (this.done) { throw exception; } var context = this; function handle(loc, caught) { record.type = "throw"; record.arg = exception; context.next = loc; if (caught) { // If the dispatched exception was caught by a catch block, // then let that catch block handle the exception normally. context.method = "next"; context.arg = undefined; } return !! caught; } for (var i = this.tryEntries.length - 1; i >= 0; --i) { var entry = this.tryEntries[i]; var record = entry.completion; if (entry.tryLoc === "root") { // Exception thrown outside of any try block that could handle // it, so set the completion value of the entire function to // throw the exception. return handle("end"); } if (entry.tryLoc <= this.prev) { var hasCatch = hasOwn.call(entry, "catchLoc"); var hasFinally = hasOwn.call(entry, "finallyLoc"); if (hasCatch && hasFinally) { if (this.prev < entry.catchLoc) { return handle(entry.catchLoc, true); } else if (this.prev < entry.finallyLoc) { return handle(entry.finallyLoc); } } else if (hasCatch) { if (this.prev < entry.catchLoc) { return handle(entry.catchLoc, true); } } else if (hasFinally) { if (this.prev < entry.finallyLoc) { return handle(entry.finallyLoc); } } else { throw new Error("try statement without catch or finally"); } } } }, abrupt: function(type, arg) { for (var i = this.tryEntries.length - 1; i >= 0; --i) { var entry = this.tryEntries[i]; if (entry.tryLoc <= this.prev && hasOwn.call(entry, "finallyLoc") && this.prev < entry.finallyLoc) { var finallyEntry = entry; break; } } if (finallyEntry && (type === "break" || type === "continue") && finallyEntry.tryLoc <= arg && arg <= finallyEntry.finallyLoc) { // Ignore the finally entry if control is not jumping to a // location outside the try/catch block. finallyEntry = null; } var record = finallyEntry ? finallyEntry.completion : {}; record.type = type; record.arg = arg; if (finallyEntry) { this.method = "next"; this.next = finallyEntry.finallyLoc; return ContinueSentinel; } return this.complete(record); }, complete: function(record, afterLoc) { if (record.type === "throw") { throw record.arg; } if (record.type === "break" || record.type === "continue") { this.next = record.arg; } else if (record.type === "return") { this.rval = this.arg = record.arg; this.method = "return"; this.next = "end"; } else if (record.type === "normal" && afterLoc) { this.next = afterLoc; } return ContinueSentinel; }, finish: function(finallyLoc) { for (var i = this.tryEntries.length - 1; i >= 0; --i) { var entry = this.tryEntries[i]; if (entry.finallyLoc === finallyLoc) { this.complete(entry.completion, entry.afterLoc); resetTryEntry(entry); return ContinueSentinel; } } }, "catch": function(tryLoc) { for (var i = this.tryEntries.length - 1; i >= 0; --i) { var entry = this.tryEntries[i]; if (entry.tryLoc === tryLoc) { var record = entry.completion; if (record.type === "throw") { var thrown = record.arg; resetTryEntry(entry); } return thrown; } } // The context.catch method must only be called with a location // argument that corresponds to a known catch block. throw new Error("illegal catch attempt"); }, delegateYield: function(iterable, resultName, nextLoc) { this.delegate = { iterator: values(iterable), resultName: resultName, nextLoc: nextLoc }; if (this.method === "next") { // Deliberately forget the last sent value so that we don't // accidentally pass it on to the delegate. this.arg = undefined; } return ContinueSentinel; } }; // Regardless of whether this script is executing as a CommonJS module // or not, return the runtime object so that we can declare the variable // regeneratorRuntime in the outer scope, which allows this module to be // injected easily by `bin/regenerator --include-runtime script.js`. return exports; }( // If this script is executing as a CommonJS module, use module.exports // as the regeneratorRuntime namespace. Otherwise create a new empty // object. Either way, the resulting object will be used to initialize // the regeneratorRuntime variable at the top of this file. typeof module === "object" ? module.exports : {} )); try { regeneratorRuntime = runtime; } catch (accidentalStrictMode) { // This module should not be running in strict mode, so the above // assignment should always work unless something is misconfigured. Just // in case runtime.js accidentally runs in strict mode, we can escape // strict mode using a global Function call. This could conceivably fail // if a Content Security Policy forbids using Function, but in that case // the proper solution is to fix the accidental strict mode problem. If // you've misconfigured your bundler to force strict mode and applied a // CSP to forbid Function, and you're not willing to fix either of those // problems, please detail your unique predicament in a GitHub issue. Function("r", "regeneratorRuntime = r")(runtime); } },{}],154:[function(require,module,exports){ /* eslint-disable node/no-deprecated-api */ var buffer = require('buffer') var Buffer = buffer.Buffer // alternative to using Object.keys for old browsers function copyProps (src, dst) { for (var key in src) { dst[key] = src[key] } } if (Buffer.from && Buffer.alloc && Buffer.allocUnsafe && Buffer.allocUnsafeSlow) { module.exports = buffer } else { // Copy properties from require('buffer') copyProps(buffer, exports) exports.Buffer = SafeBuffer } function SafeBuffer (arg, encodingOrOffset, length) { return Buffer(arg, encodingOrOffset, length) } SafeBuffer.prototype = Object.create(Buffer.prototype) // Copy static methods from Buffer copyProps(Buffer, SafeBuffer) SafeBuffer.from = function (arg, encodingOrOffset, length) { if (typeof arg === 'number') { throw new TypeError('Argument must not be a number') } return Buffer(arg, encodingOrOffset, length) } SafeBuffer.alloc = function (size, fill, encoding) { if (typeof size !== 'number') { throw new TypeError('Argument must be a number') } var buf = Buffer(size) if (fill !== undefined) { if (typeof encoding === 'string') { buf.fill(fill, encoding) } else { buf.fill(fill) } } else { buf.fill(0) } return buf } SafeBuffer.allocUnsafe = function (size) { if (typeof size !== 'number') { throw new TypeError('Argument must be a number') } return Buffer(size) } SafeBuffer.allocUnsafeSlow = function (size) { if (typeof size !== 'number') { throw new TypeError('Argument must be a number') } return buffer.SlowBuffer(size) } },{"buffer":48}],155:[function(require,module,exports){ // Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. module.exports = Stream; var EE = require('events').EventEmitter; var inherits = require('inherits'); inherits(Stream, EE); Stream.Readable = require('readable-stream/readable.js'); Stream.Writable = require('readable-stream/writable.js'); Stream.Duplex = require('readable-stream/duplex.js'); Stream.Transform = require('readable-stream/transform.js'); Stream.PassThrough = require('readable-stream/passthrough.js'); // Backwards-compat with node 0.4.x Stream.Stream = Stream; // old-style streams. Note that the pipe method (the only relevant // part of this class) is overridden in the Readable class. function Stream() { EE.call(this); } Stream.prototype.pipe = function(dest, options) { var source = this; function ondata(chunk) { if (dest.writable) { if (false === dest.write(chunk) && source.pause) { source.pause(); } } } source.on('data', ondata); function ondrain() { if (source.readable && source.resume) { source.resume(); } } dest.on('drain', ondrain); // If the 'end' option is not supplied, dest.end() will be called when // source gets the 'end' or 'close' events. Only dest.end() once. if (!dest._isStdio && (!options || options.end !== false)) { source.on('end', onend); source.on('close', onclose); } var didOnEnd = false; function onend() { if (didOnEnd) return; didOnEnd = true; dest.end(); } function onclose() { if (didOnEnd) return; didOnEnd = true; if (typeof dest.destroy === 'function') dest.destroy(); } // don't leave dangling pipes when there are errors. function onerror(er) { cleanup(); if (EE.listenerCount(this, 'error') === 0) { throw er; // Unhandled stream error in pipe. } } source.on('error', onerror); dest.on('error', onerror); // remove all the event listeners that were added. function cleanup() { source.removeListener('data', ondata); dest.removeListener('drain', ondrain); source.removeListener('end', onend); source.removeListener('close', onclose); source.removeListener('error', onerror); dest.removeListener('error', onerror); source.removeListener('end', cleanup); source.removeListener('close', cleanup); dest.removeListener('close', cleanup); } source.on('end', cleanup); source.on('close', cleanup); dest.on('close', cleanup); dest.emit('pipe', source); // Allow for unix-like usage: A.pipe(B).pipe(C) return dest; }; },{"events":52,"inherits":75,"readable-stream/duplex.js":138,"readable-stream/passthrough.js":149,"readable-stream/readable.js":150,"readable-stream/transform.js":151,"readable-stream/writable.js":152}],156:[function(require,module,exports){ (function (global){ var ClientRequest = require('./lib/request') var response = require('./lib/response') var extend = require('xtend') var statusCodes = require('builtin-status-codes') var url = require('url') var http = exports http.request = function (opts, cb) { if (typeof opts === 'string') opts = url.parse(opts) else opts = extend(opts) // Normally, the page is loaded from http or https, so not specifying a protocol // will result in a (valid) protocol-relative url. However, this won't work if // the protocol is something else, like 'file:' var defaultProtocol = global.location.protocol.search(/^https?:$/) === -1 ? 'http:' : '' var protocol = opts.protocol || defaultProtocol var host = opts.hostname || opts.host var port = opts.port var path = opts.path || '/' // Necessary for IPv6 addresses if (host && host.indexOf(':') !== -1) host = '[' + host + ']' // This may be a relative url. The browser should always be able to interpret it correctly. opts.url = (host ? (protocol + '//' + host) : '') + (port ? ':' + port : '') + path opts.method = (opts.method || 'GET').toUpperCase() opts.headers = opts.headers || {} // Also valid opts.auth, opts.mode var req = new ClientRequest(opts) if (cb) req.on('response', cb) return req } http.get = function get (opts, cb) { var req = http.request(opts, cb) req.end() return req } http.ClientRequest = ClientRequest http.IncomingMessage = response.IncomingMessage http.Agent = function () {} http.Agent.defaultMaxSockets = 4 http.globalAgent = new http.Agent() http.STATUS_CODES = statusCodes http.METHODS = [ 'CHECKOUT', 'CONNECT', 'COPY', 'DELETE', 'GET', 'HEAD', 'LOCK', 'M-SEARCH', 'MERGE', 'MKACTIVITY', 'MKCOL', 'MOVE', 'NOTIFY', 'OPTIONS', 'PATCH', 'POST', 'PROPFIND', 'PROPPATCH', 'PURGE', 'PUT', 'REPORT', 'SEARCH', 'SUBSCRIBE', 'TRACE', 'UNLOCK', 'UNSUBSCRIBE' ] }).call(this,typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {}) },{"./lib/request":158,"./lib/response":159,"builtin-status-codes":50,"url":180,"xtend":189}],157:[function(require,module,exports){ (function (global){ exports.fetch = isFunction(global.fetch) && isFunction(global.ReadableStream) exports.writableStream = isFunction(global.WritableStream) exports.abortController = isFunction(global.AbortController) // The xhr request to example.com may violate some restrictive CSP configurations, // so if we're running in a browser that supports `fetch`, avoid calling getXHR() // and assume support for certain features below. var xhr function getXHR () { // Cache the xhr value if (xhr !== undefined) return xhr if (global.XMLHttpRequest) { xhr = new global.XMLHttpRequest() // If XDomainRequest is available (ie only, where xhr might not work // cross domain), use the page location. Otherwise use example.com // Note: this doesn't actually make an http request. try { xhr.open('GET', global.XDomainRequest ? '/' : 'https://example.com') } catch(e) { xhr = null } } else { // Service workers don't have XHR xhr = null } return xhr } function checkTypeSupport (type) { var xhr = getXHR() if (!xhr) return false try { xhr.responseType = type return xhr.responseType === type } catch (e) {} return false } // If fetch is supported, then arraybuffer will be supported too. Skip calling // checkTypeSupport(), since that calls getXHR(). exports.arraybuffer = exports.fetch || checkTypeSupport('arraybuffer') // These next two tests unavoidably show warnings in Chrome. Since fetch will always // be used if it's available, just return false for these to avoid the warnings. exports.msstream = !exports.fetch && checkTypeSupport('ms-stream') exports.mozchunkedarraybuffer = !exports.fetch && checkTypeSupport('moz-chunked-arraybuffer') // If fetch is supported, then overrideMimeType will be supported too. Skip calling // getXHR(). exports.overrideMimeType = exports.fetch || (getXHR() ? isFunction(getXHR().overrideMimeType) : false) function isFunction (value) { return typeof value === 'function' } xhr = null // Help gc }).call(this,typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {}) },{}],158:[function(require,module,exports){ (function (process,global,Buffer){ var capability = require('./capability') var inherits = require('inherits') var response = require('./response') var stream = require('readable-stream') var IncomingMessage = response.IncomingMessage var rStates = response.readyStates function decideMode (preferBinary, useFetch) { if (capability.fetch && useFetch) { return 'fetch' } else if (capability.mozchunkedarraybuffer) { return 'moz-chunked-arraybuffer' } else if (capability.msstream) { return 'ms-stream' } else if (capability.arraybuffer && preferBinary) { return 'arraybuffer' } else { return 'text' } } var ClientRequest = module.exports = function (opts) { var self = this stream.Writable.call(self) self._opts = opts self._body = [] self._headers = {} if (opts.auth) self.setHeader('Authorization', 'Basic ' + Buffer.from(opts.auth).toString('base64')) Object.keys(opts.headers).forEach(function (name) { self.setHeader(name, opts.headers[name]) }) var preferBinary var useFetch = true if (opts.mode === 'disable-fetch' || ('requestTimeout' in opts && !capability.abortController)) { // If the use of XHR should be preferred. Not typically needed. useFetch = false preferBinary = true } else if (opts.mode === 'prefer-streaming') { // If streaming is a high priority but binary compatibility and // the accuracy of the 'content-type' header aren't preferBinary = false } else if (opts.mode === 'allow-wrong-content-type') { // If streaming is more important than preserving the 'content-type' header preferBinary = !capability.overrideMimeType } else if (!opts.mode || opts.mode === 'default' || opts.mode === 'prefer-fast') { // Use binary if text streaming may corrupt data or the content-type header, or for speed preferBinary = true } else { throw new Error('Invalid value for opts.mode') } self._mode = decideMode(preferBinary, useFetch) self._fetchTimer = null self.on('finish', function () { self._onFinish() }) } inherits(ClientRequest, stream.Writable) ClientRequest.prototype.setHeader = function (name, value) { var self = this var lowerName = name.toLowerCase() // This check is not necessary, but it prevents warnings from browsers about setting unsafe // headers. To be honest I'm not entirely sure hiding these warnings is a good thing, but // http-browserify did it, so I will too. if (unsafeHeaders.indexOf(lowerName) !== -1) return self._headers[lowerName] = { name: name, value: value } } ClientRequest.prototype.getHeader = function (name) { var header = this._headers[name.toLowerCase()] if (header) return header.value return null } ClientRequest.prototype.removeHeader = function (name) { var self = this delete self._headers[name.toLowerCase()] } ClientRequest.prototype._onFinish = function () { var self = this if (self._destroyed) return var opts = self._opts var headersObj = self._headers var body = null if (opts.method !== 'GET' && opts.method !== 'HEAD') { body = new Blob(self._body, { type: (headersObj['content-type'] || {}).value || '' }); } // create flattened list of headers var headersList = [] Object.keys(headersObj).forEach(function (keyName) { var name = headersObj[keyName].name var value = headersObj[keyName].value if (Array.isArray(value)) { value.forEach(function (v) { headersList.push([name, v]) }) } else { headersList.push([name, value]) } }) if (self._mode === 'fetch') { var signal = null var fetchTimer = null if (capability.abortController) { var controller = new AbortController() signal = controller.signal self._fetchAbortController = controller if ('requestTimeout' in opts && opts.requestTimeout !== 0) { self._fetchTimer = global.setTimeout(function () { self.emit('requestTimeout') if (self._fetchAbortController) self._fetchAbortController.abort() }, opts.requestTimeout) } } global.fetch(self._opts.url, { method: self._opts.method, headers: headersList, body: body || undefined, mode: 'cors', credentials: opts.withCredentials ? 'include' : 'same-origin', signal: signal }).then(function (response) { self._fetchResponse = response self._connect() }, function (reason) { global.clearTimeout(self._fetchTimer) if (!self._destroyed) self.emit('error', reason) }) } else { var xhr = self._xhr = new global.XMLHttpRequest() try { xhr.open(self._opts.method, self._opts.url, true) } catch (err) { process.nextTick(function () { self.emit('error', err) }) return } // Can't set responseType on really old browsers if ('responseType' in xhr) xhr.responseType = self._mode if ('withCredentials' in xhr) xhr.withCredentials = !!opts.withCredentials if (self._mode === 'text' && 'overrideMimeType' in xhr) xhr.overrideMimeType('text/plain; charset=x-user-defined') if ('requestTimeout' in opts) { xhr.timeout = opts.requestTimeout xhr.ontimeout = function () { self.emit('requestTimeout') } } headersList.forEach(function (header) { xhr.setRequestHeader(header[0], header[1]) }) self._response = null xhr.onreadystatechange = function () { switch (xhr.readyState) { case rStates.LOADING: case rStates.DONE: self._onXHRProgress() break } } // Necessary for streaming in Firefox, since xhr.response is ONLY defined // in onprogress, not in onreadystatechange with xhr.readyState = 3 if (self._mode === 'moz-chunked-arraybuffer') { xhr.onprogress = function () { self._onXHRProgress() } } xhr.onerror = function () { if (self._destroyed) return self.emit('error', new Error('XHR error')) } try { xhr.send(body) } catch (err) { process.nextTick(function () { self.emit('error', err) }) return } } } /** * Checks if xhr.status is readable and non-zero, indicating no error. * Even though the spec says it should be available in readyState 3, * accessing it throws an exception in IE8 */ function statusValid (xhr) { try { var status = xhr.status return (status !== null && status !== 0) } catch (e) { return false } } ClientRequest.prototype._onXHRProgress = function () { var self = this if (!statusValid(self._xhr) || self._destroyed) return if (!self._response) self._connect() self._response._onXHRProgress() } ClientRequest.prototype._connect = function () { var self = this if (self._destroyed) return self._response = new IncomingMessage(self._xhr, self._fetchResponse, self._mode, self._fetchTimer) self._response.on('error', function(err) { self.emit('error', err) }) self.emit('response', self._response) } ClientRequest.prototype._write = function (chunk, encoding, cb) { var self = this self._body.push(chunk) cb() } ClientRequest.prototype.abort = ClientRequest.prototype.destroy = function () { var self = this self._destroyed = true global.clearTimeout(self._fetchTimer) if (self._response) self._response._destroyed = true if (self._xhr) self._xhr.abort() else if (self._fetchAbortController) self._fetchAbortController.abort() } ClientRequest.prototype.end = function (data, encoding, cb) { var self = this if (typeof data === 'function') { cb = data data = undefined } stream.Writable.prototype.end.call(self, data, encoding, cb) } ClientRequest.prototype.flushHeaders = function () {} ClientRequest.prototype.setTimeout = function () {} ClientRequest.prototype.setNoDelay = function () {} ClientRequest.prototype.setSocketKeepAlive = function () {} // Taken from http://www.w3.org/TR/XMLHttpRequest/#the-setrequestheader%28%29-method var unsafeHeaders = [ 'accept-charset', 'accept-encoding', 'access-control-request-headers', 'access-control-request-method', 'connection', 'content-length', 'cookie', 'cookie2', 'date', 'dnt', 'expect', 'host', 'keep-alive', 'origin', 'referer', 'te', 'trailer', 'transfer-encoding', 'upgrade', 'via' ] }).call(this,require('_process'),typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {},require("buffer").Buffer) },{"./capability":157,"./response":159,"_process":133,"buffer":48,"inherits":75,"readable-stream":174}],159:[function(require,module,exports){ (function (process,global,Buffer){ var capability = require('./capability') var inherits = require('inherits') var stream = require('readable-stream') var rStates = exports.readyStates = { UNSENT: 0, OPENED: 1, HEADERS_RECEIVED: 2, LOADING: 3, DONE: 4 } var IncomingMessage = exports.IncomingMessage = function (xhr, response, mode, fetchTimer) { var self = this stream.Readable.call(self) self._mode = mode self.headers = {} self.rawHeaders = [] self.trailers = {} self.rawTrailers = [] // Fake the 'close' event, but only once 'end' fires self.on('end', function () { // The nextTick is necessary to prevent the 'request' module from causing an infinite loop process.nextTick(function () { self.emit('close') }) }) if (mode === 'fetch') { self._fetchResponse = response self.url = response.url self.statusCode = response.status self.statusMessage = response.statusText response.headers.forEach(function (header, key){ self.headers[key.toLowerCase()] = header self.rawHeaders.push(key, header) }) if (capability.writableStream) { var writable = new WritableStream({ write: function (chunk) { return new Promise(function (resolve, reject) { if (self._destroyed) { reject() } else if(self.push(Buffer.from(chunk))) { resolve() } else { self._resumeFetch = resolve } }) }, close: function () { global.clearTimeout(fetchTimer) if (!self._destroyed) self.push(null) }, abort: function (err) { if (!self._destroyed) self.emit('error', err) } }) try { response.body.pipeTo(writable).catch(function (err) { global.clearTimeout(fetchTimer) if (!self._destroyed) self.emit('error', err) }) return } catch (e) {} // pipeTo method isn't defined. Can't find a better way to feature test this } // fallback for when writableStream or pipeTo aren't available var reader = response.body.getReader() function read () { reader.read().then(function (result) { if (self._destroyed) return if (result.done) { global.clearTimeout(fetchTimer) self.push(null) return } self.push(Buffer.from(result.value)) read() }).catch(function (err) { global.clearTimeout(fetchTimer) if (!self._destroyed) self.emit('error', err) }) } read() } else { self._xhr = xhr self._pos = 0 self.url = xhr.responseURL self.statusCode = xhr.status self.statusMessage = xhr.statusText var headers = xhr.getAllResponseHeaders().split(/\r?\n/) headers.forEach(function (header) { var matches = header.match(/^([^:]+):\s*(.*)/) if (matches) { var key = matches[1].toLowerCase() if (key === 'set-cookie') { if (self.headers[key] === undefined) { self.headers[key] = [] } self.headers[key].push(matches[2]) } else if (self.headers[key] !== undefined) { self.headers[key] += ', ' + matches[2] } else { self.headers[key] = matches[2] } self.rawHeaders.push(matches[1], matches[2]) } }) self._charset = 'x-user-defined' if (!capability.overrideMimeType) { var mimeType = self.rawHeaders['mime-type'] if (mimeType) { var charsetMatch = mimeType.match(/;\s*charset=([^;])(;|$)/) if (charsetMatch) { self._charset = charsetMatch[1].toLowerCase() } } if (!self._charset) self._charset = 'utf-8' // best guess } } } inherits(IncomingMessage, stream.Readable) IncomingMessage.prototype._read = function () { var self = this var resolve = self._resumeFetch if (resolve) { self._resumeFetch = null resolve() } } IncomingMessage.prototype._onXHRProgress = function () { var self = this var xhr = self._xhr var response = null switch (self._mode) { case 'text': response = xhr.responseText if (response.length > self._pos) { var newData = response.substr(self._pos) if (self._charset === 'x-user-defined') { var buffer = Buffer.alloc(newData.length) for (var i = 0; i < newData.length; i++) buffer[i] = newData.charCodeAt(i) & 0xff self.push(buffer) } else { self.push(newData, self._charset) } self._pos = response.length } break case 'arraybuffer': if (xhr.readyState !== rStates.DONE || !xhr.response) break response = xhr.response self.push(Buffer.from(new Uint8Array(response))) break case 'moz-chunked-arraybuffer': // take whole response = xhr.response if (xhr.readyState !== rStates.LOADING || !response) break self.push(Buffer.from(new Uint8Array(response))) break case 'ms-stream': response = xhr.response if (xhr.readyState !== rStates.LOADING) break var reader = new global.MSStreamReader() reader.onprogress = function () { if (reader.result.byteLength > self._pos) { self.push(Buffer.from(new Uint8Array(reader.result.slice(self._pos)))) self._pos = reader.result.byteLength } } reader.onload = function () { self.push(null) } // reader.onerror = ??? // TODO: this reader.readAsArrayBuffer(response) break } // The ms-stream case handles end separately in reader.onload() if (self._xhr.readyState === rStates.DONE && self._mode !== 'ms-stream') { self.push(null) } } }).call(this,require('_process'),typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {},require("buffer").Buffer) },{"./capability":157,"_process":133,"buffer":48,"inherits":75,"readable-stream":174}],160:[function(require,module,exports){ 'use strict'; function _inheritsLoose(subClass, superClass) { subClass.prototype = Object.create(superClass.prototype); subClass.prototype.constructor = subClass; subClass.__proto__ = superClass; } var codes = {}; function createErrorType(code, message, Base) { if (!Base) { Base = Error; } function getMessage(arg1, arg2, arg3) { if (typeof message === 'string') { return message; } else { return message(arg1, arg2, arg3); } } var NodeError = /*#__PURE__*/ function (_Base) { _inheritsLoose(NodeError, _Base); function NodeError(arg1, arg2, arg3) { return _Base.call(this, getMessage(arg1, arg2, arg3)) || this; } return NodeError; }(Base); NodeError.prototype.name = Base.name; NodeError.prototype.code = code; codes[code] = NodeError; } // https://github.com/nodejs/node/blob/v10.8.0/lib/internal/errors.js function oneOf(expected, thing) { if (Array.isArray(expected)) { var len = expected.length; expected = expected.map(function (i) { return String(i); }); if (len > 2) { return "one of ".concat(thing, " ").concat(expected.slice(0, len - 1).join(', '), ", or ") + expected[len - 1]; } else if (len === 2) { return "one of ".concat(thing, " ").concat(expected[0], " or ").concat(expected[1]); } else { return "of ".concat(thing, " ").concat(expected[0]); } } else { return "of ".concat(thing, " ").concat(String(expected)); } } // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith function startsWith(str, search, pos) { return str.substr(!pos || pos < 0 ? 0 : +pos, search.length) === search; } // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith function endsWith(str, search, this_len) { if (this_len === undefined || this_len > str.length) { this_len = str.length; } return str.substring(this_len - search.length, this_len) === search; } // https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/includes function includes(str, search, start) { if (typeof start !== 'number') { start = 0; } if (start + search.length > str.length) { return false; } else { return str.indexOf(search, start) !== -1; } } createErrorType('ERR_INVALID_OPT_VALUE', function (name, value) { return 'The value "' + value + '" is invalid for option "' + name + '"'; }, TypeError); createErrorType('ERR_INVALID_ARG_TYPE', function (name, expected, actual) { // determiner: 'must be' or 'must not be' var determiner; if (typeof expected === 'string' && startsWith(expected, 'not ')) { determiner = 'must not be'; expected = expected.replace(/^not /, ''); } else { determiner = 'must be'; } var msg; if (endsWith(name, ' argument')) { // For cases like 'first argument' msg = "The ".concat(name, " ").concat(determiner, " ").concat(oneOf(expected, 'type')); } else { var type = includes(name, '.') ? 'property' : 'argument'; msg = "The \"".concat(name, "\" ").concat(type, " ").concat(determiner, " ").concat(oneOf(expected, 'type')); } msg += ". Received type ".concat(typeof actual); return msg; }, TypeError); createErrorType('ERR_STREAM_PUSH_AFTER_EOF', 'stream.push() after EOF'); createErrorType('ERR_METHOD_NOT_IMPLEMENTED', function (name) { return 'The ' + name + ' method is not implemented'; }); createErrorType('ERR_STREAM_PREMATURE_CLOSE', 'Premature close'); createErrorType('ERR_STREAM_DESTROYED', function (name) { return 'Cannot call ' + name + ' after a stream was destroyed'; }); createErrorType('ERR_MULTIPLE_CALLBACK', 'Callback called multiple times'); createErrorType('ERR_STREAM_CANNOT_PIPE', 'Cannot pipe, not readable'); createErrorType('ERR_STREAM_WRITE_AFTER_END', 'write after end'); createErrorType('ERR_STREAM_NULL_VALUES', 'May not write null values to stream', TypeError); createErrorType('ERR_UNKNOWN_ENCODING', function (arg) { return 'Unknown encoding: ' + arg; }, TypeError); createErrorType('ERR_STREAM_UNSHIFT_AFTER_END_EVENT', 'stream.unshift() after end event'); module.exports.codes = codes; },{}],161:[function(require,module,exports){ (function (process){ 'use strict' var experimentalWarnings = new Set(); function emitExperimentalWarning(feature) { if (experimentalWarnings.has(feature)) return; var msg = feature + ' is an experimental feature. This feature could ' + 'change at any time'; experimentalWarnings.add(feature); process.emitWarning(msg, 'ExperimentalWarning'); } function noop() {} module.exports.emitExperimentalWarning = process.emitWarning ? emitExperimentalWarning : noop; }).call(this,require('_process')) },{"_process":133}],162:[function(require,module,exports){ (function (process){ // Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. // a duplex stream is just a stream that is both readable and writable. // Since JS doesn't have multiple prototypal inheritance, this class // prototypally inherits from Readable, and then parasitically from // Writable. 'use strict'; /**/ var objectKeys = Object.keys || function (obj) { var keys = []; for (var key in obj) { keys.push(key); } return keys; }; /**/ module.exports = Duplex; var Readable = require('./_stream_readable'); var Writable = require('./_stream_writable'); require('inherits')(Duplex, Readable); { // Allow the keys array to be GC'ed. var keys = objectKeys(Writable.prototype); for (var v = 0; v < keys.length; v++) { var method = keys[v]; if (!Duplex.prototype[method]) Duplex.prototype[method] = Writable.prototype[method]; } } function Duplex(options) { if (!(this instanceof Duplex)) return new Duplex(options); Readable.call(this, options); Writable.call(this, options); this.allowHalfOpen = true; if (options) { if (options.readable === false) this.readable = false; if (options.writable === false) this.writable = false; if (options.allowHalfOpen === false) { this.allowHalfOpen = false; this.once('end', onend); } } } Object.defineProperty(Duplex.prototype, 'writableHighWaterMark', { // making it explicit this property is not enumerable // because otherwise some prototype manipulation in // userland will fail enumerable: false, get: function get() { return this._writableState.highWaterMark; } }); Object.defineProperty(Duplex.prototype, 'writableBuffer', { // making it explicit this property is not enumerable // because otherwise some prototype manipulation in // userland will fail enumerable: false, get: function get() { return this._writableState && this._writableState.getBuffer(); } }); Object.defineProperty(Duplex.prototype, 'writableLength', { // making it explicit this property is not enumerable // because otherwise some prototype manipulation in // userland will fail enumerable: false, get: function get() { return this._writableState.length; } }); // the no-half-open enforcer function onend() { // If the writable side ended, then we're ok. if (this._writableState.ended) return; // no more data can be written. // But allow more writes to happen in this tick. process.nextTick(onEndNT, this); } function onEndNT(self) { self.end(); } Object.defineProperty(Duplex.prototype, 'destroyed', { // making it explicit this property is not enumerable // because otherwise some prototype manipulation in // userland will fail enumerable: false, get: function get() { if (this._readableState === undefined || this._writableState === undefined) { return false; } return this._readableState.destroyed && this._writableState.destroyed; }, set: function set(value) { // we ignore the value if the stream // has not been initialized yet if (this._readableState === undefined || this._writableState === undefined) { return; } // backward compatibility, the user is explicitly // managing destroyed this._readableState.destroyed = value; this._writableState.destroyed = value; } }); }).call(this,require('_process')) },{"./_stream_readable":164,"./_stream_writable":166,"_process":133,"inherits":75}],163:[function(require,module,exports){ // Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. // a passthrough stream. // basically just the most minimal sort of Transform stream. // Every written chunk gets output as-is. 'use strict'; module.exports = PassThrough; var Transform = require('./_stream_transform'); require('inherits')(PassThrough, Transform); function PassThrough(options) { if (!(this instanceof PassThrough)) return new PassThrough(options); Transform.call(this, options); } PassThrough.prototype._transform = function (chunk, encoding, cb) { cb(null, chunk); }; },{"./_stream_transform":165,"inherits":75}],164:[function(require,module,exports){ (function (process,global){ // Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. 'use strict'; module.exports = Readable; /**/ var Duplex; /**/ Readable.ReadableState = ReadableState; /**/ var EE = require('events').EventEmitter; var EElistenerCount = function EElistenerCount(emitter, type) { return emitter.listeners(type).length; }; /**/ /**/ var Stream = require('./internal/streams/stream'); /**/ var Buffer = require('buffer').Buffer; var OurUint8Array = global.Uint8Array || function () {}; function _uint8ArrayToBuffer(chunk) { return Buffer.from(chunk); } function _isUint8Array(obj) { return Buffer.isBuffer(obj) || obj instanceof OurUint8Array; } /**/ var debugUtil = require('util'); var debug; if (debugUtil && debugUtil.debuglog) { debug = debugUtil.debuglog('stream'); } else { debug = function debug() {}; } /**/ var BufferList = require('./internal/streams/buffer_list'); var destroyImpl = require('./internal/streams/destroy'); var _require = require('./internal/streams/state'), getHighWaterMark = _require.getHighWaterMark; var _require$codes = require('../errors').codes, ERR_INVALID_ARG_TYPE = _require$codes.ERR_INVALID_ARG_TYPE, ERR_STREAM_PUSH_AFTER_EOF = _require$codes.ERR_STREAM_PUSH_AFTER_EOF, ERR_METHOD_NOT_IMPLEMENTED = _require$codes.ERR_METHOD_NOT_IMPLEMENTED, ERR_STREAM_UNSHIFT_AFTER_END_EVENT = _require$codes.ERR_STREAM_UNSHIFT_AFTER_END_EVENT; var _require2 = require('../experimentalWarning'), emitExperimentalWarning = _require2.emitExperimentalWarning; // Lazy loaded to improve the startup performance. var StringDecoder; var createReadableStreamAsyncIterator; require('inherits')(Readable, Stream); var kProxyEvents = ['error', 'close', 'destroy', 'pause', 'resume']; function prependListener(emitter, event, fn) { // Sadly this is not cacheable as some libraries bundle their own // event emitter implementation with them. if (typeof emitter.prependListener === 'function') return emitter.prependListener(event, fn); // This is a hack to make sure that our error handler is attached before any // userland ones. NEVER DO THIS. This is here only because this code needs // to continue to work with older versions of Node.js that do not include // the prependListener() method. The goal is to eventually remove this hack. if (!emitter._events || !emitter._events[event]) emitter.on(event, fn);else if (Array.isArray(emitter._events[event])) emitter._events[event].unshift(fn);else emitter._events[event] = [fn, emitter._events[event]]; } function ReadableState(options, stream, isDuplex) { Duplex = Duplex || require('./_stream_duplex'); options = options || {}; // Duplex streams are both readable and writable, but share // the same options object. // However, some cases require setting options to different // values for the readable and the writable sides of the duplex stream. // These options can be provided separately as readableXXX and writableXXX. if (typeof isDuplex !== 'boolean') isDuplex = stream instanceof Duplex; // object stream flag. Used to make read(n) ignore n and to // make all the buffer merging and length checks go away this.objectMode = !!options.objectMode; if (isDuplex) this.objectMode = this.objectMode || !!options.readableObjectMode; // the point at which it stops calling _read() to fill the buffer // Note: 0 is a valid value, means "don't call _read preemptively ever" this.highWaterMark = getHighWaterMark(this, options, 'readableHighWaterMark', isDuplex); // A linked list is used to store data chunks instead of an array because the // linked list can remove elements from the beginning faster than // array.shift() this.buffer = new BufferList(); this.length = 0; this.pipes = null; this.pipesCount = 0; this.flowing = null; this.ended = false; this.endEmitted = false; this.reading = false; // a flag to be able to tell if the event 'readable'/'data' is emitted // immediately, or on a later tick. We set this to true at first, because // any actions that shouldn't happen until "later" should generally also // not happen before the first read call. this.sync = true; // whenever we return null, then we set a flag to say // that we're awaiting a 'readable' event emission. this.needReadable = false; this.emittedReadable = false; this.readableListening = false; this.resumeScheduled = false; this.paused = true; // Should close be emitted on destroy. Defaults to true. this.emitClose = options.emitClose !== false; // has it been destroyed this.destroyed = false; // Crypto is kind of old and crusty. Historically, its default string // encoding is 'binary' so we have to make this configurable. // Everything else in the universe uses 'utf8', though. this.defaultEncoding = options.defaultEncoding || 'utf8'; // the number of writers that are awaiting a drain event in .pipe()s this.awaitDrain = 0; // if true, a maybeReadMore has been scheduled this.readingMore = false; this.decoder = null; this.encoding = null; if (options.encoding) { if (!StringDecoder) StringDecoder = require('string_decoder/').StringDecoder; this.decoder = new StringDecoder(options.encoding); this.encoding = options.encoding; } } function Readable(options) { Duplex = Duplex || require('./_stream_duplex'); if (!(this instanceof Readable)) return new Readable(options); // Checking for a Stream.Duplex instance is faster here instead of inside // the ReadableState constructor, at least with V8 6.5 var isDuplex = this instanceof Duplex; this._readableState = new ReadableState(options, this, isDuplex); // legacy this.readable = true; if (options) { if (typeof options.read === 'function') this._read = options.read; if (typeof options.destroy === 'function') this._destroy = options.destroy; } Stream.call(this); } Object.defineProperty(Readable.prototype, 'destroyed', { // making it explicit this property is not enumerable // because otherwise some prototype manipulation in // userland will fail enumerable: false, get: function get() { if (this._readableState === undefined) { return false; } return this._readableState.destroyed; }, set: function set(value) { // we ignore the value if the stream // has not been initialized yet if (!this._readableState) { return; } // backward compatibility, the user is explicitly // managing destroyed this._readableState.destroyed = value; } }); Readable.prototype.destroy = destroyImpl.destroy; Readable.prototype._undestroy = destroyImpl.undestroy; Readable.prototype._destroy = function (err, cb) { cb(err); }; // Manually shove something into the read() buffer. // This returns true if the highWaterMark has not been hit yet, // similar to how Writable.write() returns true if you should // write() some more. Readable.prototype.push = function (chunk, encoding) { var state = this._readableState; var skipChunkCheck; if (!state.objectMode) { if (typeof chunk === 'string') { encoding = encoding || state.defaultEncoding; if (encoding !== state.encoding) { chunk = Buffer.from(chunk, encoding); encoding = ''; } skipChunkCheck = true; } } else { skipChunkCheck = true; } return readableAddChunk(this, chunk, encoding, false, skipChunkCheck); }; // Unshift should *always* be something directly out of read() Readable.prototype.unshift = function (chunk) { return readableAddChunk(this, chunk, null, true, false); }; function readableAddChunk(stream, chunk, encoding, addToFront, skipChunkCheck) { debug('readableAddChunk', chunk); var state = stream._readableState; if (chunk === null) { state.reading = false; onEofChunk(stream, state); } else { var er; if (!skipChunkCheck) er = chunkInvalid(state, chunk); if (er) { stream.emit('error', er); } else if (state.objectMode || chunk && chunk.length > 0) { if (typeof chunk !== 'string' && !state.objectMode && Object.getPrototypeOf(chunk) !== Buffer.prototype) { chunk = _uint8ArrayToBuffer(chunk); } if (addToFront) { if (state.endEmitted) stream.emit('error', new ERR_STREAM_UNSHIFT_AFTER_END_EVENT());else addChunk(stream, state, chunk, true); } else if (state.ended) { stream.emit('error', new ERR_STREAM_PUSH_AFTER_EOF()); } else if (state.destroyed) { return false; } else { state.reading = false; if (state.decoder && !encoding) { chunk = state.decoder.write(chunk); if (state.objectMode || chunk.length !== 0) addChunk(stream, state, chunk, false);else maybeReadMore(stream, state); } else { addChunk(stream, state, chunk, false); } } } else if (!addToFront) { state.reading = false; maybeReadMore(stream, state); } } // We can push more data if we are below the highWaterMark. // Also, if we have no data yet, we can stand some more bytes. // This is to work around cases where hwm=0, such as the repl. return !state.ended && (state.length < state.highWaterMark || state.length === 0); } function addChunk(stream, state, chunk, addToFront) { if (state.flowing && state.length === 0 && !state.sync) { state.awaitDrain = 0; stream.emit('data', chunk); } else { // update the buffer info. state.length += state.objectMode ? 1 : chunk.length; if (addToFront) state.buffer.unshift(chunk);else state.buffer.push(chunk); if (state.needReadable) emitReadable(stream); } maybeReadMore(stream, state); } function chunkInvalid(state, chunk) { var er; if (!_isUint8Array(chunk) && typeof chunk !== 'string' && chunk !== undefined && !state.objectMode) { er = new ERR_INVALID_ARG_TYPE('chunk', ['string', 'Buffer', 'Uint8Array'], chunk); } return er; } Readable.prototype.isPaused = function () { return this._readableState.flowing === false; }; // backwards compatibility. Readable.prototype.setEncoding = function (enc) { if (!StringDecoder) StringDecoder = require('string_decoder/').StringDecoder; this._readableState.decoder = new StringDecoder(enc); // if setEncoding(null), decoder.encoding equals utf8 this._readableState.encoding = this._readableState.decoder.encoding; return this; }; // Don't raise the hwm > 8MB var MAX_HWM = 0x800000; function computeNewHighWaterMark(n) { if (n >= MAX_HWM) { n = MAX_HWM; } else { // Get the next highest power of 2 to prevent increasing hwm excessively in // tiny amounts n--; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; n++; } return n; } // This function is designed to be inlinable, so please take care when making // changes to the function body. function howMuchToRead(n, state) { if (n <= 0 || state.length === 0 && state.ended) return 0; if (state.objectMode) return 1; if (n !== n) { // Only flow one buffer at a time if (state.flowing && state.length) return state.buffer.head.data.length;else return state.length; } // If we're asking for more than the current hwm, then raise the hwm. if (n > state.highWaterMark) state.highWaterMark = computeNewHighWaterMark(n); if (n <= state.length) return n; // Don't have enough if (!state.ended) { state.needReadable = true; return 0; } return state.length; } // you can override either this method, or the async _read(n) below. Readable.prototype.read = function (n) { debug('read', n); n = parseInt(n, 10); var state = this._readableState; var nOrig = n; if (n !== 0) state.emittedReadable = false; // if we're doing read(0) to trigger a readable event, but we // already have a bunch of data in the buffer, then just trigger // the 'readable' event and move on. if (n === 0 && state.needReadable && ((state.highWaterMark !== 0 ? state.length >= state.highWaterMark : state.length > 0) || state.ended)) { debug('read: emitReadable', state.length, state.ended); if (state.length === 0 && state.ended) endReadable(this);else emitReadable(this); return null; } n = howMuchToRead(n, state); // if we've ended, and we're now clear, then finish it up. if (n === 0 && state.ended) { if (state.length === 0) endReadable(this); return null; } // All the actual chunk generation logic needs to be // *below* the call to _read. The reason is that in certain // synthetic stream cases, such as passthrough streams, _read // may be a completely synchronous operation which may change // the state of the read buffer, providing enough data when // before there was *not* enough. // // So, the steps are: // 1. Figure out what the state of things will be after we do // a read from the buffer. // // 2. If that resulting state will trigger a _read, then call _read. // Note that this may be asynchronous, or synchronous. Yes, it is // deeply ugly to write APIs this way, but that still doesn't mean // that the Readable class should behave improperly, as streams are // designed to be sync/async agnostic. // Take note if the _read call is sync or async (ie, if the read call // has returned yet), so that we know whether or not it's safe to emit // 'readable' etc. // // 3. Actually pull the requested chunks out of the buffer and return. // if we need a readable event, then we need to do some reading. var doRead = state.needReadable; debug('need readable', doRead); // if we currently have less than the highWaterMark, then also read some if (state.length === 0 || state.length - n < state.highWaterMark) { doRead = true; debug('length less than watermark', doRead); } // however, if we've ended, then there's no point, and if we're already // reading, then it's unnecessary. if (state.ended || state.reading) { doRead = false; debug('reading or ended', doRead); } else if (doRead) { debug('do read'); state.reading = true; state.sync = true; // if the length is currently zero, then we *need* a readable event. if (state.length === 0) state.needReadable = true; // call internal read method this._read(state.highWaterMark); state.sync = false; // If _read pushed data synchronously, then `reading` will be false, // and we need to re-evaluate how much data we can return to the user. if (!state.reading) n = howMuchToRead(nOrig, state); } var ret; if (n > 0) ret = fromList(n, state);else ret = null; if (ret === null) { state.needReadable = true; n = 0; } else { state.length -= n; state.awaitDrain = 0; } if (state.length === 0) { // If we have nothing in the buffer, then we want to know // as soon as we *do* get something into the buffer. if (!state.ended) state.needReadable = true; // If we tried to read() past the EOF, then emit end on the next tick. if (nOrig !== n && state.ended) endReadable(this); } if (ret !== null) this.emit('data', ret); return ret; }; function onEofChunk(stream, state) { if (state.ended) return; if (state.decoder) { var chunk = state.decoder.end(); if (chunk && chunk.length) { state.buffer.push(chunk); state.length += state.objectMode ? 1 : chunk.length; } } state.ended = true; if (state.sync) { // if we are sync, wait until next tick to emit the data. // Otherwise we risk emitting data in the flow() // the readable code triggers during a read() call emitReadable(stream); } else { // emit 'readable' now to make sure it gets picked up. state.needReadable = false; if (!state.emittedReadable) { state.emittedReadable = true; emitReadable_(stream); } } } // Don't emit readable right away in sync mode, because this can trigger // another read() call => stack overflow. This way, it might trigger // a nextTick recursion warning, but that's not so bad. function emitReadable(stream) { var state = stream._readableState; state.needReadable = false; if (!state.emittedReadable) { debug('emitReadable', state.flowing); state.emittedReadable = true; process.nextTick(emitReadable_, stream); } } function emitReadable_(stream) { var state = stream._readableState; debug('emitReadable_', state.destroyed, state.length, state.ended); if (!state.destroyed && (state.length || state.ended)) { stream.emit('readable'); } // The stream needs another readable event if // 1. It is not flowing, as the flow mechanism will take // care of it. // 2. It is not ended. // 3. It is below the highWaterMark, so we can schedule // another readable later. state.needReadable = !state.flowing && !state.ended && state.length <= state.highWaterMark; flow(stream); } // at this point, the user has presumably seen the 'readable' event, // and called read() to consume some data. that may have triggered // in turn another _read(n) call, in which case reading = true if // it's in progress. // However, if we're not ended, or reading, and the length < hwm, // then go ahead and try to read some more preemptively. function maybeReadMore(stream, state) { if (!state.readingMore) { state.readingMore = true; process.nextTick(maybeReadMore_, stream, state); } } function maybeReadMore_(stream, state) { // Attempt to read more data if we should. // // The conditions for reading more data are (one of): // - Not enough data buffered (state.length < state.highWaterMark). The loop // is responsible for filling the buffer with enough data if such data // is available. If highWaterMark is 0 and we are not in the flowing mode // we should _not_ attempt to buffer any extra data. We'll get more data // when the stream consumer calls read() instead. // - No data in the buffer, and the stream is in flowing mode. In this mode // the loop below is responsible for ensuring read() is called. Failing to // call read here would abort the flow and there's no other mechanism for // continuing the flow if the stream consumer has just subscribed to the // 'data' event. // // In addition to the above conditions to keep reading data, the following // conditions prevent the data from being read: // - The stream has ended (state.ended). // - There is already a pending 'read' operation (state.reading). This is a // case where the the stream has called the implementation defined _read() // method, but they are processing the call asynchronously and have _not_ // called push() with new data. In this case we skip performing more // read()s. The execution ends in this method again after the _read() ends // up calling push() with more data. while (!state.reading && !state.ended && (state.length < state.highWaterMark || state.flowing && state.length === 0)) { var len = state.length; debug('maybeReadMore read 0'); stream.read(0); if (len === state.length) // didn't get any data, stop spinning. break; } state.readingMore = false; } // abstract method. to be overridden in specific implementation classes. // call cb(er, data) where data is <= n in length. // for virtual (non-string, non-buffer) streams, "length" is somewhat // arbitrary, and perhaps not very meaningful. Readable.prototype._read = function (n) { this.emit('error', new ERR_METHOD_NOT_IMPLEMENTED('_read()')); }; Readable.prototype.pipe = function (dest, pipeOpts) { var src = this; var state = this._readableState; switch (state.pipesCount) { case 0: state.pipes = dest; break; case 1: state.pipes = [state.pipes, dest]; break; default: state.pipes.push(dest); break; } state.pipesCount += 1; debug('pipe count=%d opts=%j', state.pipesCount, pipeOpts); var doEnd = (!pipeOpts || pipeOpts.end !== false) && dest !== process.stdout && dest !== process.stderr; var endFn = doEnd ? onend : unpipe; if (state.endEmitted) process.nextTick(endFn);else src.once('end', endFn); dest.on('unpipe', onunpipe); function onunpipe(readable, unpipeInfo) { debug('onunpipe'); if (readable === src) { if (unpipeInfo && unpipeInfo.hasUnpiped === false) { unpipeInfo.hasUnpiped = true; cleanup(); } } } function onend() { debug('onend'); dest.end(); } // when the dest drains, it reduces the awaitDrain counter // on the source. This would be more elegant with a .once() // handler in flow(), but adding and removing repeatedly is // too slow. var ondrain = pipeOnDrain(src); dest.on('drain', ondrain); var cleanedUp = false; function cleanup() { debug('cleanup'); // cleanup event handlers once the pipe is broken dest.removeListener('close', onclose); dest.removeListener('finish', onfinish); dest.removeListener('drain', ondrain); dest.removeListener('error', onerror); dest.removeListener('unpipe', onunpipe); src.removeListener('end', onend); src.removeListener('end', unpipe); src.removeListener('data', ondata); cleanedUp = true; // if the reader is waiting for a drain event from this // specific writer, then it would cause it to never start // flowing again. // So, if this is awaiting a drain, then we just call it now. // If we don't know, then assume that we are waiting for one. if (state.awaitDrain && (!dest._writableState || dest._writableState.needDrain)) ondrain(); } src.on('data', ondata); function ondata(chunk) { debug('ondata'); var ret = dest.write(chunk); debug('dest.write', ret); if (ret === false) { // If the user unpiped during `dest.write()`, it is possible // to get stuck in a permanently paused state if that write // also returned false. // => Check whether `dest` is still a piping destination. if ((state.pipesCount === 1 && state.pipes === dest || state.pipesCount > 1 && indexOf(state.pipes, dest) !== -1) && !cleanedUp) { debug('false write response, pause', state.awaitDrain); state.awaitDrain++; } src.pause(); } } // if the dest has an error, then stop piping into it. // however, don't suppress the throwing behavior for this. function onerror(er) { debug('onerror', er); unpipe(); dest.removeListener('error', onerror); if (EElistenerCount(dest, 'error') === 0) dest.emit('error', er); } // Make sure our error handler is attached before userland ones. prependListener(dest, 'error', onerror); // Both close and finish should trigger unpipe, but only once. function onclose() { dest.removeListener('finish', onfinish); unpipe(); } dest.once('close', onclose); function onfinish() { debug('onfinish'); dest.removeListener('close', onclose); unpipe(); } dest.once('finish', onfinish); function unpipe() { debug('unpipe'); src.unpipe(dest); } // tell the dest that it's being piped to dest.emit('pipe', src); // start the flow if it hasn't been started already. if (!state.flowing) { debug('pipe resume'); src.resume(); } return dest; }; function pipeOnDrain(src) { return function pipeOnDrainFunctionResult() { var state = src._readableState; debug('pipeOnDrain', state.awaitDrain); if (state.awaitDrain) state.awaitDrain--; if (state.awaitDrain === 0 && EElistenerCount(src, 'data')) { state.flowing = true; flow(src); } }; } Readable.prototype.unpipe = function (dest) { var state = this._readableState; var unpipeInfo = { hasUnpiped: false }; // if we're not piping anywhere, then do nothing. if (state.pipesCount === 0) return this; // just one destination. most common case. if (state.pipesCount === 1) { // passed in one, but it's not the right one. if (dest && dest !== state.pipes) return this; if (!dest) dest = state.pipes; // got a match. state.pipes = null; state.pipesCount = 0; state.flowing = false; if (dest) dest.emit('unpipe', this, unpipeInfo); return this; } // slow case. multiple pipe destinations. if (!dest) { // remove all. var dests = state.pipes; var len = state.pipesCount; state.pipes = null; state.pipesCount = 0; state.flowing = false; for (var i = 0; i < len; i++) { dests[i].emit('unpipe', this, { hasUnpiped: false }); } return this; } // try to find the right one. var index = indexOf(state.pipes, dest); if (index === -1) return this; state.pipes.splice(index, 1); state.pipesCount -= 1; if (state.pipesCount === 1) state.pipes = state.pipes[0]; dest.emit('unpipe', this, unpipeInfo); return this; }; // set up data events if they are asked for // Ensure readable listeners eventually get something Readable.prototype.on = function (ev, fn) { var res = Stream.prototype.on.call(this, ev, fn); var state = this._readableState; if (ev === 'data') { // update readableListening so that resume() may be a no-op // a few lines down. This is needed to support once('readable'). state.readableListening = this.listenerCount('readable') > 0; // Try start flowing on next tick if stream isn't explicitly paused if (state.flowing !== false) this.resume(); } else if (ev === 'readable') { if (!state.endEmitted && !state.readableListening) { state.readableListening = state.needReadable = true; state.flowing = false; state.emittedReadable = false; debug('on readable', state.length, state.reading); if (state.length) { emitReadable(this); } else if (!state.reading) { process.nextTick(nReadingNextTick, this); } } } return res; }; Readable.prototype.addListener = Readable.prototype.on; Readable.prototype.removeListener = function (ev, fn) { var res = Stream.prototype.removeListener.call(this, ev, fn); if (ev === 'readable') { // We need to check if there is someone still listening to // readable and reset the state. However this needs to happen // after readable has been emitted but before I/O (nextTick) to // support once('readable', fn) cycles. This means that calling // resume within the same tick will have no // effect. process.nextTick(updateReadableListening, this); } return res; }; Readable.prototype.removeAllListeners = function (ev) { var res = Stream.prototype.removeAllListeners.apply(this, arguments); if (ev === 'readable' || ev === undefined) { // We need to check if there is someone still listening to // readable and reset the state. However this needs to happen // after readable has been emitted but before I/O (nextTick) to // support once('readable', fn) cycles. This means that calling // resume within the same tick will have no // effect. process.nextTick(updateReadableListening, this); } return res; }; function updateReadableListening(self) { var state = self._readableState; state.readableListening = self.listenerCount('readable') > 0; if (state.resumeScheduled && !state.paused) { // flowing needs to be set to true now, otherwise // the upcoming resume will not flow. state.flowing = true; // crude way to check if we should resume } else if (self.listenerCount('data') > 0) { self.resume(); } } function nReadingNextTick(self) { debug('readable nexttick read 0'); self.read(0); } // pause() and resume() are remnants of the legacy readable stream API // If the user uses them, then switch into old mode. Readable.prototype.resume = function () { var state = this._readableState; if (!state.flowing) { debug('resume'); // we flow only if there is no one listening // for readable, but we still have to call // resume() state.flowing = !state.readableListening; resume(this, state); } state.paused = false; return this; }; function resume(stream, state) { if (!state.resumeScheduled) { state.resumeScheduled = true; process.nextTick(resume_, stream, state); } } function resume_(stream, state) { debug('resume', state.reading); if (!state.reading) { stream.read(0); } state.resumeScheduled = false; stream.emit('resume'); flow(stream); if (state.flowing && !state.reading) stream.read(0); } Readable.prototype.pause = function () { debug('call pause flowing=%j', this._readableState.flowing); if (this._readableState.flowing !== false) { debug('pause'); this._readableState.flowing = false; this.emit('pause'); } this._readableState.paused = true; return this; }; function flow(stream) { var state = stream._readableState; debug('flow', state.flowing); while (state.flowing && stream.read() !== null) { ; } } // wrap an old-style stream as the async data source. // This is *not* part of the readable stream interface. // It is an ugly unfortunate mess of history. Readable.prototype.wrap = function (stream) { var _this = this; var state = this._readableState; var paused = false; stream.on('end', function () { debug('wrapped end'); if (state.decoder && !state.ended) { var chunk = state.decoder.end(); if (chunk && chunk.length) _this.push(chunk); } _this.push(null); }); stream.on('data', function (chunk) { debug('wrapped data'); if (state.decoder) chunk = state.decoder.write(chunk); // don't skip over falsy values in objectMode if (state.objectMode && (chunk === null || chunk === undefined)) return;else if (!state.objectMode && (!chunk || !chunk.length)) return; var ret = _this.push(chunk); if (!ret) { paused = true; stream.pause(); } }); // proxy all the other methods. // important when wrapping filters and duplexes. for (var i in stream) { if (this[i] === undefined && typeof stream[i] === 'function') { this[i] = function methodWrap(method) { return function methodWrapReturnFunction() { return stream[method].apply(stream, arguments); }; }(i); } } // proxy certain important events. for (var n = 0; n < kProxyEvents.length; n++) { stream.on(kProxyEvents[n], this.emit.bind(this, kProxyEvents[n])); } // when we try to consume some more bytes, simply unpause the // underlying stream. this._read = function (n) { debug('wrapped _read', n); if (paused) { paused = false; stream.resume(); } }; return this; }; if (typeof Symbol === 'function') { Readable.prototype[Symbol.asyncIterator] = function () { emitExperimentalWarning('Readable[Symbol.asyncIterator]'); if (createReadableStreamAsyncIterator === undefined) { createReadableStreamAsyncIterator = require('./internal/streams/async_iterator'); } return createReadableStreamAsyncIterator(this); }; } Object.defineProperty(Readable.prototype, 'readableHighWaterMark', { // making it explicit this property is not enumerable // because otherwise some prototype manipulation in // userland will fail enumerable: false, get: function get() { return this._readableState.highWaterMark; } }); Object.defineProperty(Readable.prototype, 'readableBuffer', { // making it explicit this property is not enumerable // because otherwise some prototype manipulation in // userland will fail enumerable: false, get: function get() { return this._readableState && this._readableState.buffer; } }); Object.defineProperty(Readable.prototype, 'readableFlowing', { // making it explicit this property is not enumerable // because otherwise some prototype manipulation in // userland will fail enumerable: false, get: function get() { return this._readableState.flowing; }, set: function set(state) { if (this._readableState) { this._readableState.flowing = state; } } }); // exposed for testing purposes only. Readable._fromList = fromList; Object.defineProperty(Readable.prototype, 'readableLength', { // making it explicit this property is not enumerable // because otherwise some prototype manipulation in // userland will fail enumerable: false, get: function get() { return this._readableState.length; } }); // Pluck off n bytes from an array of buffers. // Length is the combined lengths of all the buffers in the list. // This function is designed to be inlinable, so please take care when making // changes to the function body. function fromList(n, state) { // nothing buffered if (state.length === 0) return null; var ret; if (state.objectMode) ret = state.buffer.shift();else if (!n || n >= state.length) { // read it all, truncate the list if (state.decoder) ret = state.buffer.join('');else if (state.buffer.length === 1) ret = state.buffer.first();else ret = state.buffer.concat(state.length); state.buffer.clear(); } else { // read part of list ret = state.buffer.consume(n, state.decoder); } return ret; } function endReadable(stream) { var state = stream._readableState; debug('endReadable', state.endEmitted); if (!state.endEmitted) { state.ended = true; process.nextTick(endReadableNT, state, stream); } } function endReadableNT(state, stream) { debug('endReadableNT', state.endEmitted, state.length); // Check that we didn't get one last unshift. if (!state.endEmitted && state.length === 0) { state.endEmitted = true; stream.readable = false; stream.emit('end'); } } function indexOf(xs, x) { for (var i = 0, l = xs.length; i < l; i++) { if (xs[i] === x) return i; } return -1; } }).call(this,require('_process'),typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {}) },{"../errors":160,"../experimentalWarning":161,"./_stream_duplex":162,"./internal/streams/async_iterator":167,"./internal/streams/buffer_list":168,"./internal/streams/destroy":169,"./internal/streams/state":172,"./internal/streams/stream":173,"_process":133,"buffer":48,"events":52,"inherits":75,"string_decoder/":175,"util":33}],165:[function(require,module,exports){ // Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. // a transform stream is a readable/writable stream where you do // something with the data. Sometimes it's called a "filter", // but that's not a great name for it, since that implies a thing where // some bits pass through, and others are simply ignored. (That would // be a valid example of a transform, of course.) // // While the output is causally related to the input, it's not a // necessarily symmetric or synchronous transformation. For example, // a zlib stream might take multiple plain-text writes(), and then // emit a single compressed chunk some time in the future. // // Here's how this works: // // The Transform stream has all the aspects of the readable and writable // stream classes. When you write(chunk), that calls _write(chunk,cb) // internally, and returns false if there's a lot of pending writes // buffered up. When you call read(), that calls _read(n) until // there's enough pending readable data buffered up. // // In a transform stream, the written data is placed in a buffer. When // _read(n) is called, it transforms the queued up data, calling the // buffered _write cb's as it consumes chunks. If consuming a single // written chunk would result in multiple output chunks, then the first // outputted bit calls the readcb, and subsequent chunks just go into // the read buffer, and will cause it to emit 'readable' if necessary. // // This way, back-pressure is actually determined by the reading side, // since _read has to be called to start processing a new chunk. However, // a pathological inflate type of transform can cause excessive buffering // here. For example, imagine a stream where every byte of input is // interpreted as an integer from 0-255, and then results in that many // bytes of output. Writing the 4 bytes {ff,ff,ff,ff} would result in // 1kb of data being output. In this case, you could write a very small // amount of input, and end up with a very large amount of output. In // such a pathological inflating mechanism, there'd be no way to tell // the system to stop doing the transform. A single 4MB write could // cause the system to run out of memory. // // However, even in such a pathological case, only a single written chunk // would be consumed, and then the rest would wait (un-transformed) until // the results of the previous transformed chunk were consumed. 'use strict'; module.exports = Transform; var _require$codes = require('../errors').codes, ERR_METHOD_NOT_IMPLEMENTED = _require$codes.ERR_METHOD_NOT_IMPLEMENTED, ERR_MULTIPLE_CALLBACK = _require$codes.ERR_MULTIPLE_CALLBACK, ERR_TRANSFORM_ALREADY_TRANSFORMING = _require$codes.ERR_TRANSFORM_ALREADY_TRANSFORMING, ERR_TRANSFORM_WITH_LENGTH_0 = _require$codes.ERR_TRANSFORM_WITH_LENGTH_0; var Duplex = require('./_stream_duplex'); require('inherits')(Transform, Duplex); function afterTransform(er, data) { var ts = this._transformState; ts.transforming = false; var cb = ts.writecb; if (cb === null) { return this.emit('error', new ERR_MULTIPLE_CALLBACK()); } ts.writechunk = null; ts.writecb = null; if (data != null) // single equals check for both `null` and `undefined` this.push(data); cb(er); var rs = this._readableState; rs.reading = false; if (rs.needReadable || rs.length < rs.highWaterMark) { this._read(rs.highWaterMark); } } function Transform(options) { if (!(this instanceof Transform)) return new Transform(options); Duplex.call(this, options); this._transformState = { afterTransform: afterTransform.bind(this), needTransform: false, transforming: false, writecb: null, writechunk: null, writeencoding: null }; // start out asking for a readable event once data is transformed. this._readableState.needReadable = true; // we have implemented the _read method, and done the other things // that Readable wants before the first _read call, so unset the // sync guard flag. this._readableState.sync = false; if (options) { if (typeof options.transform === 'function') this._transform = options.transform; if (typeof options.flush === 'function') this._flush = options.flush; } // When the writable side finishes, then flush out anything remaining. this.on('prefinish', prefinish); } function prefinish() { var _this = this; if (typeof this._flush === 'function' && !this._readableState.destroyed) { this._flush(function (er, data) { done(_this, er, data); }); } else { done(this, null, null); } } Transform.prototype.push = function (chunk, encoding) { this._transformState.needTransform = false; return Duplex.prototype.push.call(this, chunk, encoding); }; // This is the part where you do stuff! // override this function in implementation classes. // 'chunk' is an input chunk. // // Call `push(newChunk)` to pass along transformed output // to the readable side. You may call 'push' zero or more times. // // Call `cb(err)` when you are done with this chunk. If you pass // an error, then that'll put the hurt on the whole operation. If you // never call cb(), then you'll never get another chunk. Transform.prototype._transform = function (chunk, encoding, cb) { cb(new ERR_METHOD_NOT_IMPLEMENTED('_transform()')); }; Transform.prototype._write = function (chunk, encoding, cb) { var ts = this._transformState; ts.writecb = cb; ts.writechunk = chunk; ts.writeencoding = encoding; if (!ts.transforming) { var rs = this._readableState; if (ts.needTransform || rs.needReadable || rs.length < rs.highWaterMark) this._read(rs.highWaterMark); } }; // Doesn't matter what the args are here. // _transform does all the work. // That we got here means that the readable side wants more data. Transform.prototype._read = function (n) { var ts = this._transformState; if (ts.writechunk !== null && !ts.transforming) { ts.transforming = true; this._transform(ts.writechunk, ts.writeencoding, ts.afterTransform); } else { // mark that we need a transform, so that any data that comes in // will get processed, now that we've asked for it. ts.needTransform = true; } }; Transform.prototype._destroy = function (err, cb) { Duplex.prototype._destroy.call(this, err, function (err2) { cb(err2); }); }; function done(stream, er, data) { if (er) return stream.emit('error', er); if (data != null) // single equals check for both `null` and `undefined` stream.push(data); // TODO(BridgeAR): Write a test for these two error cases // if there's nothing in the write buffer, then that means // that nothing more will ever be provided if (stream._writableState.length) throw new ERR_TRANSFORM_WITH_LENGTH_0(); if (stream._transformState.transforming) throw new ERR_TRANSFORM_ALREADY_TRANSFORMING(); return stream.push(null); } },{"../errors":160,"./_stream_duplex":162,"inherits":75}],166:[function(require,module,exports){ (function (process,global){ // Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. // A bit simpler than readable streams. // Implement an async ._write(chunk, encoding, cb), and it'll handle all // the drain event emission and buffering. 'use strict'; module.exports = Writable; /* */ function WriteReq(chunk, encoding, cb) { this.chunk = chunk; this.encoding = encoding; this.callback = cb; this.next = null; } // It seems a linked list but it is not // there will be only 2 of these for each stream function CorkedRequest(state) { var _this = this; this.next = null; this.entry = null; this.finish = function () { onCorkedFinish(_this, state); }; } /* */ /**/ var Duplex; /**/ Writable.WritableState = WritableState; /**/ var internalUtil = { deprecate: require('util-deprecate') }; /**/ /**/ var Stream = require('./internal/streams/stream'); /**/ var Buffer = require('buffer').Buffer; var OurUint8Array = global.Uint8Array || function () {}; function _uint8ArrayToBuffer(chunk) { return Buffer.from(chunk); } function _isUint8Array(obj) { return Buffer.isBuffer(obj) || obj instanceof OurUint8Array; } var destroyImpl = require('./internal/streams/destroy'); var _require = require('./internal/streams/state'), getHighWaterMark = _require.getHighWaterMark; var _require$codes = require('../errors').codes, ERR_INVALID_ARG_TYPE = _require$codes.ERR_INVALID_ARG_TYPE, ERR_METHOD_NOT_IMPLEMENTED = _require$codes.ERR_METHOD_NOT_IMPLEMENTED, ERR_MULTIPLE_CALLBACK = _require$codes.ERR_MULTIPLE_CALLBACK, ERR_STREAM_CANNOT_PIPE = _require$codes.ERR_STREAM_CANNOT_PIPE, ERR_STREAM_DESTROYED = _require$codes.ERR_STREAM_DESTROYED, ERR_STREAM_NULL_VALUES = _require$codes.ERR_STREAM_NULL_VALUES, ERR_STREAM_WRITE_AFTER_END = _require$codes.ERR_STREAM_WRITE_AFTER_END, ERR_UNKNOWN_ENCODING = _require$codes.ERR_UNKNOWN_ENCODING; require('inherits')(Writable, Stream); function nop() {} function WritableState(options, stream, isDuplex) { Duplex = Duplex || require('./_stream_duplex'); options = options || {}; // Duplex streams are both readable and writable, but share // the same options object. // However, some cases require setting options to different // values for the readable and the writable sides of the duplex stream, // e.g. options.readableObjectMode vs. options.writableObjectMode, etc. if (typeof isDuplex !== 'boolean') isDuplex = stream instanceof Duplex; // object stream flag to indicate whether or not this stream // contains buffers or objects. this.objectMode = !!options.objectMode; if (isDuplex) this.objectMode = this.objectMode || !!options.writableObjectMode; // the point at which write() starts returning false // Note: 0 is a valid value, means that we always return false if // the entire buffer is not flushed immediately on write() this.highWaterMark = getHighWaterMark(this, options, 'writableHighWaterMark', isDuplex); // if _final has been called this.finalCalled = false; // drain event flag. this.needDrain = false; // at the start of calling end() this.ending = false; // when end() has been called, and returned this.ended = false; // when 'finish' is emitted this.finished = false; // has it been destroyed this.destroyed = false; // should we decode strings into buffers before passing to _write? // this is here so that some node-core streams can optimize string // handling at a lower level. var noDecode = options.decodeStrings === false; this.decodeStrings = !noDecode; // Crypto is kind of old and crusty. Historically, its default string // encoding is 'binary' so we have to make this configurable. // Everything else in the universe uses 'utf8', though. this.defaultEncoding = options.defaultEncoding || 'utf8'; // not an actual buffer we keep track of, but a measurement // of how much we're waiting to get pushed to some underlying // socket or file. this.length = 0; // a flag to see when we're in the middle of a write. this.writing = false; // when true all writes will be buffered until .uncork() call this.corked = 0; // a flag to be able to tell if the onwrite cb is called immediately, // or on a later tick. We set this to true at first, because any // actions that shouldn't happen until "later" should generally also // not happen before the first write call. this.sync = true; // a flag to know if we're processing previously buffered items, which // may call the _write() callback in the same tick, so that we don't // end up in an overlapped onwrite situation. this.bufferProcessing = false; // the callback that's passed to _write(chunk,cb) this.onwrite = function (er) { onwrite(stream, er); }; // the callback that the user supplies to write(chunk,encoding,cb) this.writecb = null; // the amount that is being written when _write is called. this.writelen = 0; this.bufferedRequest = null; this.lastBufferedRequest = null; // number of pending user-supplied write callbacks // this must be 0 before 'finish' can be emitted this.pendingcb = 0; // emit prefinish if the only thing we're waiting for is _write cbs // This is relevant for synchronous Transform streams this.prefinished = false; // True if the error was already emitted and should not be thrown again this.errorEmitted = false; // Should close be emitted on destroy. Defaults to true. this.emitClose = options.emitClose !== false; // count buffered requests this.bufferedRequestCount = 0; // allocate the first CorkedRequest, there is always // one allocated and free to use, and we maintain at most two this.corkedRequestsFree = new CorkedRequest(this); } WritableState.prototype.getBuffer = function getBuffer() { var current = this.bufferedRequest; var out = []; while (current) { out.push(current); current = current.next; } return out; }; (function () { try { Object.defineProperty(WritableState.prototype, 'buffer', { get: internalUtil.deprecate(function writableStateBufferGetter() { return this.getBuffer(); }, '_writableState.buffer is deprecated. Use _writableState.getBuffer ' + 'instead.', 'DEP0003') }); } catch (_) {} })(); // Test _writableState for inheritance to account for Duplex streams, // whose prototype chain only points to Readable. var realHasInstance; if (typeof Symbol === 'function' && Symbol.hasInstance && typeof Function.prototype[Symbol.hasInstance] === 'function') { realHasInstance = Function.prototype[Symbol.hasInstance]; Object.defineProperty(Writable, Symbol.hasInstance, { value: function value(object) { if (realHasInstance.call(this, object)) return true; if (this !== Writable) return false; return object && object._writableState instanceof WritableState; } }); } else { realHasInstance = function realHasInstance(object) { return object instanceof this; }; } function Writable(options) { Duplex = Duplex || require('./_stream_duplex'); // Writable ctor is applied to Duplexes, too. // `realHasInstance` is necessary because using plain `instanceof` // would return false, as no `_writableState` property is attached. // Trying to use the custom `instanceof` for Writable here will also break the // Node.js LazyTransform implementation, which has a non-trivial getter for // `_writableState` that would lead to infinite recursion. // Checking for a Stream.Duplex instance is faster here instead of inside // the WritableState constructor, at least with V8 6.5 var isDuplex = this instanceof Duplex; if (!isDuplex && !realHasInstance.call(Writable, this)) return new Writable(options); this._writableState = new WritableState(options, this, isDuplex); // legacy. this.writable = true; if (options) { if (typeof options.write === 'function') this._write = options.write; if (typeof options.writev === 'function') this._writev = options.writev; if (typeof options.destroy === 'function') this._destroy = options.destroy; if (typeof options.final === 'function') this._final = options.final; } Stream.call(this); } // Otherwise people can pipe Writable streams, which is just wrong. Writable.prototype.pipe = function () { this.emit('error', new ERR_STREAM_CANNOT_PIPE()); }; function writeAfterEnd(stream, cb) { var er = new ERR_STREAM_WRITE_AFTER_END(); // TODO: defer error events consistently everywhere, not just the cb stream.emit('error', er); process.nextTick(cb, er); } // Checks that a user-supplied chunk is valid, especially for the particular // mode the stream is in. Currently this means that `null` is never accepted // and undefined/non-string values are only allowed in object mode. function validChunk(stream, state, chunk, cb) { var er; if (chunk === null) { er = new ERR_STREAM_NULL_VALUES(); } else if (typeof chunk !== 'string' && !state.objectMode) { er = new ERR_INVALID_ARG_TYPE('chunk', ['string', 'Buffer'], chunk); } if (er) { stream.emit('error', er); process.nextTick(cb, er); return false; } return true; } Writable.prototype.write = function (chunk, encoding, cb) { var state = this._writableState; var ret = false; var isBuf = !state.objectMode && _isUint8Array(chunk); if (isBuf && !Buffer.isBuffer(chunk)) { chunk = _uint8ArrayToBuffer(chunk); } if (typeof encoding === 'function') { cb = encoding; encoding = null; } if (isBuf) encoding = 'buffer';else if (!encoding) encoding = state.defaultEncoding; if (typeof cb !== 'function') cb = nop; if (state.ending) writeAfterEnd(this, cb);else if (isBuf || validChunk(this, state, chunk, cb)) { state.pendingcb++; ret = writeOrBuffer(this, state, isBuf, chunk, encoding, cb); } return ret; }; Writable.prototype.cork = function () { this._writableState.corked++; }; Writable.prototype.uncork = function () { var state = this._writableState; if (state.corked) { state.corked--; if (!state.writing && !state.corked && !state.bufferProcessing && state.bufferedRequest) clearBuffer(this, state); } }; Writable.prototype.setDefaultEncoding = function setDefaultEncoding(encoding) { // node::ParseEncoding() requires lower case. if (typeof encoding === 'string') encoding = encoding.toLowerCase(); if (!(['hex', 'utf8', 'utf-8', 'ascii', 'binary', 'base64', 'ucs2', 'ucs-2', 'utf16le', 'utf-16le', 'raw'].indexOf((encoding + '').toLowerCase()) > -1)) throw new ERR_UNKNOWN_ENCODING(encoding); this._writableState.defaultEncoding = encoding; return this; }; Object.defineProperty(Writable.prototype, 'writableBuffer', { // making it explicit this property is not enumerable // because otherwise some prototype manipulation in // userland will fail enumerable: false, get: function get() { return this._writableState && this._writableState.getBuffer(); } }); function decodeChunk(state, chunk, encoding) { if (!state.objectMode && state.decodeStrings !== false && typeof chunk === 'string') { chunk = Buffer.from(chunk, encoding); } return chunk; } Object.defineProperty(Writable.prototype, 'writableHighWaterMark', { // making it explicit this property is not enumerable // because otherwise some prototype manipulation in // userland will fail enumerable: false, get: function get() { return this._writableState.highWaterMark; } }); // if we're already writing something, then just put this // in the queue, and wait our turn. Otherwise, call _write // If we return false, then we need a drain event, so set that flag. function writeOrBuffer(stream, state, isBuf, chunk, encoding, cb) { if (!isBuf) { var newChunk = decodeChunk(state, chunk, encoding); if (chunk !== newChunk) { isBuf = true; encoding = 'buffer'; chunk = newChunk; } } var len = state.objectMode ? 1 : chunk.length; state.length += len; var ret = state.length < state.highWaterMark; // we must ensure that previous needDrain will not be reset to false. if (!ret) state.needDrain = true; if (state.writing || state.corked) { var last = state.lastBufferedRequest; state.lastBufferedRequest = { chunk: chunk, encoding: encoding, isBuf: isBuf, callback: cb, next: null }; if (last) { last.next = state.lastBufferedRequest; } else { state.bufferedRequest = state.lastBufferedRequest; } state.bufferedRequestCount += 1; } else { doWrite(stream, state, false, len, chunk, encoding, cb); } return ret; } function doWrite(stream, state, writev, len, chunk, encoding, cb) { state.writelen = len; state.writecb = cb; state.writing = true; state.sync = true; if (state.destroyed) state.onwrite(new ERR_STREAM_DESTROYED('write'));else if (writev) stream._writev(chunk, state.onwrite);else stream._write(chunk, encoding, state.onwrite); state.sync = false; } function onwriteError(stream, state, sync, er, cb) { --state.pendingcb; if (sync) { // defer the callback if we are being called synchronously // to avoid piling up things on the stack process.nextTick(cb, er); // this can emit finish, and it will always happen // after error process.nextTick(finishMaybe, stream, state); stream._writableState.errorEmitted = true; stream.emit('error', er); } else { // the caller expect this to happen before if // it is async cb(er); stream._writableState.errorEmitted = true; stream.emit('error', er); // this can emit finish, but finish must // always follow error finishMaybe(stream, state); } } function onwriteStateUpdate(state) { state.writing = false; state.writecb = null; state.length -= state.writelen; state.writelen = 0; } function onwrite(stream, er) { var state = stream._writableState; var sync = state.sync; var cb = state.writecb; if (typeof cb !== 'function') throw new ERR_MULTIPLE_CALLBACK(); onwriteStateUpdate(state); if (er) onwriteError(stream, state, sync, er, cb);else { // Check if we're actually ready to finish, but don't emit yet var finished = needFinish(state) || stream.destroyed; if (!finished && !state.corked && !state.bufferProcessing && state.bufferedRequest) { clearBuffer(stream, state); } if (sync) { process.nextTick(afterWrite, stream, state, finished, cb); } else { afterWrite(stream, state, finished, cb); } } } function afterWrite(stream, state, finished, cb) { if (!finished) onwriteDrain(stream, state); state.pendingcb--; cb(); finishMaybe(stream, state); } // Must force callback to be called on nextTick, so that we don't // emit 'drain' before the write() consumer gets the 'false' return // value, and has a chance to attach a 'drain' listener. function onwriteDrain(stream, state) { if (state.length === 0 && state.needDrain) { state.needDrain = false; stream.emit('drain'); } } // if there's something in the buffer waiting, then process it function clearBuffer(stream, state) { state.bufferProcessing = true; var entry = state.bufferedRequest; if (stream._writev && entry && entry.next) { // Fast case, write everything using _writev() var l = state.bufferedRequestCount; var buffer = new Array(l); var holder = state.corkedRequestsFree; holder.entry = entry; var count = 0; var allBuffers = true; while (entry) { buffer[count] = entry; if (!entry.isBuf) allBuffers = false; entry = entry.next; count += 1; } buffer.allBuffers = allBuffers; doWrite(stream, state, true, state.length, buffer, '', holder.finish); // doWrite is almost always async, defer these to save a bit of time // as the hot path ends with doWrite state.pendingcb++; state.lastBufferedRequest = null; if (holder.next) { state.corkedRequestsFree = holder.next; holder.next = null; } else { state.corkedRequestsFree = new CorkedRequest(state); } state.bufferedRequestCount = 0; } else { // Slow case, write chunks one-by-one while (entry) { var chunk = entry.chunk; var encoding = entry.encoding; var cb = entry.callback; var len = state.objectMode ? 1 : chunk.length; doWrite(stream, state, false, len, chunk, encoding, cb); entry = entry.next; state.bufferedRequestCount--; // if we didn't call the onwrite immediately, then // it means that we need to wait until it does. // also, that means that the chunk and cb are currently // being processed, so move the buffer counter past them. if (state.writing) { break; } } if (entry === null) state.lastBufferedRequest = null; } state.bufferedRequest = entry; state.bufferProcessing = false; } Writable.prototype._write = function (chunk, encoding, cb) { cb(new ERR_METHOD_NOT_IMPLEMENTED('_write()')); }; Writable.prototype._writev = null; Writable.prototype.end = function (chunk, encoding, cb) { var state = this._writableState; if (typeof chunk === 'function') { cb = chunk; chunk = null; encoding = null; } else if (typeof encoding === 'function') { cb = encoding; encoding = null; } if (chunk !== null && chunk !== undefined) this.write(chunk, encoding); // .end() fully uncorks if (state.corked) { state.corked = 1; this.uncork(); } // ignore unnecessary end() calls. if (!state.ending) endWritable(this, state, cb); return this; }; Object.defineProperty(Writable.prototype, 'writableLength', { // making it explicit this property is not enumerable // because otherwise some prototype manipulation in // userland will fail enumerable: false, get: function get() { return this._writableState.length; } }); function needFinish(state) { return state.ending && state.length === 0 && state.bufferedRequest === null && !state.finished && !state.writing; } function callFinal(stream, state) { stream._final(function (err) { state.pendingcb--; if (err) { stream.emit('error', err); } state.prefinished = true; stream.emit('prefinish'); finishMaybe(stream, state); }); } function prefinish(stream, state) { if (!state.prefinished && !state.finalCalled) { if (typeof stream._final === 'function' && !state.destroyed) { state.pendingcb++; state.finalCalled = true; process.nextTick(callFinal, stream, state); } else { state.prefinished = true; stream.emit('prefinish'); } } } function finishMaybe(stream, state) { var need = needFinish(state); if (need) { prefinish(stream, state); if (state.pendingcb === 0) { state.finished = true; stream.emit('finish'); } } return need; } function endWritable(stream, state, cb) { state.ending = true; finishMaybe(stream, state); if (cb) { if (state.finished) process.nextTick(cb);else stream.once('finish', cb); } state.ended = true; stream.writable = false; } function onCorkedFinish(corkReq, state, err) { var entry = corkReq.entry; corkReq.entry = null; while (entry) { var cb = entry.callback; state.pendingcb--; cb(err); entry = entry.next; } // reuse the free corkReq. state.corkedRequestsFree.next = corkReq; } Object.defineProperty(Writable.prototype, 'destroyed', { // making it explicit this property is not enumerable // because otherwise some prototype manipulation in // userland will fail enumerable: false, get: function get() { if (this._writableState === undefined) { return false; } return this._writableState.destroyed; }, set: function set(value) { // we ignore the value if the stream // has not been initialized yet if (!this._writableState) { return; } // backward compatibility, the user is explicitly // managing destroyed this._writableState.destroyed = value; } }); Writable.prototype.destroy = destroyImpl.destroy; Writable.prototype._undestroy = destroyImpl.undestroy; Writable.prototype._destroy = function (err, cb) { cb(err); }; }).call(this,require('_process'),typeof global !== "undefined" ? global : typeof self !== "undefined" ? self : typeof window !== "undefined" ? window : {}) },{"../errors":160,"./_stream_duplex":162,"./internal/streams/destroy":169,"./internal/streams/state":172,"./internal/streams/stream":173,"_process":133,"buffer":48,"inherits":75,"util-deprecate":183}],167:[function(require,module,exports){ (function (process){ 'use strict'; var _Object$setPrototypeO; function _defineProperty(obj, key, value) { if (key in obj) { Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true }); } else { obj[key] = value; } return obj; } var finished = require('./end-of-stream'); var kLastResolve = Symbol('lastResolve'); var kLastReject = Symbol('lastReject'); var kError = Symbol('error'); var kEnded = Symbol('ended'); var kLastPromise = Symbol('lastPromise'); var kHandlePromise = Symbol('handlePromise'); var kStream = Symbol('stream'); function createIterResult(value, done) { return { value: value, done: done }; } function readAndResolve(iter) { var resolve = iter[kLastResolve]; if (resolve !== null) { var data = iter[kStream].read(); // we defer if data is null // we can be expecting either 'end' or // 'error' if (data !== null) { iter[kLastPromise] = null; iter[kLastResolve] = null; iter[kLastReject] = null; resolve(createIterResult(data, false)); } } } function onReadable(iter) { // we wait for the next tick, because it might // emit an error with process.nextTick process.nextTick(readAndResolve, iter); } function wrapForNext(lastPromise, iter) { return function (resolve, reject) { lastPromise.then(function () { if (iter[kEnded]) { resolve(createIterResult(undefined, true)); return; } iter[kHandlePromise](resolve, reject); }, reject); }; } var AsyncIteratorPrototype = Object.getPrototypeOf(function () {}); var ReadableStreamAsyncIteratorPrototype = Object.setPrototypeOf((_Object$setPrototypeO = { get stream() { return this[kStream]; }, next: function next() { var _this = this; // if we have detected an error in the meanwhile // reject straight away var error = this[kError]; if (error !== null) { return Promise.reject(error); } if (this[kEnded]) { return Promise.resolve(createIterResult(undefined, true)); } if (this[kStream].destroyed) { // We need to defer via nextTick because if .destroy(err) is // called, the error will be emitted via nextTick, and // we cannot guarantee that there is no error lingering around // waiting to be emitted. return new Promise(function (resolve, reject) { process.nextTick(function () { if (_this[kError]) { reject(_this[kError]); } else { resolve(createIterResult(undefined, true)); } }); }); } // if we have multiple next() calls // we will wait for the previous Promise to finish // this logic is optimized to support for await loops, // where next() is only called once at a time var lastPromise = this[kLastPromise]; var promise; if (lastPromise) { promise = new Promise(wrapForNext(lastPromise, this)); } else { // fast path needed to support multiple this.push() // without triggering the next() queue var data = this[kStream].read(); if (data !== null) { return Promise.resolve(createIterResult(data, false)); } promise = new Promise(this[kHandlePromise]); } this[kLastPromise] = promise; return promise; } }, _defineProperty(_Object$setPrototypeO, Symbol.asyncIterator, function () { return this; }), _defineProperty(_Object$setPrototypeO, "return", function _return() { var _this2 = this; // destroy(err, cb) is a private API // we can guarantee we have that here, because we control the // Readable class this is attached to return new Promise(function (resolve, reject) { _this2[kStream].destroy(null, function (err) { if (err) { reject(err); return; } resolve(createIterResult(undefined, true)); }); }); }), _Object$setPrototypeO), AsyncIteratorPrototype); var createReadableStreamAsyncIterator = function createReadableStreamAsyncIterator(stream) { var _Object$create; var iterator = Object.create(ReadableStreamAsyncIteratorPrototype, (_Object$create = {}, _defineProperty(_Object$create, kStream, { value: stream, writable: true }), _defineProperty(_Object$create, kLastResolve, { value: null, writable: true }), _defineProperty(_Object$create, kLastReject, { value: null, writable: true }), _defineProperty(_Object$create, kError, { value: null, writable: true }), _defineProperty(_Object$create, kEnded, { value: stream._readableState.endEmitted, writable: true }), _defineProperty(_Object$create, kHandlePromise, { value: function value(resolve, reject) { var data = iterator[kStream].read(); if (data) { iterator[kLastPromise] = null; iterator[kLastResolve] = null; iterator[kLastReject] = null; resolve(createIterResult(data, false)); } else { iterator[kLastResolve] = resolve; iterator[kLastReject] = reject; } }, writable: true }), _Object$create)); iterator[kLastPromise] = null; finished(stream, function (err) { if (err && err.code !== 'ERR_STREAM_PREMATURE_CLOSE') { var reject = iterator[kLastReject]; // reject if we are waiting for data in the Promise // returned by next() and store the error if (reject !== null) { iterator[kLastPromise] = null; iterator[kLastResolve] = null; iterator[kLastReject] = null; reject(err); } iterator[kError] = err; return; } var resolve = iterator[kLastResolve]; if (resolve !== null) { iterator[kLastPromise] = null; iterator[kLastResolve] = null; iterator[kLastReject] = null; resolve(createIterResult(undefined, true)); } iterator[kEnded] = true; }); stream.on('readable', onReadable.bind(null, iterator)); return iterator; }; module.exports = createReadableStreamAsyncIterator; }).call(this,require('_process')) },{"./end-of-stream":170,"_process":133}],168:[function(require,module,exports){ 'use strict'; function _objectSpread(target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i] != null ? arguments[i] : {}; var ownKeys = Object.keys(source); if (typeof Object.getOwnPropertySymbols === 'function') { ownKeys = ownKeys.concat(Object.getOwnPropertySymbols(source).filter(function (sym) { return Object.getOwnPropertyDescriptor(source, sym).enumerable; })); } ownKeys.forEach(function (key) { _defineProperty(target, key, source[key]); }); } return target; } function _defineProperty(obj, key, value) { if (key in obj) { Object.defineProperty(obj, key, { value: value, enumerable: true, configurable: true, writable: true }); } else { obj[key] = value; } return obj; } var _require = require('buffer'), Buffer = _require.Buffer; var _require2 = require('util'), inspect = _require2.inspect; var custom = inspect && inspect.custom || 'inspect'; function copyBuffer(src, target, offset) { Buffer.prototype.copy.call(src, target, offset); } module.exports = /*#__PURE__*/ function () { function BufferList() { this.head = null; this.tail = null; this.length = 0; } var _proto = BufferList.prototype; _proto.push = function push(v) { var entry = { data: v, next: null }; if (this.length > 0) this.tail.next = entry;else this.head = entry; this.tail = entry; ++this.length; }; _proto.unshift = function unshift(v) { var entry = { data: v, next: this.head }; if (this.length === 0) this.tail = entry; this.head = entry; ++this.length; }; _proto.shift = function shift() { if (this.length === 0) return; var ret = this.head.data; if (this.length === 1) this.head = this.tail = null;else this.head = this.head.next; --this.length; return ret; }; _proto.clear = function clear() { this.head = this.tail = null; this.length = 0; }; _proto.join = function join(s) { if (this.length === 0) return ''; var p = this.head; var ret = '' + p.data; while (p = p.next) { ret += s + p.data; } return ret; }; _proto.concat = function concat(n) { if (this.length === 0) return Buffer.alloc(0); var ret = Buffer.allocUnsafe(n >>> 0); var p = this.head; var i = 0; while (p) { copyBuffer(p.data, ret, i); i += p.data.length; p = p.next; } return ret; } // Consumes a specified amount of bytes or characters from the buffered data. ; _proto.consume = function consume(n, hasStrings) { var ret; if (n < this.head.data.length) { // `slice` is the same for buffers and strings. ret = this.head.data.slice(0, n); this.head.data = this.head.data.slice(n); } else if (n === this.head.data.length) { // First chunk is a perfect match. ret = this.shift(); } else { // Result spans more than one buffer. ret = hasStrings ? this._getString(n) : this._getBuffer(n); } return ret; }; _proto.first = function first() { return this.head.data; } // Consumes a specified amount of characters from the buffered data. ; _proto._getString = function _getString(n) { var p = this.head; var c = 1; var ret = p.data; n -= ret.length; while (p = p.next) { var str = p.data; var nb = n > str.length ? str.length : n; if (nb === str.length) ret += str;else ret += str.slice(0, n); n -= nb; if (n === 0) { if (nb === str.length) { ++c; if (p.next) this.head = p.next;else this.head = this.tail = null; } else { this.head = p; p.data = str.slice(nb); } break; } ++c; } this.length -= c; return ret; } // Consumes a specified amount of bytes from the buffered data. ; _proto._getBuffer = function _getBuffer(n) { var ret = Buffer.allocUnsafe(n); var p = this.head; var c = 1; p.data.copy(ret); n -= p.data.length; while (p = p.next) { var buf = p.data; var nb = n > buf.length ? buf.length : n; buf.copy(ret, ret.length - n, 0, nb); n -= nb; if (n === 0) { if (nb === buf.length) { ++c; if (p.next) this.head = p.next;else this.head = this.tail = null; } else { this.head = p; p.data = buf.slice(nb); } break; } ++c; } this.length -= c; return ret; } // Make sure the linked list only shows the minimal necessary information. ; _proto[custom] = function (_, options) { return inspect(this, _objectSpread({}, options, { // Only inspect one level. depth: 0, // It should not recurse. customInspect: false })); }; return BufferList; }(); },{"buffer":48,"util":33}],169:[function(require,module,exports){ (function (process){ 'use strict'; // undocumented cb() API, needed for core, not for public API function destroy(err, cb) { var _this = this; var readableDestroyed = this._readableState && this._readableState.destroyed; var writableDestroyed = this._writableState && this._writableState.destroyed; if (readableDestroyed || writableDestroyed) { if (cb) { cb(err); } else if (err && (!this._writableState || !this._writableState.errorEmitted)) { process.nextTick(emitErrorNT, this, err); } return this; } // we set destroyed to true before firing error callbacks in order // to make it re-entrance safe in case destroy() is called within callbacks if (this._readableState) { this._readableState.destroyed = true; } // if this is a duplex stream mark the writable part as destroyed as well if (this._writableState) { this._writableState.destroyed = true; } this._destroy(err || null, function (err) { if (!cb && err) { process.nextTick(emitErrorAndCloseNT, _this, err); if (_this._writableState) { _this._writableState.errorEmitted = true; } } else if (cb) { process.nextTick(emitCloseNT, _this); cb(err); } else { process.nextTick(emitCloseNT, _this); } }); return this; } function emitErrorAndCloseNT(self, err) { emitErrorNT(self, err); emitCloseNT(self); } function emitCloseNT(self) { if (self._writableState && !self._writableState.emitClose) return; if (self._readableState && !self._readableState.emitClose) return; self.emit('close'); } function undestroy() { if (this._readableState) { this._readableState.destroyed = false; this._readableState.reading = false; this._readableState.ended = false; this._readableState.endEmitted = false; } if (this._writableState) { this._writableState.destroyed = false; this._writableState.ended = false; this._writableState.ending = false; this._writableState.finalCalled = false; this._writableState.prefinished = false; this._writableState.finished = false; this._writableState.errorEmitted = false; } } function emitErrorNT(self, err) { self.emit('error', err); } module.exports = { destroy: destroy, undestroy: undestroy }; }).call(this,require('_process')) },{"_process":133}],170:[function(require,module,exports){ // Ported from https://github.com/mafintosh/end-of-stream with // permission from the author, Mathias Buus (@mafintosh). 'use strict'; var ERR_STREAM_PREMATURE_CLOSE = require('../../../errors').codes.ERR_STREAM_PREMATURE_CLOSE; function once(callback) { var called = false; return function () { if (called) return; called = true; for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) { args[_key] = arguments[_key]; } callback.apply(this, args); }; } function noop() {} function isRequest(stream) { return stream.setHeader && typeof stream.abort === 'function'; } function eos(stream, opts, callback) { if (typeof opts === 'function') return eos(stream, null, opts); if (!opts) opts = {}; callback = once(callback || noop); var readable = opts.readable || opts.readable !== false && stream.readable; var writable = opts.writable || opts.writable !== false && stream.writable; var onlegacyfinish = function onlegacyfinish() { if (!stream.writable) onfinish(); }; var writableEnded = stream._writableState && stream._writableState.finished; var onfinish = function onfinish() { writable = false; writableEnded = true; if (!readable) callback.call(stream); }; var readableEnded = stream._readableState && stream._readableState.endEmitted; var onend = function onend() { readable = false; readableEnded = true; if (!writable) callback.call(stream); }; var onerror = function onerror(err) { callback.call(stream, err); }; var onclose = function onclose() { var err; if (readable && !readableEnded) { if (!stream._readableState || !stream._readableState.ended) err = new ERR_STREAM_PREMATURE_CLOSE(); return callback.call(stream, err); } if (writable && !writableEnded) { if (!stream._writableState || !stream._writableState.ended) err = new ERR_STREAM_PREMATURE_CLOSE(); return callback.call(stream, err); } }; var onrequest = function onrequest() { stream.req.on('finish', onfinish); }; if (isRequest(stream)) { stream.on('complete', onfinish); stream.on('abort', onclose); if (stream.req) onrequest();else stream.on('request', onrequest); } else if (writable && !stream._writableState) { // legacy streams stream.on('end', onlegacyfinish); stream.on('close', onlegacyfinish); } stream.on('end', onend); stream.on('finish', onfinish); if (opts.error !== false) stream.on('error', onerror); stream.on('close', onclose); return function () { stream.removeListener('complete', onfinish); stream.removeListener('abort', onclose); stream.removeListener('request', onrequest); if (stream.req) stream.req.removeListener('finish', onfinish); stream.removeListener('end', onlegacyfinish); stream.removeListener('close', onlegacyfinish); stream.removeListener('finish', onfinish); stream.removeListener('end', onend); stream.removeListener('error', onerror); stream.removeListener('close', onclose); }; } module.exports = eos; },{"../../../errors":160}],171:[function(require,module,exports){ // Ported from https://github.com/mafintosh/pump with // permission from the author, Mathias Buus (@mafintosh). 'use strict'; var eos; function once(callback) { var called = false; return function () { if (called) return; called = true; callback.apply(void 0, arguments); }; } var _require$codes = require('../../../errors').codes, ERR_MISSING_ARGS = _require$codes.ERR_MISSING_ARGS, ERR_STREAM_DESTROYED = _require$codes.ERR_STREAM_DESTROYED; function noop(err) { // Rethrow the error if it exists to avoid swallowing it if (err) throw err; } function isRequest(stream) { return stream.setHeader && typeof stream.abort === 'function'; } function destroyer(stream, reading, writing, callback) { callback = once(callback); var closed = false; stream.on('close', function () { closed = true; }); if (eos === undefined) eos = require('./end-of-stream'); eos(stream, { readable: reading, writable: writing }, function (err) { if (err) return callback(err); closed = true; callback(); }); var destroyed = false; return function (err) { if (closed) return; if (destroyed) return; destroyed = true; // request.destroy just do .end - .abort is what we want if (isRequest(stream)) return stream.abort(); if (typeof stream.destroy === 'function') return stream.destroy(); callback(err || new ERR_STREAM_DESTROYED('pipe')); }; } function call(fn) { fn(); } function pipe(from, to) { return from.pipe(to); } function popCallback(streams) { if (!streams.length) return noop; if (typeof streams[streams.length - 1] !== 'function') return noop; return streams.pop(); } function pipeline() { for (var _len = arguments.length, streams = new Array(_len), _key = 0; _key < _len; _key++) { streams[_key] = arguments[_key]; } var callback = popCallback(streams); if (Array.isArray(streams[0])) streams = streams[0]; if (streams.length < 2) { throw new ERR_MISSING_ARGS('streams'); } var error; var destroys = streams.map(function (stream, i) { var reading = i < streams.length - 1; var writing = i > 0; return destroyer(stream, reading, writing, function (err) { if (!error) error = err; if (err) destroys.forEach(call); if (reading) return; destroys.forEach(call); callback(error); }); }); return streams.reduce(pipe); } module.exports = pipeline; },{"../../../errors":160,"./end-of-stream":170}],172:[function(require,module,exports){ 'use strict'; var ERR_INVALID_OPT_VALUE = require('../../../errors').codes.ERR_INVALID_OPT_VALUE; function highWaterMarkFrom(options, isDuplex, duplexKey) { return options.highWaterMark != null ? options.highWaterMark : isDuplex ? options[duplexKey] : null; } function getHighWaterMark(state, options, duplexKey, isDuplex) { var hwm = highWaterMarkFrom(options, isDuplex, duplexKey); if (hwm != null) { if (!(isFinite(hwm) && Math.floor(hwm) === hwm) || hwm < 0) { var name = isDuplex ? duplexKey : 'highWaterMark'; throw new ERR_INVALID_OPT_VALUE(name, hwm); } return Math.floor(hwm); } // Default value return state.objectMode ? 16 : 16 * 1024; } module.exports = { getHighWaterMark: getHighWaterMark }; },{"../../../errors":160}],173:[function(require,module,exports){ arguments[4][146][0].apply(exports,arguments) },{"dup":146,"events":52}],174:[function(require,module,exports){ exports = module.exports = require('./lib/_stream_readable.js'); exports.Stream = exports; exports.Readable = exports; exports.Writable = require('./lib/_stream_writable.js'); exports.Duplex = require('./lib/_stream_duplex.js'); exports.Transform = require('./lib/_stream_transform.js'); exports.PassThrough = require('./lib/_stream_passthrough.js'); exports.finished = require('./lib/internal/streams/end-of-stream.js'); exports.pipeline = require('./lib/internal/streams/pipeline.js'); },{"./lib/_stream_duplex.js":162,"./lib/_stream_passthrough.js":163,"./lib/_stream_readable.js":164,"./lib/_stream_transform.js":165,"./lib/_stream_writable.js":166,"./lib/internal/streams/end-of-stream.js":170,"./lib/internal/streams/pipeline.js":171}],175:[function(require,module,exports){ arguments[4][148][0].apply(exports,arguments) },{"dup":148,"safe-buffer":154}],176:[function(require,module,exports){ (function (setImmediate,clearImmediate){ var nextTick = require('process/browser.js').nextTick; var apply = Function.prototype.apply; var slice = Array.prototype.slice; var immediateIds = {}; var nextImmediateId = 0; // DOM APIs, for completeness exports.setTimeout = function() { return new Timeout(apply.call(setTimeout, window, arguments), clearTimeout); }; exports.setInterval = function() { return new Timeout(apply.call(setInterval, window, arguments), clearInterval); }; exports.clearTimeout = exports.clearInterval = function(timeout) { timeout.close(); }; function Timeout(id, clearFn) { this._id = id; this._clearFn = clearFn; } Timeout.prototype.unref = Timeout.prototype.ref = function() {}; Timeout.prototype.close = function() { this._clearFn.call(window, this._id); }; // Does not start the time, just sets up the members needed. exports.enroll = function(item, msecs) { clearTimeout(item._idleTimeoutId); item._idleTimeout = msecs; }; exports.unenroll = function(item) { clearTimeout(item._idleTimeoutId); item._idleTimeout = -1; }; exports._unrefActive = exports.active = function(item) { clearTimeout(item._idleTimeoutId); var msecs = item._idleTimeout; if (msecs >= 0) { item._idleTimeoutId = setTimeout(function onTimeout() { if (item._onTimeout) item._onTimeout(); }, msecs); } }; // That's not how node.js implements it but the exposed api is the same. exports.setImmediate = typeof setImmediate === "function" ? setImmediate : function(fn) { var id = nextImmediateId++; var args = arguments.length < 2 ? false : slice.call(arguments, 1); immediateIds[id] = true; nextTick(function onNextTick() { if (immediateIds[id]) { // fn.call() is faster so we optimize for the common use-case // @see http://jsperf.com/call-apply-segu if (args) { fn.apply(null, args); } else { fn.call(null); } // Prevent ids from leaking exports.clearImmediate(id); } }); return id; }; exports.clearImmediate = typeof clearImmediate === "function" ? clearImmediate : function(id) { delete immediateIds[id]; }; }).call(this,require("timers").setImmediate,require("timers").clearImmediate) },{"process/browser.js":133,"timers":176}],177:[function(require,module,exports){ (function (process){ 'use strict'; Object.defineProperty(exports, "__esModule", { value: true }); var _typeof = typeof Symbol === "function" && typeof Symbol.iterator === "symbol" ? function (obj) { return typeof obj; } : function (obj) { return obj && typeof Symbol === "function" && obj.constructor === Symbol && obj !== Symbol.prototype ? "symbol" : typeof obj; }; exports.clone = clone; exports.addLast = addLast; exports.addFirst = addFirst; exports.removeLast = removeLast; exports.removeFirst = removeFirst; exports.insert = insert; exports.removeAt = removeAt; exports.replaceAt = replaceAt; exports.getIn = getIn; exports.set = set; exports.setIn = setIn; exports.update = update; exports.updateIn = updateIn; exports.merge = merge; exports.mergeDeep = mergeDeep; exports.mergeIn = mergeIn; exports.omit = omit; exports.addDefaults = addDefaults; /*! * Timm * * Immutability helpers with fast reads and acceptable writes. * * @copyright Guillermo Grau Panea 2016 * @license MIT */ var INVALID_ARGS = 'INVALID_ARGS'; // =============================================== // ### Helpers // =============================================== function throwStr(msg) { throw new Error(msg); } function getKeysAndSymbols(obj) { var keys = Object.keys(obj); if (Object.getOwnPropertySymbols) { return keys.concat(Object.getOwnPropertySymbols(obj)); } return keys; } var hasOwnProperty = {}.hasOwnProperty; function clone(obj) { if (Array.isArray(obj)) return obj.slice(); var keys = getKeysAndSymbols(obj); var out = {}; for (var i = 0; i < keys.length; i++) { var key = keys[i]; out[key] = obj[key]; } return out; } function doMerge(fAddDefaults, fDeep, first) { var out = first; !(out != null) && throwStr(process.env.NODE_ENV !== 'production' ? 'At least one object should be provided to merge()' : INVALID_ARGS); var fChanged = false; for (var _len = arguments.length, rest = Array(_len > 3 ? _len - 3 : 0), _key = 3; _key < _len; _key++) { rest[_key - 3] = arguments[_key]; } for (var idx = 0; idx < rest.length; idx++) { var obj = rest[idx]; if (obj == null) continue; var keys = getKeysAndSymbols(obj); if (!keys.length) continue; for (var j = 0; j <= keys.length; j++) { var key = keys[j]; if (fAddDefaults && out[key] !== undefined) continue; var nextVal = obj[key]; if (fDeep && isObject(out[key]) && isObject(nextVal)) { nextVal = doMerge(fAddDefaults, fDeep, out[key], nextVal); } if (nextVal === undefined || nextVal === out[key]) continue; if (!fChanged) { fChanged = true; out = clone(out); } out[key] = nextVal; } } return out; } function isObject(o) { var type = typeof o === 'undefined' ? 'undefined' : _typeof(o); return o != null && type === 'object'; } // _deepFreeze = (obj) -> // Object.freeze obj // for key in Object.getOwnPropertyNames obj // val = obj[key] // if isObject(val) and not Object.isFrozen val // _deepFreeze val // obj // =============================================== // -- ### Arrays // =============================================== // -- #### addLast() // -- Returns a new array with an appended item or items. // -- // -- Usage: `addLast(array: Array, val: Array|T): Array` // -- // -- ```js // -- arr = ['a', 'b'] // -- arr2 = addLast(arr, 'c') // -- // ['a', 'b', 'c'] // -- arr2 === arr // -- // false // -- arr3 = addLast(arr, ['c', 'd']) // -- // ['a', 'b', 'c', 'd'] // -- ``` // `array.concat(val)` also handles the scalar case, // but is apparently very slow function addLast(array, val) { if (Array.isArray(val)) return array.concat(val); return array.concat([val]); } // -- #### addFirst() // -- Returns a new array with a prepended item or items. // -- // -- Usage: `addFirst(array: Array, val: Array|T): Array` // -- // -- ```js // -- arr = ['a', 'b'] // -- arr2 = addFirst(arr, 'c') // -- // ['c', 'a', 'b'] // -- arr2 === arr // -- // false // -- arr3 = addFirst(arr, ['c', 'd']) // -- // ['c', 'd', 'a', 'b'] // -- ``` function addFirst(array, val) { if (Array.isArray(val)) return val.concat(array); return [val].concat(array); } // -- #### removeLast() // -- Returns a new array removing the last item. // -- // -- Usage: `removeLast(array: Array): Array` // -- // -- ```js // -- arr = ['a', 'b'] // -- arr2 = removeLast(arr) // -- // ['a'] // -- arr2 === arr // -- // false // -- // -- // The same array is returned if there are no changes: // -- arr3 = [] // -- removeLast(arr3) === arr3 // -- // true // -- ``` function removeLast(array) { if (!array.length) return array; return array.slice(0, array.length - 1); } // -- #### removeFirst() // -- Returns a new array removing the first item. // -- // -- Usage: `removeFirst(array: Array): Array` // -- // -- ```js // -- arr = ['a', 'b'] // -- arr2 = removeFirst(arr) // -- // ['b'] // -- arr2 === arr // -- // false // -- // -- // The same array is returned if there are no changes: // -- arr3 = [] // -- removeFirst(arr3) === arr3 // -- // true // -- ``` function removeFirst(array) { if (!array.length) return array; return array.slice(1); } // -- #### insert() // -- Returns a new array obtained by inserting an item or items // -- at a specified index. // -- // -- Usage: `insert(array: Array, idx: number, val: Array|T): Array` // -- // -- ```js // -- arr = ['a', 'b', 'c'] // -- arr2 = insert(arr, 1, 'd') // -- // ['a', 'd', 'b', 'c'] // -- arr2 === arr // -- // false // -- insert(arr, 1, ['d', 'e']) // -- // ['a', 'd', 'e', 'b', 'c'] // -- ``` function insert(array, idx, val) { return array.slice(0, idx).concat(Array.isArray(val) ? val : [val]).concat(array.slice(idx)); } // -- #### removeAt() // -- Returns a new array obtained by removing an item at // -- a specified index. // -- // -- Usage: `removeAt(array: Array, idx: number): Array` // -- // -- ```js // -- arr = ['a', 'b', 'c'] // -- arr2 = removeAt(arr, 1) // -- // ['a', 'c'] // -- arr2 === arr // -- // false // -- // -- // The same array is returned if there are no changes: // -- removeAt(arr, 4) === arr // -- // true // -- ``` function removeAt(array, idx) { if (idx >= array.length || idx < 0) return array; return array.slice(0, idx).concat(array.slice(idx + 1)); } // -- #### replaceAt() // -- Returns a new array obtained by replacing an item at // -- a specified index. If the provided item is the same as // -- (*referentially equal to*) the previous item at that position, // -- the original array is returned. // -- // -- Usage: `replaceAt(array: Array, idx: number, newItem: T): Array` // -- // -- ```js // -- arr = ['a', 'b', 'c'] // -- arr2 = replaceAt(arr, 1, 'd') // -- // ['a', 'd', 'c'] // -- arr2 === arr // -- // false // -- // -- // The same object is returned if there are no changes: // -- replaceAt(arr, 1, 'b') === arr // -- // true // -- ``` function replaceAt(array, idx, newItem) { if (array[idx] === newItem) return array; var len = array.length; var result = Array(len); for (var i = 0; i < len; i++) { result[i] = array[i]; } result[idx] = newItem; return result; } // =============================================== // -- ### Collections (objects and arrays) // =============================================== // -- The following types are used throughout this section // -- ```js // -- type ArrayOrObject = Array|Object; // -- type Key = number|string; // -- ``` // -- #### getIn() // -- Returns a value from an object at a given path. Works with // -- nested arrays and objects. If the path does not exist, it returns // -- `undefined`. // -- // -- Usage: `getIn(obj: ?ArrayOrObject, path: Array): any` // -- // -- ```js // -- obj = { a: 1, b: 2, d: { d1: 3, d2: 4 }, e: ['a', 'b', 'c'] } // -- getIn(obj, ['d', 'd1']) // -- // 3 // -- getIn(obj, ['e', 1]) // -- // 'b' // -- ``` function getIn(obj, path) { !Array.isArray(path) && throwStr(process.env.NODE_ENV !== 'production' ? 'A path array should be provided when calling getIn()' : INVALID_ARGS); if (obj == null) return undefined; var ptr = obj; for (var i = 0; i < path.length; i++) { var key = path[i]; ptr = ptr != null ? ptr[key] : undefined; if (ptr === undefined) return ptr; } return ptr; } // -- #### set() // -- Returns a new object with a modified attribute. // -- If the provided value is the same as (*referentially equal to*) // -- the previous value, the original object is returned. // -- // -- Usage: `set(obj: ?T, key: Key, val: any): T` // -- // -- ```js // -- obj = { a: 1, b: 2, c: 3 } // -- obj2 = set(obj, 'b', 5) // -- // { a: 1, b: 5, c: 3 } // -- obj2 === obj // -- // false // -- // -- // The same object is returned if there are no changes: // -- set(obj, 'b', 2) === obj // -- // true // -- ``` function set(obj, key, val) { var fallback = typeof key === 'number' ? [] : {}; var finalObj = obj == null ? fallback : obj; if (finalObj[key] === val) return finalObj; var obj2 = clone(finalObj); obj2[key] = val; return obj2; } // -- #### setIn() // -- Returns a new object with a modified **nested** attribute. // -- // -- Notes: // -- // -- * If the provided value is the same as (*referentially equal to*) // -- the previous value, the original object is returned. // -- * If the path does not exist, it will be created before setting // -- the new value. // -- // -- Usage: `setIn(obj: T, path: Array, val: any): T` // -- // -- ```js // -- obj = { a: 1, b: 2, d: { d1: 3, d2: 4 }, e: { e1: 'foo', e2: 'bar' } } // -- obj2 = setIn(obj, ['d', 'd1'], 4) // -- // { a: 1, b: 2, d: { d1: 4, d2: 4 }, e: { e1: 'foo', e2: 'bar' } } // -- obj2 === obj // -- // false // -- obj2.d === obj.d // -- // false // -- obj2.e === obj.e // -- // true // -- // -- // The same object is returned if there are no changes: // -- obj3 = setIn(obj, ['d', 'd1'], 3) // -- // { a: 1, b: 2, d: { d1: 3, d2: 4 }, e: { e1: 'foo', e2: 'bar' } } // -- obj3 === obj // -- // true // -- obj3.d === obj.d // -- // true // -- obj3.e === obj.e // -- // true // -- // -- // ... unknown paths create intermediate keys. Numeric segments are treated as array indices: // -- setIn({ a: 3 }, ['unknown', 0, 'path'], 4) // -- // { a: 3, unknown: [{ path: 4 }] } // -- ``` function doSetIn(obj, path, val, idx) { var newValue = void 0; var key = path[idx]; if (idx === path.length - 1) { newValue = val; } else { var nestedObj = isObject(obj) && isObject(obj[key]) ? obj[key] : typeof path[idx + 1] === 'number' ? [] : {}; newValue = doSetIn(nestedObj, path, val, idx + 1); } return set(obj, key, newValue); } function setIn(obj, path, val) { if (!path.length) return val; return doSetIn(obj, path, val, 0); } // -- #### update() // -- Returns a new object with a modified attribute, // -- calculated via a user-provided callback based on the current value. // -- If the calculated value is the same as (*referentially equal to*) // -- the previous value, the original object is returned. // -- // -- Usage: `update(obj: T, key: Key, // -- fnUpdate: (prevValue: any) => any): T` // -- // -- ```js // -- obj = { a: 1, b: 2, c: 3 } // -- obj2 = update(obj, 'b', (val) => val + 1) // -- // { a: 1, b: 3, c: 3 } // -- obj2 === obj // -- // false // -- // -- // The same object is returned if there are no changes: // -- update(obj, 'b', (val) => val) === obj // -- // true // -- ``` function update(obj, key, fnUpdate) { var prevVal = obj == null ? undefined : obj[key]; var nextVal = fnUpdate(prevVal); return set(obj, key, nextVal); } // -- #### updateIn() // -- Returns a new object with a modified **nested** attribute, // -- calculated via a user-provided callback based on the current value. // -- If the calculated value is the same as (*referentially equal to*) // -- the previous value, the original object is returned. // -- // -- Usage: `updateIn(obj: T, path: Array, // -- fnUpdate: (prevValue: any) => any): T` // -- // -- ```js // -- obj = { a: 1, d: { d1: 3, d2: 4 } } // -- obj2 = updateIn(obj, ['d', 'd1'], (val) => val + 1) // -- // { a: 1, d: { d1: 4, d2: 4 } } // -- obj2 === obj // -- // false // -- // -- // The same object is returned if there are no changes: // -- obj3 = updateIn(obj, ['d', 'd1'], (val) => val) // -- // { a: 1, d: { d1: 3, d2: 4 } } // -- obj3 === obj // -- // true // -- ``` function updateIn(obj, path, fnUpdate) { var prevVal = getIn(obj, path); var nextVal = fnUpdate(prevVal); return setIn(obj, path, nextVal); } // -- #### merge() // -- Returns a new object built as follows: the overlapping keys from the // -- second one overwrite the corresponding entries from the first one. // -- Similar to `Object.assign()`, but immutable. // -- // -- Usage: // -- // -- * `merge(obj1: Object, obj2: ?Object): Object` // -- * `merge(obj1: Object, ...objects: Array): Object` // -- // -- The unmodified `obj1` is returned if `obj2` does not *provide something // -- new to* `obj1`, i.e. if either of the following // -- conditions are true: // -- // -- * `obj2` is `null` or `undefined` // -- * `obj2` is an object, but it is empty // -- * All attributes of `obj2` are `undefined` // -- * All attributes of `obj2` are referentially equal to the // -- corresponding attributes of `obj1` // -- // -- Note that `undefined` attributes in `obj2` do not modify the // -- corresponding attributes in `obj1`. // -- // -- ```js // -- obj1 = { a: 1, b: 2, c: 3 } // -- obj2 = { c: 4, d: 5 } // -- obj3 = merge(obj1, obj2) // -- // { a: 1, b: 2, c: 4, d: 5 } // -- obj3 === obj1 // -- // false // -- // -- // The same object is returned if there are no changes: // -- merge(obj1, { c: 3 }) === obj1 // -- // true // -- ``` function merge(a, b, c, d, e, f) { for (var _len2 = arguments.length, rest = Array(_len2 > 6 ? _len2 - 6 : 0), _key2 = 6; _key2 < _len2; _key2++) { rest[_key2 - 6] = arguments[_key2]; } return rest.length ? doMerge.call.apply(doMerge, [null, false, false, a, b, c, d, e, f].concat(rest)) : doMerge(false, false, a, b, c, d, e, f); } // -- #### mergeDeep() // -- Returns a new object built as follows: the overlapping keys from the // -- second one overwrite the corresponding entries from the first one. // -- If both the first and second entries are objects they are merged recursively. // -- Similar to `Object.assign()`, but immutable, and deeply merging. // -- // -- Usage: // -- // -- * `mergeDeep(obj1: Object, obj2: ?Object): Object` // -- * `mergeDeep(obj1: Object, ...objects: Array): Object` // -- // -- The unmodified `obj1` is returned if `obj2` does not *provide something // -- new to* `obj1`, i.e. if either of the following // -- conditions are true: // -- // -- * `obj2` is `null` or `undefined` // -- * `obj2` is an object, but it is empty // -- * All attributes of `obj2` are `undefined` // -- * All attributes of `obj2` are referentially equal to the // -- corresponding attributes of `obj1` // -- // -- Note that `undefined` attributes in `obj2` do not modify the // -- corresponding attributes in `obj1`. // -- // -- ```js // -- obj1 = { a: 1, b: 2, c: { a: 1 } } // -- obj2 = { b: 3, c: { b: 2 } } // -- obj3 = mergeDeep(obj1, obj2) // -- // { a: 1, b: 3, c: { a: 1, b: 2 } } // -- obj3 === obj1 // -- // false // -- // -- // The same object is returned if there are no changes: // -- mergeDeep(obj1, { c: { a: 1 } }) === obj1 // -- // true // -- ``` function mergeDeep(a, b, c, d, e, f) { for (var _len3 = arguments.length, rest = Array(_len3 > 6 ? _len3 - 6 : 0), _key3 = 6; _key3 < _len3; _key3++) { rest[_key3 - 6] = arguments[_key3]; } return rest.length ? doMerge.call.apply(doMerge, [null, false, true, a, b, c, d, e, f].concat(rest)) : doMerge(false, true, a, b, c, d, e, f); } // -- #### mergeIn() // -- Similar to `merge()`, but merging the value at a given nested path. // -- Note that the returned type is the same as that of the first argument. // -- // -- Usage: // -- // -- * `mergeIn(obj1: T, path: Array, obj2: ?Object): T` // -- * `mergeIn(obj1: T, path: Array, // -- ...objects: Array): T` // -- // -- ```js // -- obj1 = { a: 1, d: { b: { d1: 3, d2: 4 } } } // -- obj2 = { d3: 5 } // -- obj3 = mergeIn(obj1, ['d', 'b'], obj2) // -- // { a: 1, d: { b: { d1: 3, d2: 4, d3: 5 } } } // -- obj3 === obj1 // -- // false // -- // -- // The same object is returned if there are no changes: // -- mergeIn(obj1, ['d', 'b'], { d2: 4 }) === obj1 // -- // true // -- ``` function mergeIn(a, path, b, c, d, e, f) { var prevVal = getIn(a, path); if (prevVal == null) prevVal = {}; var nextVal = void 0; for (var _len4 = arguments.length, rest = Array(_len4 > 7 ? _len4 - 7 : 0), _key4 = 7; _key4 < _len4; _key4++) { rest[_key4 - 7] = arguments[_key4]; } if (rest.length) { nextVal = doMerge.call.apply(doMerge, [null, false, false, prevVal, b, c, d, e, f].concat(rest)); } else { nextVal = doMerge(false, false, prevVal, b, c, d, e, f); } return setIn(a, path, nextVal); } // -- #### omit() // -- Returns an object excluding one or several attributes. // -- // -- Usage: `omit(obj: Object, attrs: Array|string): Object` // // -- ```js // -- obj = { a: 1, b: 2, c: 3, d: 4 } // -- omit(obj, 'a') // -- // { b: 2, c: 3, d: 4 } // -- omit(obj, ['b', 'c']) // -- // { a: 1, d: 4 } // -- // -- // The same object is returned if there are no changes: // -- omit(obj, 'z') === obj1 // -- // true // -- ``` function omit(obj, attrs) { var omitList = Array.isArray(attrs) ? attrs : [attrs]; var fDoSomething = false; for (var i = 0; i < omitList.length; i++) { if (hasOwnProperty.call(obj, omitList[i])) { fDoSomething = true; break; } } if (!fDoSomething) return obj; var out = {}; var keys = getKeysAndSymbols(obj); for (var _i = 0; _i < keys.length; _i++) { var key = keys[_i]; if (omitList.indexOf(key) >= 0) continue; out[key] = obj[key]; } return out; } // -- #### addDefaults() // -- Returns a new object built as follows: `undefined` keys in the first one // -- are filled in with the corresponding values from the second one // -- (even if they are `null`). // -- // -- Usage: // -- // -- * `addDefaults(obj: Object, defaults: Object): Object` // -- * `addDefaults(obj: Object, ...defaultObjects: Array): Object` // -- // -- ```js // -- obj1 = { a: 1, b: 2, c: 3 } // -- obj2 = { c: 4, d: 5, e: null } // -- obj3 = addDefaults(obj1, obj2) // -- // { a: 1, b: 2, c: 3, d: 5, e: null } // -- obj3 === obj1 // -- // false // -- // -- // The same object is returned if there are no changes: // -- addDefaults(obj1, { c: 4 }) === obj1 // -- // true // -- ``` function addDefaults(a, b, c, d, e, f) { for (var _len5 = arguments.length, rest = Array(_len5 > 6 ? _len5 - 6 : 0), _key5 = 6; _key5 < _len5; _key5++) { rest[_key5 - 6] = arguments[_key5]; } return rest.length ? doMerge.call.apply(doMerge, [null, true, false, a, b, c, d, e, f].concat(rest)) : doMerge(true, false, a, b, c, d, e, f); } // =============================================== // ### Public API // =============================================== var timm = { clone: clone, addLast: addLast, addFirst: addFirst, removeLast: removeLast, removeFirst: removeFirst, insert: insert, removeAt: removeAt, replaceAt: replaceAt, getIn: getIn, // eslint-disable-next-line object-shorthand set: set, // so that flow doesn't complain setIn: setIn, update: update, updateIn: updateIn, merge: merge, mergeDeep: mergeDeep, mergeIn: mergeIn, omit: omit, addDefaults: addDefaults }; exports.default = timm; }).call(this,require('_process')) },{"_process":133}],178:[function(require,module,exports){ // TinyColor v1.4.1 // https://github.com/bgrins/TinyColor // Brian Grinstead, MIT License (function(Math) { var trimLeft = /^\s+/, trimRight = /\s+$/, tinyCounter = 0, mathRound = Math.round, mathMin = Math.min, mathMax = Math.max, mathRandom = Math.random; function tinycolor (color, opts) { color = (color) ? color : ''; opts = opts || { }; // If input is already a tinycolor, return itself if (color instanceof tinycolor) { return color; } // If we are called as a function, call using new instead if (!(this instanceof tinycolor)) { return new tinycolor(color, opts); } var rgb = inputToRGB(color); this._originalInput = color, this._r = rgb.r, this._g = rgb.g, this._b = rgb.b, this._a = rgb.a, this._roundA = mathRound(100*this._a) / 100, this._format = opts.format || rgb.format; this._gradientType = opts.gradientType; // Don't let the range of [0,255] come back in [0,1]. // Potentially lose a little bit of precision here, but will fix issues where // .5 gets interpreted as half of the total, instead of half of 1 // If it was supposed to be 128, this was already taken care of by `inputToRgb` if (this._r < 1) { this._r = mathRound(this._r); } if (this._g < 1) { this._g = mathRound(this._g); } if (this._b < 1) { this._b = mathRound(this._b); } this._ok = rgb.ok; this._tc_id = tinyCounter++; } tinycolor.prototype = { isDark: function() { return this.getBrightness() < 128; }, isLight: function() { return !this.isDark(); }, isValid: function() { return this._ok; }, getOriginalInput: function() { return this._originalInput; }, getFormat: function() { return this._format; }, getAlpha: function() { return this._a; }, getBrightness: function() { //http://www.w3.org/TR/AERT#color-contrast var rgb = this.toRgb(); return (rgb.r * 299 + rgb.g * 587 + rgb.b * 114) / 1000; }, getLuminance: function() { //http://www.w3.org/TR/2008/REC-WCAG20-20081211/#relativeluminancedef var rgb = this.toRgb(); var RsRGB, GsRGB, BsRGB, R, G, B; RsRGB = rgb.r/255; GsRGB = rgb.g/255; BsRGB = rgb.b/255; if (RsRGB <= 0.03928) {R = RsRGB / 12.92;} else {R = Math.pow(((RsRGB + 0.055) / 1.055), 2.4);} if (GsRGB <= 0.03928) {G = GsRGB / 12.92;} else {G = Math.pow(((GsRGB + 0.055) / 1.055), 2.4);} if (BsRGB <= 0.03928) {B = BsRGB / 12.92;} else {B = Math.pow(((BsRGB + 0.055) / 1.055), 2.4);} return (0.2126 * R) + (0.7152 * G) + (0.0722 * B); }, setAlpha: function(value) { this._a = boundAlpha(value); this._roundA = mathRound(100*this._a) / 100; return this; }, toHsv: function() { var hsv = rgbToHsv(this._r, this._g, this._b); return { h: hsv.h * 360, s: hsv.s, v: hsv.v, a: this._a }; }, toHsvString: function() { var hsv = rgbToHsv(this._r, this._g, this._b); var h = mathRound(hsv.h * 360), s = mathRound(hsv.s * 100), v = mathRound(hsv.v * 100); return (this._a == 1) ? "hsv(" + h + ", " + s + "%, " + v + "%)" : "hsva(" + h + ", " + s + "%, " + v + "%, "+ this._roundA + ")"; }, toHsl: function() { var hsl = rgbToHsl(this._r, this._g, this._b); return { h: hsl.h * 360, s: hsl.s, l: hsl.l, a: this._a }; }, toHslString: function() { var hsl = rgbToHsl(this._r, this._g, this._b); var h = mathRound(hsl.h * 360), s = mathRound(hsl.s * 100), l = mathRound(hsl.l * 100); return (this._a == 1) ? "hsl(" + h + ", " + s + "%, " + l + "%)" : "hsla(" + h + ", " + s + "%, " + l + "%, "+ this._roundA + ")"; }, toHex: function(allow3Char) { return rgbToHex(this._r, this._g, this._b, allow3Char); }, toHexString: function(allow3Char) { return '#' + this.toHex(allow3Char); }, toHex8: function(allow4Char) { return rgbaToHex(this._r, this._g, this._b, this._a, allow4Char); }, toHex8String: function(allow4Char) { return '#' + this.toHex8(allow4Char); }, toRgb: function() { return { r: mathRound(this._r), g: mathRound(this._g), b: mathRound(this._b), a: this._a }; }, toRgbString: function() { return (this._a == 1) ? "rgb(" + mathRound(this._r) + ", " + mathRound(this._g) + ", " + mathRound(this._b) + ")" : "rgba(" + mathRound(this._r) + ", " + mathRound(this._g) + ", " + mathRound(this._b) + ", " + this._roundA + ")"; }, toPercentageRgb: function() { return { r: mathRound(bound01(this._r, 255) * 100) + "%", g: mathRound(bound01(this._g, 255) * 100) + "%", b: mathRound(bound01(this._b, 255) * 100) + "%", a: this._a }; }, toPercentageRgbString: function() { return (this._a == 1) ? "rgb(" + mathRound(bound01(this._r, 255) * 100) + "%, " + mathRound(bound01(this._g, 255) * 100) + "%, " + mathRound(bound01(this._b, 255) * 100) + "%)" : "rgba(" + mathRound(bound01(this._r, 255) * 100) + "%, " + mathRound(bound01(this._g, 255) * 100) + "%, " + mathRound(bound01(this._b, 255) * 100) + "%, " + this._roundA + ")"; }, toName: function() { if (this._a === 0) { return "transparent"; } if (this._a < 1) { return false; } return hexNames[rgbToHex(this._r, this._g, this._b, true)] || false; }, toFilter: function(secondColor) { var hex8String = '#' + rgbaToArgbHex(this._r, this._g, this._b, this._a); var secondHex8String = hex8String; var gradientType = this._gradientType ? "GradientType = 1, " : ""; if (secondColor) { var s = tinycolor(secondColor); secondHex8String = '#' + rgbaToArgbHex(s._r, s._g, s._b, s._a); } return "progid:DXImageTransform.Microsoft.gradient("+gradientType+"startColorstr="+hex8String+",endColorstr="+secondHex8String+")"; }, toString: function(format) { var formatSet = !!format; format = format || this._format; var formattedString = false; var hasAlpha = this._a < 1 && this._a >= 0; var needsAlphaFormat = !formatSet && hasAlpha && (format === "hex" || format === "hex6" || format === "hex3" || format === "hex4" || format === "hex8" || format === "name"); if (needsAlphaFormat) { // Special case for "transparent", all other non-alpha formats // will return rgba when there is transparency. if (format === "name" && this._a === 0) { return this.toName(); } return this.toRgbString(); } if (format === "rgb") { formattedString = this.toRgbString(); } if (format === "prgb") { formattedString = this.toPercentageRgbString(); } if (format === "hex" || format === "hex6") { formattedString = this.toHexString(); } if (format === "hex3") { formattedString = this.toHexString(true); } if (format === "hex4") { formattedString = this.toHex8String(true); } if (format === "hex8") { formattedString = this.toHex8String(); } if (format === "name") { formattedString = this.toName(); } if (format === "hsl") { formattedString = this.toHslString(); } if (format === "hsv") { formattedString = this.toHsvString(); } return formattedString || this.toHexString(); }, clone: function() { return tinycolor(this.toString()); }, _applyModification: function(fn, args) { var color = fn.apply(null, [this].concat([].slice.call(args))); this._r = color._r; this._g = color._g; this._b = color._b; this.setAlpha(color._a); return this; }, lighten: function() { return this._applyModification(lighten, arguments); }, brighten: function() { return this._applyModification(brighten, arguments); }, darken: function() { return this._applyModification(darken, arguments); }, desaturate: function() { return this._applyModification(desaturate, arguments); }, saturate: function() { return this._applyModification(saturate, arguments); }, greyscale: function() { return this._applyModification(greyscale, arguments); }, spin: function() { return this._applyModification(spin, arguments); }, _applyCombination: function(fn, args) { return fn.apply(null, [this].concat([].slice.call(args))); }, analogous: function() { return this._applyCombination(analogous, arguments); }, complement: function() { return this._applyCombination(complement, arguments); }, monochromatic: function() { return this._applyCombination(monochromatic, arguments); }, splitcomplement: function() { return this._applyCombination(splitcomplement, arguments); }, triad: function() { return this._applyCombination(triad, arguments); }, tetrad: function() { return this._applyCombination(tetrad, arguments); } }; // If input is an object, force 1 into "1.0" to handle ratios properly // String input requires "1.0" as input, so 1 will be treated as 1 tinycolor.fromRatio = function(color, opts) { if (typeof color == "object") { var newColor = {}; for (var i in color) { if (color.hasOwnProperty(i)) { if (i === "a") { newColor[i] = color[i]; } else { newColor[i] = convertToPercentage(color[i]); } } } color = newColor; } return tinycolor(color, opts); }; // Given a string or object, convert that input to RGB // Possible string inputs: // // "red" // "#f00" or "f00" // "#ff0000" or "ff0000" // "#ff000000" or "ff000000" // "rgb 255 0 0" or "rgb (255, 0, 0)" // "rgb 1.0 0 0" or "rgb (1, 0, 0)" // "rgba (255, 0, 0, 1)" or "rgba 255, 0, 0, 1" // "rgba (1.0, 0, 0, 1)" or "rgba 1.0, 0, 0, 1" // "hsl(0, 100%, 50%)" or "hsl 0 100% 50%" // "hsla(0, 100%, 50%, 1)" or "hsla 0 100% 50%, 1" // "hsv(0, 100%, 100%)" or "hsv 0 100% 100%" // function inputToRGB(color) { var rgb = { r: 0, g: 0, b: 0 }; var a = 1; var s = null; var v = null; var l = null; var ok = false; var format = false; if (typeof color == "string") { color = stringInputToObject(color); } if (typeof color == "object") { if (isValidCSSUnit(color.r) && isValidCSSUnit(color.g) && isValidCSSUnit(color.b)) { rgb = rgbToRgb(color.r, color.g, color.b); ok = true; format = String(color.r).substr(-1) === "%" ? "prgb" : "rgb"; } else if (isValidCSSUnit(color.h) && isValidCSSUnit(color.s) && isValidCSSUnit(color.v)) { s = convertToPercentage(color.s); v = convertToPercentage(color.v); rgb = hsvToRgb(color.h, s, v); ok = true; format = "hsv"; } else if (isValidCSSUnit(color.h) && isValidCSSUnit(color.s) && isValidCSSUnit(color.l)) { s = convertToPercentage(color.s); l = convertToPercentage(color.l); rgb = hslToRgb(color.h, s, l); ok = true; format = "hsl"; } if (color.hasOwnProperty("a")) { a = color.a; } } a = boundAlpha(a); return { ok: ok, format: color.format || format, r: mathMin(255, mathMax(rgb.r, 0)), g: mathMin(255, mathMax(rgb.g, 0)), b: mathMin(255, mathMax(rgb.b, 0)), a: a }; } // Conversion Functions // -------------------- // `rgbToHsl`, `rgbToHsv`, `hslToRgb`, `hsvToRgb` modified from: // // `rgbToRgb` // Handle bounds / percentage checking to conform to CSS color spec // // *Assumes:* r, g, b in [0, 255] or [0, 1] // *Returns:* { r, g, b } in [0, 255] function rgbToRgb(r, g, b){ return { r: bound01(r, 255) * 255, g: bound01(g, 255) * 255, b: bound01(b, 255) * 255 }; } // `rgbToHsl` // Converts an RGB color value to HSL. // *Assumes:* r, g, and b are contained in [0, 255] or [0, 1] // *Returns:* { h, s, l } in [0,1] function rgbToHsl(r, g, b) { r = bound01(r, 255); g = bound01(g, 255); b = bound01(b, 255); var max = mathMax(r, g, b), min = mathMin(r, g, b); var h, s, l = (max + min) / 2; if(max == min) { h = s = 0; // achromatic } else { var d = max - min; s = l > 0.5 ? d / (2 - max - min) : d / (max + min); switch(max) { case r: h = (g - b) / d + (g < b ? 6 : 0); break; case g: h = (b - r) / d + 2; break; case b: h = (r - g) / d + 4; break; } h /= 6; } return { h: h, s: s, l: l }; } // `hslToRgb` // Converts an HSL color value to RGB. // *Assumes:* h is contained in [0, 1] or [0, 360] and s and l are contained [0, 1] or [0, 100] // *Returns:* { r, g, b } in the set [0, 255] function hslToRgb(h, s, l) { var r, g, b; h = bound01(h, 360); s = bound01(s, 100); l = bound01(l, 100); function hue2rgb(p, q, t) { if(t < 0) t += 1; if(t > 1) t -= 1; if(t < 1/6) return p + (q - p) * 6 * t; if(t < 1/2) return q; if(t < 2/3) return p + (q - p) * (2/3 - t) * 6; return p; } if(s === 0) { r = g = b = l; // achromatic } else { var q = l < 0.5 ? l * (1 + s) : l + s - l * s; var p = 2 * l - q; r = hue2rgb(p, q, h + 1/3); g = hue2rgb(p, q, h); b = hue2rgb(p, q, h - 1/3); } return { r: r * 255, g: g * 255, b: b * 255 }; } // `rgbToHsv` // Converts an RGB color value to HSV // *Assumes:* r, g, and b are contained in the set [0, 255] or [0, 1] // *Returns:* { h, s, v } in [0,1] function rgbToHsv(r, g, b) { r = bound01(r, 255); g = bound01(g, 255); b = bound01(b, 255); var max = mathMax(r, g, b), min = mathMin(r, g, b); var h, s, v = max; var d = max - min; s = max === 0 ? 0 : d / max; if(max == min) { h = 0; // achromatic } else { switch(max) { case r: h = (g - b) / d + (g < b ? 6 : 0); break; case g: h = (b - r) / d + 2; break; case b: h = (r - g) / d + 4; break; } h /= 6; } return { h: h, s: s, v: v }; } // `hsvToRgb` // Converts an HSV color value to RGB. // *Assumes:* h is contained in [0, 1] or [0, 360] and s and v are contained in [0, 1] or [0, 100] // *Returns:* { r, g, b } in the set [0, 255] function hsvToRgb(h, s, v) { h = bound01(h, 360) * 6; s = bound01(s, 100); v = bound01(v, 100); var i = Math.floor(h), f = h - i, p = v * (1 - s), q = v * (1 - f * s), t = v * (1 - (1 - f) * s), mod = i % 6, r = [v, q, p, p, t, v][mod], g = [t, v, v, q, p, p][mod], b = [p, p, t, v, v, q][mod]; return { r: r * 255, g: g * 255, b: b * 255 }; } // `rgbToHex` // Converts an RGB color to hex // Assumes r, g, and b are contained in the set [0, 255] // Returns a 3 or 6 character hex function rgbToHex(r, g, b, allow3Char) { var hex = [ pad2(mathRound(r).toString(16)), pad2(mathRound(g).toString(16)), pad2(mathRound(b).toString(16)) ]; // Return a 3 character hex if possible if (allow3Char && hex[0].charAt(0) == hex[0].charAt(1) && hex[1].charAt(0) == hex[1].charAt(1) && hex[2].charAt(0) == hex[2].charAt(1)) { return hex[0].charAt(0) + hex[1].charAt(0) + hex[2].charAt(0); } return hex.join(""); } // `rgbaToHex` // Converts an RGBA color plus alpha transparency to hex // Assumes r, g, b are contained in the set [0, 255] and // a in [0, 1]. Returns a 4 or 8 character rgba hex function rgbaToHex(r, g, b, a, allow4Char) { var hex = [ pad2(mathRound(r).toString(16)), pad2(mathRound(g).toString(16)), pad2(mathRound(b).toString(16)), pad2(convertDecimalToHex(a)) ]; // Return a 4 character hex if possible if (allow4Char && hex[0].charAt(0) == hex[0].charAt(1) && hex[1].charAt(0) == hex[1].charAt(1) && hex[2].charAt(0) == hex[2].charAt(1) && hex[3].charAt(0) == hex[3].charAt(1)) { return hex[0].charAt(0) + hex[1].charAt(0) + hex[2].charAt(0) + hex[3].charAt(0); } return hex.join(""); } // `rgbaToArgbHex` // Converts an RGBA color to an ARGB Hex8 string // Rarely used, but required for "toFilter()" function rgbaToArgbHex(r, g, b, a) { var hex = [ pad2(convertDecimalToHex(a)), pad2(mathRound(r).toString(16)), pad2(mathRound(g).toString(16)), pad2(mathRound(b).toString(16)) ]; return hex.join(""); } // `equals` // Can be called with any tinycolor input tinycolor.equals = function (color1, color2) { if (!color1 || !color2) { return false; } return tinycolor(color1).toRgbString() == tinycolor(color2).toRgbString(); }; tinycolor.random = function() { return tinycolor.fromRatio({ r: mathRandom(), g: mathRandom(), b: mathRandom() }); }; // Modification Functions // ---------------------- // Thanks to less.js for some of the basics here // function desaturate(color, amount) { amount = (amount === 0) ? 0 : (amount || 10); var hsl = tinycolor(color).toHsl(); hsl.s -= amount / 100; hsl.s = clamp01(hsl.s); return tinycolor(hsl); } function saturate(color, amount) { amount = (amount === 0) ? 0 : (amount || 10); var hsl = tinycolor(color).toHsl(); hsl.s += amount / 100; hsl.s = clamp01(hsl.s); return tinycolor(hsl); } function greyscale(color) { return tinycolor(color).desaturate(100); } function lighten (color, amount) { amount = (amount === 0) ? 0 : (amount || 10); var hsl = tinycolor(color).toHsl(); hsl.l += amount / 100; hsl.l = clamp01(hsl.l); return tinycolor(hsl); } function brighten(color, amount) { amount = (amount === 0) ? 0 : (amount || 10); var rgb = tinycolor(color).toRgb(); rgb.r = mathMax(0, mathMin(255, rgb.r - mathRound(255 * - (amount / 100)))); rgb.g = mathMax(0, mathMin(255, rgb.g - mathRound(255 * - (amount / 100)))); rgb.b = mathMax(0, mathMin(255, rgb.b - mathRound(255 * - (amount / 100)))); return tinycolor(rgb); } function darken (color, amount) { amount = (amount === 0) ? 0 : (amount || 10); var hsl = tinycolor(color).toHsl(); hsl.l -= amount / 100; hsl.l = clamp01(hsl.l); return tinycolor(hsl); } // Spin takes a positive or negative amount within [-360, 360] indicating the change of hue. // Values outside of this range will be wrapped into this range. function spin(color, amount) { var hsl = tinycolor(color).toHsl(); var hue = (hsl.h + amount) % 360; hsl.h = hue < 0 ? 360 + hue : hue; return tinycolor(hsl); } // Combination Functions // --------------------- // Thanks to jQuery xColor for some of the ideas behind these // function complement(color) { var hsl = tinycolor(color).toHsl(); hsl.h = (hsl.h + 180) % 360; return tinycolor(hsl); } function triad(color) { var hsl = tinycolor(color).toHsl(); var h = hsl.h; return [ tinycolor(color), tinycolor({ h: (h + 120) % 360, s: hsl.s, l: hsl.l }), tinycolor({ h: (h + 240) % 360, s: hsl.s, l: hsl.l }) ]; } function tetrad(color) { var hsl = tinycolor(color).toHsl(); var h = hsl.h; return [ tinycolor(color), tinycolor({ h: (h + 90) % 360, s: hsl.s, l: hsl.l }), tinycolor({ h: (h + 180) % 360, s: hsl.s, l: hsl.l }), tinycolor({ h: (h + 270) % 360, s: hsl.s, l: hsl.l }) ]; } function splitcomplement(color) { var hsl = tinycolor(color).toHsl(); var h = hsl.h; return [ tinycolor(color), tinycolor({ h: (h + 72) % 360, s: hsl.s, l: hsl.l}), tinycolor({ h: (h + 216) % 360, s: hsl.s, l: hsl.l}) ]; } function analogous(color, results, slices) { results = results || 6; slices = slices || 30; var hsl = tinycolor(color).toHsl(); var part = 360 / slices; var ret = [tinycolor(color)]; for (hsl.h = ((hsl.h - (part * results >> 1)) + 720) % 360; --results; ) { hsl.h = (hsl.h + part) % 360; ret.push(tinycolor(hsl)); } return ret; } function monochromatic(color, results) { results = results || 6; var hsv = tinycolor(color).toHsv(); var h = hsv.h, s = hsv.s, v = hsv.v; var ret = []; var modification = 1 / results; while (results--) { ret.push(tinycolor({ h: h, s: s, v: v})); v = (v + modification) % 1; } return ret; } // Utility Functions // --------------------- tinycolor.mix = function(color1, color2, amount) { amount = (amount === 0) ? 0 : (amount || 50); var rgb1 = tinycolor(color1).toRgb(); var rgb2 = tinycolor(color2).toRgb(); var p = amount / 100; var rgba = { r: ((rgb2.r - rgb1.r) * p) + rgb1.r, g: ((rgb2.g - rgb1.g) * p) + rgb1.g, b: ((rgb2.b - rgb1.b) * p) + rgb1.b, a: ((rgb2.a - rgb1.a) * p) + rgb1.a }; return tinycolor(rgba); }; // Readability Functions // --------------------- // false // tinycolor.isReadable("#000", "#111",{level:"AA",size:"large"}) => false tinycolor.isReadable = function(color1, color2, wcag2) { var readability = tinycolor.readability(color1, color2); var wcag2Parms, out; out = false; wcag2Parms = validateWCAG2Parms(wcag2); switch (wcag2Parms.level + wcag2Parms.size) { case "AAsmall": case "AAAlarge": out = readability >= 4.5; break; case "AAlarge": out = readability >= 3; break; case "AAAsmall": out = readability >= 7; break; } return out; }; // `mostReadable` // Given a base color and a list of possible foreground or background // colors for that base, returns the most readable color. // Optionally returns Black or White if the most readable color is unreadable. // *Example* // tinycolor.mostReadable(tinycolor.mostReadable("#123", ["#124", "#125"],{includeFallbackColors:false}).toHexString(); // "#112255" // tinycolor.mostReadable(tinycolor.mostReadable("#123", ["#124", "#125"],{includeFallbackColors:true}).toHexString(); // "#ffffff" // tinycolor.mostReadable("#a8015a", ["#faf3f3"],{includeFallbackColors:true,level:"AAA",size:"large"}).toHexString(); // "#faf3f3" // tinycolor.mostReadable("#a8015a", ["#faf3f3"],{includeFallbackColors:true,level:"AAA",size:"small"}).toHexString(); // "#ffffff" tinycolor.mostReadable = function(baseColor, colorList, args) { var bestColor = null; var bestScore = 0; var readability; var includeFallbackColors, level, size ; args = args || {}; includeFallbackColors = args.includeFallbackColors ; level = args.level; size = args.size; for (var i= 0; i < colorList.length ; i++) { readability = tinycolor.readability(baseColor, colorList[i]); if (readability > bestScore) { bestScore = readability; bestColor = tinycolor(colorList[i]); } } if (tinycolor.isReadable(baseColor, bestColor, {"level":level,"size":size}) || !includeFallbackColors) { return bestColor; } else { args.includeFallbackColors=false; return tinycolor.mostReadable(baseColor,["#fff", "#000"],args); } }; // Big List of Colors // ------------------ // var names = tinycolor.names = { aliceblue: "f0f8ff", antiquewhite: "faebd7", aqua: "0ff", aquamarine: "7fffd4", azure: "f0ffff", beige: "f5f5dc", bisque: "ffe4c4", black: "000", blanchedalmond: "ffebcd", blue: "00f", blueviolet: "8a2be2", brown: "a52a2a", burlywood: "deb887", burntsienna: "ea7e5d", cadetblue: "5f9ea0", chartreuse: "7fff00", chocolate: "d2691e", coral: "ff7f50", cornflowerblue: "6495ed", cornsilk: "fff8dc", crimson: "dc143c", cyan: "0ff", darkblue: "00008b", darkcyan: "008b8b", darkgoldenrod: "b8860b", darkgray: "a9a9a9", darkgreen: "006400", darkgrey: "a9a9a9", darkkhaki: "bdb76b", darkmagenta: "8b008b", darkolivegreen: "556b2f", darkorange: "ff8c00", darkorchid: "9932cc", darkred: "8b0000", darksalmon: "e9967a", darkseagreen: "8fbc8f", darkslateblue: "483d8b", darkslategray: "2f4f4f", darkslategrey: "2f4f4f", darkturquoise: "00ced1", darkviolet: "9400d3", deeppink: "ff1493", deepskyblue: "00bfff", dimgray: "696969", dimgrey: "696969", dodgerblue: "1e90ff", firebrick: "b22222", floralwhite: "fffaf0", forestgreen: "228b22", fuchsia: "f0f", gainsboro: "dcdcdc", ghostwhite: "f8f8ff", gold: "ffd700", goldenrod: "daa520", gray: "808080", green: "008000", greenyellow: "adff2f", grey: "808080", honeydew: "f0fff0", hotpink: "ff69b4", indianred: "cd5c5c", indigo: "4b0082", ivory: "fffff0", khaki: "f0e68c", lavender: "e6e6fa", lavenderblush: "fff0f5", lawngreen: "7cfc00", lemonchiffon: "fffacd", lightblue: "add8e6", lightcoral: "f08080", lightcyan: "e0ffff", lightgoldenrodyellow: "fafad2", lightgray: "d3d3d3", lightgreen: "90ee90", lightgrey: "d3d3d3", lightpink: "ffb6c1", lightsalmon: "ffa07a", lightseagreen: "20b2aa", lightskyblue: "87cefa", lightslategray: "789", lightslategrey: "789", lightsteelblue: "b0c4de", lightyellow: "ffffe0", lime: "0f0", limegreen: "32cd32", linen: "faf0e6", magenta: "f0f", maroon: "800000", mediumaquamarine: "66cdaa", mediumblue: "0000cd", mediumorchid: "ba55d3", mediumpurple: "9370db", mediumseagreen: "3cb371", mediumslateblue: "7b68ee", mediumspringgreen: "00fa9a", mediumturquoise: "48d1cc", mediumvioletred: "c71585", midnightblue: "191970", mintcream: "f5fffa", mistyrose: "ffe4e1", moccasin: "ffe4b5", navajowhite: "ffdead", navy: "000080", oldlace: "fdf5e6", olive: "808000", olivedrab: "6b8e23", orange: "ffa500", orangered: "ff4500", orchid: "da70d6", palegoldenrod: "eee8aa", palegreen: "98fb98", paleturquoise: "afeeee", palevioletred: "db7093", papayawhip: "ffefd5", peachpuff: "ffdab9", peru: "cd853f", pink: "ffc0cb", plum: "dda0dd", powderblue: "b0e0e6", purple: "800080", rebeccapurple: "663399", red: "f00", rosybrown: "bc8f8f", royalblue: "4169e1", saddlebrown: "8b4513", salmon: "fa8072", sandybrown: "f4a460", seagreen: "2e8b57", seashell: "fff5ee", sienna: "a0522d", silver: "c0c0c0", skyblue: "87ceeb", slateblue: "6a5acd", slategray: "708090", slategrey: "708090", snow: "fffafa", springgreen: "00ff7f", steelblue: "4682b4", tan: "d2b48c", teal: "008080", thistle: "d8bfd8", tomato: "ff6347", turquoise: "40e0d0", violet: "ee82ee", wheat: "f5deb3", white: "fff", whitesmoke: "f5f5f5", yellow: "ff0", yellowgreen: "9acd32" }; // Make it easy to access colors via `hexNames[hex]` var hexNames = tinycolor.hexNames = flip(names); // Utilities // --------- // `{ 'name1': 'val1' }` becomes `{ 'val1': 'name1' }` function flip(o) { var flipped = { }; for (var i in o) { if (o.hasOwnProperty(i)) { flipped[o[i]] = i; } } return flipped; } // Return a valid alpha value [0,1] with all invalid values being set to 1 function boundAlpha(a) { a = parseFloat(a); if (isNaN(a) || a < 0 || a > 1) { a = 1; } return a; } // Take input from [0, n] and return it as [0, 1] function bound01(n, max) { if (isOnePointZero(n)) { n = "100%"; } var processPercent = isPercentage(n); n = mathMin(max, mathMax(0, parseFloat(n))); // Automatically convert percentage into number if (processPercent) { n = parseInt(n * max, 10) / 100; } // Handle floating point rounding errors if ((Math.abs(n - max) < 0.000001)) { return 1; } // Convert into [0, 1] range if it isn't already return (n % max) / parseFloat(max); } // Force a number between 0 and 1 function clamp01(val) { return mathMin(1, mathMax(0, val)); } // Parse a base-16 hex value into a base-10 integer function parseIntFromHex(val) { return parseInt(val, 16); } // Need to handle 1.0 as 100%, since once it is a number, there is no difference between it and 1 // function isOnePointZero(n) { return typeof n == "string" && n.indexOf('.') != -1 && parseFloat(n) === 1; } // Check to see if string passed in is a percentage function isPercentage(n) { return typeof n === "string" && n.indexOf('%') != -1; } // Force a hex value to have 2 characters function pad2(c) { return c.length == 1 ? '0' + c : '' + c; } // Replace a decimal with it's percentage value function convertToPercentage(n) { if (n <= 1) { n = (n * 100) + "%"; } return n; } // Converts a decimal to a hex value function convertDecimalToHex(d) { return Math.round(parseFloat(d) * 255).toString(16); } // Converts a hex value to a decimal function convertHexToDecimal(h) { return (parseIntFromHex(h) / 255); } var matchers = (function() { // var CSS_INTEGER = "[-\\+]?\\d+%?"; // var CSS_NUMBER = "[-\\+]?\\d*\\.\\d+%?"; // Allow positive/negative integer/number. Don't capture the either/or, just the entire outcome. var CSS_UNIT = "(?:" + CSS_NUMBER + ")|(?:" + CSS_INTEGER + ")"; // Actual matching. // Parentheses and commas are optional, but not required. // Whitespace can take the place of commas or opening paren var PERMISSIVE_MATCH3 = "[\\s|\\(]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")\\s*\\)?"; var PERMISSIVE_MATCH4 = "[\\s|\\(]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")[,|\\s]+(" + CSS_UNIT + ")\\s*\\)?"; return { CSS_UNIT: new RegExp(CSS_UNIT), rgb: new RegExp("rgb" + PERMISSIVE_MATCH3), rgba: new RegExp("rgba" + PERMISSIVE_MATCH4), hsl: new RegExp("hsl" + PERMISSIVE_MATCH3), hsla: new RegExp("hsla" + PERMISSIVE_MATCH4), hsv: new RegExp("hsv" + PERMISSIVE_MATCH3), hsva: new RegExp("hsva" + PERMISSIVE_MATCH4), hex3: /^#?([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})$/, hex6: /^#?([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})$/, hex4: /^#?([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})$/, hex8: /^#?([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})$/ }; })(); // `isValidCSSUnit` // Take in a single string / number and check to see if it looks like a CSS unit // (see `matchers` above for definition). function isValidCSSUnit(color) { return !!matchers.CSS_UNIT.exec(color); } // `stringInputToObject` // Permissive string parsing. Take in a number of formats, and output an object // based on detected format. Returns `{ r, g, b }` or `{ h, s, l }` or `{ h, s, v}` function stringInputToObject(color) { color = color.replace(trimLeft,'').replace(trimRight, '').toLowerCase(); var named = false; if (names[color]) { color = names[color]; named = true; } else if (color == 'transparent') { return { r: 0, g: 0, b: 0, a: 0, format: "name" }; } // Try to match string input using regular expressions. // Keep most of the number bounding out of this function - don't worry about [0,1] or [0,100] or [0,360] // Just return an object and let the conversion functions handle that. // This way the result will be the same whether the tinycolor is initialized with string or object. var match; if ((match = matchers.rgb.exec(color))) { return { r: match[1], g: match[2], b: match[3] }; } if ((match = matchers.rgba.exec(color))) { return { r: match[1], g: match[2], b: match[3], a: match[4] }; } if ((match = matchers.hsl.exec(color))) { return { h: match[1], s: match[2], l: match[3] }; } if ((match = matchers.hsla.exec(color))) { return { h: match[1], s: match[2], l: match[3], a: match[4] }; } if ((match = matchers.hsv.exec(color))) { return { h: match[1], s: match[2], v: match[3] }; } if ((match = matchers.hsva.exec(color))) { return { h: match[1], s: match[2], v: match[3], a: match[4] }; } if ((match = matchers.hex8.exec(color))) { return { r: parseIntFromHex(match[1]), g: parseIntFromHex(match[2]), b: parseIntFromHex(match[3]), a: convertHexToDecimal(match[4]), format: named ? "name" : "hex8" }; } if ((match = matchers.hex6.exec(color))) { return { r: parseIntFromHex(match[1]), g: parseIntFromHex(match[2]), b: parseIntFromHex(match[3]), format: named ? "name" : "hex" }; } if ((match = matchers.hex4.exec(color))) { return { r: parseIntFromHex(match[1] + '' + match[1]), g: parseIntFromHex(match[2] + '' + match[2]), b: parseIntFromHex(match[3] + '' + match[3]), a: convertHexToDecimal(match[4] + '' + match[4]), format: named ? "name" : "hex8" }; } if ((match = matchers.hex3.exec(color))) { return { r: parseIntFromHex(match[1] + '' + match[1]), g: parseIntFromHex(match[2] + '' + match[2]), b: parseIntFromHex(match[3] + '' + match[3]), format: named ? "name" : "hex" }; } return false; } function validateWCAG2Parms(parms) { // return valid WCAG2 parms for isReadable. // If input parms are invalid, return {"level":"AA", "size":"small"} var level, size; parms = parms || {"level":"AA", "size":"small"}; level = (parms.level || "AA").toUpperCase(); size = (parms.size || "small").toLowerCase(); if (level !== "AA" && level !== "AAA") { level = "AA"; } if (size !== "small" && size !== "large") { size = "small"; } return {"level":level, "size":size}; } // Node: Export function if (typeof module !== "undefined" && module.exports) { module.exports = tinycolor; } // AMD/requirejs: Define the module else if (typeof define === 'function' && define.amd) { define(function () {return tinycolor;}); } // Browser: Expose to window else { window.tinycolor = tinycolor; } })(Math); },{}],179:[function(require,module,exports){ exports = module.exports = trim; function trim(str){ return str.replace(/^\s*|\s*$/g, ''); } exports.left = function(str){ return str.replace(/^\s*/, ''); }; exports.right = function(str){ return str.replace(/\s*$/, ''); }; },{}],180:[function(require,module,exports){ // Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. 'use strict'; var punycode = require('punycode'); var util = require('./util'); exports.parse = urlParse; exports.resolve = urlResolve; exports.resolveObject = urlResolveObject; exports.format = urlFormat; exports.Url = Url; function Url() { this.protocol = null; this.slashes = null; this.auth = null; this.host = null; this.port = null; this.hostname = null; this.hash = null; this.search = null; this.query = null; this.pathname = null; this.path = null; this.href = null; } // Reference: RFC 3986, RFC 1808, RFC 2396 // define these here so at least they only have to be // compiled once on the first module load. var protocolPattern = /^([a-z0-9.+-]+:)/i, portPattern = /:[0-9]*$/, // Special case for a simple path URL simplePathPattern = /^(\/\/?(?!\/)[^\?\s]*)(\?[^\s]*)?$/, // RFC 2396: characters reserved for delimiting URLs. // We actually just auto-escape these. delims = ['<', '>', '"', '`', ' ', '\r', '\n', '\t'], // RFC 2396: characters not allowed for various reasons. unwise = ['{', '}', '|', '\\', '^', '`'].concat(delims), // Allowed by RFCs, but cause of XSS attacks. Always escape these. autoEscape = ['\''].concat(unwise), // Characters that are never ever allowed in a hostname. // Note that any invalid chars are also handled, but these // are the ones that are *expected* to be seen, so we fast-path // them. nonHostChars = ['%', '/', '?', ';', '#'].concat(autoEscape), hostEndingChars = ['/', '?', '#'], hostnameMaxLen = 255, hostnamePartPattern = /^[+a-z0-9A-Z_-]{0,63}$/, hostnamePartStart = /^([+a-z0-9A-Z_-]{0,63})(.*)$/, // protocols that can allow "unsafe" and "unwise" chars. unsafeProtocol = { 'javascript': true, 'javascript:': true }, // protocols that never have a hostname. hostlessProtocol = { 'javascript': true, 'javascript:': true }, // protocols that always contain a // bit. slashedProtocol = { 'http': true, 'https': true, 'ftp': true, 'gopher': true, 'file': true, 'http:': true, 'https:': true, 'ftp:': true, 'gopher:': true, 'file:': true }, querystring = require('querystring'); function urlParse(url, parseQueryString, slashesDenoteHost) { if (url && util.isObject(url) && url instanceof Url) return url; var u = new Url; u.parse(url, parseQueryString, slashesDenoteHost); return u; } Url.prototype.parse = function(url, parseQueryString, slashesDenoteHost) { if (!util.isString(url)) { throw new TypeError("Parameter 'url' must be a string, not " + typeof url); } // Copy chrome, IE, opera backslash-handling behavior. // Back slashes before the query string get converted to forward slashes // See: https://code.google.com/p/chromium/issues/detail?id=25916 var queryIndex = url.indexOf('?'), splitter = (queryIndex !== -1 && queryIndex < url.indexOf('#')) ? '?' : '#', uSplit = url.split(splitter), slashRegex = /\\/g; uSplit[0] = uSplit[0].replace(slashRegex, '/'); url = uSplit.join(splitter); var rest = url; // trim before proceeding. // This is to support parse stuff like " http://foo.com \n" rest = rest.trim(); if (!slashesDenoteHost && url.split('#').length === 1) { // Try fast path regexp var simplePath = simplePathPattern.exec(rest); if (simplePath) { this.path = rest; this.href = rest; this.pathname = simplePath[1]; if (simplePath[2]) { this.search = simplePath[2]; if (parseQueryString) { this.query = querystring.parse(this.search.substr(1)); } else { this.query = this.search.substr(1); } } else if (parseQueryString) { this.search = ''; this.query = {}; } return this; } } var proto = protocolPattern.exec(rest); if (proto) { proto = proto[0]; var lowerProto = proto.toLowerCase(); this.protocol = lowerProto; rest = rest.substr(proto.length); } // figure out if it's got a host // user@server is *always* interpreted as a hostname, and url // resolution will treat //foo/bar as host=foo,path=bar because that's // how the browser resolves relative URLs. if (slashesDenoteHost || proto || rest.match(/^\/\/[^@\/]+@[^@\/]+/)) { var slashes = rest.substr(0, 2) === '//'; if (slashes && !(proto && hostlessProtocol[proto])) { rest = rest.substr(2); this.slashes = true; } } if (!hostlessProtocol[proto] && (slashes || (proto && !slashedProtocol[proto]))) { // there's a hostname. // the first instance of /, ?, ;, or # ends the host. // // If there is an @ in the hostname, then non-host chars *are* allowed // to the left of the last @ sign, unless some host-ending character // comes *before* the @-sign. // URLs are obnoxious. // // ex: // http://a@b@c/ => user:a@b host:c // http://a@b?@c => user:a host:c path:/?@c // v0.12 TODO(isaacs): This is not quite how Chrome does things. // Review our test case against browsers more comprehensively. // find the first instance of any hostEndingChars var hostEnd = -1; for (var i = 0; i < hostEndingChars.length; i++) { var hec = rest.indexOf(hostEndingChars[i]); if (hec !== -1 && (hostEnd === -1 || hec < hostEnd)) hostEnd = hec; } // at this point, either we have an explicit point where the // auth portion cannot go past, or the last @ char is the decider. var auth, atSign; if (hostEnd === -1) { // atSign can be anywhere. atSign = rest.lastIndexOf('@'); } else { // atSign must be in auth portion. // http://a@b/c@d => host:b auth:a path:/c@d atSign = rest.lastIndexOf('@', hostEnd); } // Now we have a portion which is definitely the auth. // Pull that off. if (atSign !== -1) { auth = rest.slice(0, atSign); rest = rest.slice(atSign + 1); this.auth = decodeURIComponent(auth); } // the host is the remaining to the left of the first non-host char hostEnd = -1; for (var i = 0; i < nonHostChars.length; i++) { var hec = rest.indexOf(nonHostChars[i]); if (hec !== -1 && (hostEnd === -1 || hec < hostEnd)) hostEnd = hec; } // if we still have not hit it, then the entire thing is a host. if (hostEnd === -1) hostEnd = rest.length; this.host = rest.slice(0, hostEnd); rest = rest.slice(hostEnd); // pull out port. this.parseHost(); // we've indicated that there is a hostname, // so even if it's empty, it has to be present. this.hostname = this.hostname || ''; // if hostname begins with [ and ends with ] // assume that it's an IPv6 address. var ipv6Hostname = this.hostname[0] === '[' && this.hostname[this.hostname.length - 1] === ']'; // validate a little. if (!ipv6Hostname) { var hostparts = this.hostname.split(/\./); for (var i = 0, l = hostparts.length; i < l; i++) { var part = hostparts[i]; if (!part) continue; if (!part.match(hostnamePartPattern)) { var newpart = ''; for (var j = 0, k = part.length; j < k; j++) { if (part.charCodeAt(j) > 127) { // we replace non-ASCII char with a temporary placeholder // we need this to make sure size of hostname is not // broken by replacing non-ASCII by nothing newpart += 'x'; } else { newpart += part[j]; } } // we test again with ASCII char only if (!newpart.match(hostnamePartPattern)) { var validParts = hostparts.slice(0, i); var notHost = hostparts.slice(i + 1); var bit = part.match(hostnamePartStart); if (bit) { validParts.push(bit[1]); notHost.unshift(bit[2]); } if (notHost.length) { rest = '/' + notHost.join('.') + rest; } this.hostname = validParts.join('.'); break; } } } } if (this.hostname.length > hostnameMaxLen) { this.hostname = ''; } else { // hostnames are always lower case. this.hostname = this.hostname.toLowerCase(); } if (!ipv6Hostname) { // IDNA Support: Returns a punycoded representation of "domain". // It only converts parts of the domain name that // have non-ASCII characters, i.e. it doesn't matter if // you call it with a domain that already is ASCII-only. this.hostname = punycode.toASCII(this.hostname); } var p = this.port ? ':' + this.port : ''; var h = this.hostname || ''; this.host = h + p; this.href += this.host; // strip [ and ] from the hostname // the host field still retains them, though if (ipv6Hostname) { this.hostname = this.hostname.substr(1, this.hostname.length - 2); if (rest[0] !== '/') { rest = '/' + rest; } } } // now rest is set to the post-host stuff. // chop off any delim chars. if (!unsafeProtocol[lowerProto]) { // First, make 100% sure that any "autoEscape" chars get // escaped, even if encodeURIComponent doesn't think they // need to be. for (var i = 0, l = autoEscape.length; i < l; i++) { var ae = autoEscape[i]; if (rest.indexOf(ae) === -1) continue; var esc = encodeURIComponent(ae); if (esc === ae) { esc = escape(ae); } rest = rest.split(ae).join(esc); } } // chop off from the tail first. var hash = rest.indexOf('#'); if (hash !== -1) { // got a fragment string. this.hash = rest.substr(hash); rest = rest.slice(0, hash); } var qm = rest.indexOf('?'); if (qm !== -1) { this.search = rest.substr(qm); this.query = rest.substr(qm + 1); if (parseQueryString) { this.query = querystring.parse(this.query); } rest = rest.slice(0, qm); } else if (parseQueryString) { // no query string, but parseQueryString still requested this.search = ''; this.query = {}; } if (rest) this.pathname = rest; if (slashedProtocol[lowerProto] && this.hostname && !this.pathname) { this.pathname = '/'; } //to support http.request if (this.pathname || this.search) { var p = this.pathname || ''; var s = this.search || ''; this.path = p + s; } // finally, reconstruct the href based on what has been validated. this.href = this.format(); return this; }; // format a parsed object into a url string function urlFormat(obj) { // ensure it's an object, and not a string url. // If it's an obj, this is a no-op. // this way, you can call url_format() on strings // to clean up potentially wonky urls. if (util.isString(obj)) obj = urlParse(obj); if (!(obj instanceof Url)) return Url.prototype.format.call(obj); return obj.format(); } Url.prototype.format = function() { var auth = this.auth || ''; if (auth) { auth = encodeURIComponent(auth); auth = auth.replace(/%3A/i, ':'); auth += '@'; } var protocol = this.protocol || '', pathname = this.pathname || '', hash = this.hash || '', host = false, query = ''; if (this.host) { host = auth + this.host; } else if (this.hostname) { host = auth + (this.hostname.indexOf(':') === -1 ? this.hostname : '[' + this.hostname + ']'); if (this.port) { host += ':' + this.port; } } if (this.query && util.isObject(this.query) && Object.keys(this.query).length) { query = querystring.stringify(this.query); } var search = this.search || (query && ('?' + query)) || ''; if (protocol && protocol.substr(-1) !== ':') protocol += ':'; // only the slashedProtocols get the //. Not mailto:, xmpp:, etc. // unless they had them to begin with. if (this.slashes || (!protocol || slashedProtocol[protocol]) && host !== false) { host = '//' + (host || ''); if (pathname && pathname.charAt(0) !== '/') pathname = '/' + pathname; } else if (!host) { host = ''; } if (hash && hash.charAt(0) !== '#') hash = '#' + hash; if (search && search.charAt(0) !== '?') search = '?' + search; pathname = pathname.replace(/[?#]/g, function(match) { return encodeURIComponent(match); }); search = search.replace('#', '%23'); return protocol + host + pathname + search + hash; }; function urlResolve(source, relative) { return urlParse(source, false, true).resolve(relative); } Url.prototype.resolve = function(relative) { return this.resolveObject(urlParse(relative, false, true)).format(); }; function urlResolveObject(source, relative) { if (!source) return relative; return urlParse(source, false, true).resolveObject(relative); } Url.prototype.resolveObject = function(relative) { if (util.isString(relative)) { var rel = new Url(); rel.parse(relative, false, true); relative = rel; } var result = new Url(); var tkeys = Object.keys(this); for (var tk = 0; tk < tkeys.length; tk++) { var tkey = tkeys[tk]; result[tkey] = this[tkey]; } // hash is always overridden, no matter what. // even href="" will remove it. result.hash = relative.hash; // if the relative url is empty, then there's nothing left to do here. if (relative.href === '') { result.href = result.format(); return result; } // hrefs like //foo/bar always cut to the protocol. if (relative.slashes && !relative.protocol) { // take everything except the protocol from relative var rkeys = Object.keys(relative); for (var rk = 0; rk < rkeys.length; rk++) { var rkey = rkeys[rk]; if (rkey !== 'protocol') result[rkey] = relative[rkey]; } //urlParse appends trailing / to urls like http://www.example.com if (slashedProtocol[result.protocol] && result.hostname && !result.pathname) { result.path = result.pathname = '/'; } result.href = result.format(); return result; } if (relative.protocol && relative.protocol !== result.protocol) { // if it's a known url protocol, then changing // the protocol does weird things // first, if it's not file:, then we MUST have a host, // and if there was a path // to begin with, then we MUST have a path. // if it is file:, then the host is dropped, // because that's known to be hostless. // anything else is assumed to be absolute. if (!slashedProtocol[relative.protocol]) { var keys = Object.keys(relative); for (var v = 0; v < keys.length; v++) { var k = keys[v]; result[k] = relative[k]; } result.href = result.format(); return result; } result.protocol = relative.protocol; if (!relative.host && !hostlessProtocol[relative.protocol]) { var relPath = (relative.pathname || '').split('/'); while (relPath.length && !(relative.host = relPath.shift())); if (!relative.host) relative.host = ''; if (!relative.hostname) relative.hostname = ''; if (relPath[0] !== '') relPath.unshift(''); if (relPath.length < 2) relPath.unshift(''); result.pathname = relPath.join('/'); } else { result.pathname = relative.pathname; } result.search = relative.search; result.query = relative.query; result.host = relative.host || ''; result.auth = relative.auth; result.hostname = relative.hostname || relative.host; result.port = relative.port; // to support http.request if (result.pathname || result.search) { var p = result.pathname || ''; var s = result.search || ''; result.path = p + s; } result.slashes = result.slashes || relative.slashes; result.href = result.format(); return result; } var isSourceAbs = (result.pathname && result.pathname.charAt(0) === '/'), isRelAbs = ( relative.host || relative.pathname && relative.pathname.charAt(0) === '/' ), mustEndAbs = (isRelAbs || isSourceAbs || (result.host && relative.pathname)), removeAllDots = mustEndAbs, srcPath = result.pathname && result.pathname.split('/') || [], relPath = relative.pathname && relative.pathname.split('/') || [], psychotic = result.protocol && !slashedProtocol[result.protocol]; // if the url is a non-slashed url, then relative // links like ../.. should be able // to crawl up to the hostname, as well. This is strange. // result.protocol has already been set by now. // Later on, put the first path part into the host field. if (psychotic) { result.hostname = ''; result.port = null; if (result.host) { if (srcPath[0] === '') srcPath[0] = result.host; else srcPath.unshift(result.host); } result.host = ''; if (relative.protocol) { relative.hostname = null; relative.port = null; if (relative.host) { if (relPath[0] === '') relPath[0] = relative.host; else relPath.unshift(relative.host); } relative.host = null; } mustEndAbs = mustEndAbs && (relPath[0] === '' || srcPath[0] === ''); } if (isRelAbs) { // it's absolute. result.host = (relative.host || relative.host === '') ? relative.host : result.host; result.hostname = (relative.hostname || relative.hostname === '') ? relative.hostname : result.hostname; result.search = relative.search; result.query = relative.query; srcPath = relPath; // fall through to the dot-handling below. } else if (relPath.length) { // it's relative // throw away the existing file, and take the new path instead. if (!srcPath) srcPath = []; srcPath.pop(); srcPath = srcPath.concat(relPath); result.search = relative.search; result.query = relative.query; } else if (!util.isNullOrUndefined(relative.search)) { // just pull out the search. // like href='?foo'. // Put this after the other two cases because it simplifies the booleans if (psychotic) { result.hostname = result.host = srcPath.shift(); //occationaly the auth can get stuck only in host //this especially happens in cases like //url.resolveObject('mailto:local1@domain1', 'local2@domain2') var authInHost = result.host && result.host.indexOf('@') > 0 ? result.host.split('@') : false; if (authInHost) { result.auth = authInHost.shift(); result.host = result.hostname = authInHost.shift(); } } result.search = relative.search; result.query = relative.query; //to support http.request if (!util.isNull(result.pathname) || !util.isNull(result.search)) { result.path = (result.pathname ? result.pathname : '') + (result.search ? result.search : ''); } result.href = result.format(); return result; } if (!srcPath.length) { // no path at all. easy. // we've already handled the other stuff above. result.pathname = null; //to support http.request if (result.search) { result.path = '/' + result.search; } else { result.path = null; } result.href = result.format(); return result; } // if a url ENDs in . or .., then it must get a trailing slash. // however, if it ends in anything else non-slashy, // then it must NOT get a trailing slash. var last = srcPath.slice(-1)[0]; var hasTrailingSlash = ( (result.host || relative.host || srcPath.length > 1) && (last === '.' || last === '..') || last === ''); // strip single dots, resolve double dots to parent dir // if the path tries to go above the root, `up` ends up > 0 var up = 0; for (var i = srcPath.length; i >= 0; i--) { last = srcPath[i]; if (last === '.') { srcPath.splice(i, 1); } else if (last === '..') { srcPath.splice(i, 1); up++; } else if (up) { srcPath.splice(i, 1); up--; } } // if the path is allowed to go above the root, restore leading ..s if (!mustEndAbs && !removeAllDots) { for (; up--; up) { srcPath.unshift('..'); } } if (mustEndAbs && srcPath[0] !== '' && (!srcPath[0] || srcPath[0].charAt(0) !== '/')) { srcPath.unshift(''); } if (hasTrailingSlash && (srcPath.join('/').substr(-1) !== '/')) { srcPath.push(''); } var isAbsolute = srcPath[0] === '' || (srcPath[0] && srcPath[0].charAt(0) === '/'); // put the host back if (psychotic) { result.hostname = result.host = isAbsolute ? '' : srcPath.length ? srcPath.shift() : ''; //occationaly the auth can get stuck only in host //this especially happens in cases like //url.resolveObject('mailto:local1@domain1', 'local2@domain2') var authInHost = result.host && result.host.indexOf('@') > 0 ? result.host.split('@') : false; if (authInHost) { result.auth = authInHost.shift(); result.host = result.hostname = authInHost.shift(); } } mustEndAbs = mustEndAbs || (result.host && srcPath.length); if (mustEndAbs && !isAbsolute) { srcPath.unshift(''); } if (!srcPath.length) { result.pathname = null; result.path = null; } else { result.pathname = srcPath.join('/'); } //to support request.http if (!util.isNull(result.pathname) || !util.isNull(result.search)) { result.path = (result.pathname ? result.pathname : '') + (result.search ? result.search : ''); } result.auth = relative.auth || result.auth; result.slashes = result.slashes || relative.slashes; result.href = result.format(); return result; }; Url.prototype.parseHost = function() { var host = this.host; var port = portPattern.exec(host); if (port) { port = port[0]; if (port !== ':') { this.port = port.substr(1); } host = host.substr(0, host.length - port.length); } if (host) this.hostname = host; }; },{"./util":181,"punycode":134,"querystring":137}],181:[function(require,module,exports){ 'use strict'; module.exports = { isString: function(arg) { return typeof(arg) === 'string'; }, isObject: function(arg) { return typeof(arg) === 'object' && arg !== null; }, isNull: function(arg) { return arg === null; }, isNullOrUndefined: function(arg) { return arg == null; } }; },{}],182:[function(require,module,exports){ (function (process){ ;(function(){ var UTIF = {}; // Make available for import by `require()` if (typeof module == "object") {module.exports = UTIF;} else {self.UTIF = UTIF;} var pako; if (typeof require == "function") {pako = require("pako");} else {pako = self.pako;} function log() { if (typeof process=="undefined" || process.env.NODE_ENV=="development") console.log.apply(console, arguments); } (function(UTIF, pako){ // Following lines add a JPEG decoder to UTIF.JpegDecoder (function(){var V="function"===typeof Symbol&&"symbol"===typeof Symbol.iterator?function(g){return typeof g}:function(g){return g&&"function"===typeof Symbol&&g.constructor===Symbol&&g!==Symbol.prototype?"symbol":typeof g},D=function(){function g(g){this.message="JPEG error: "+g}g.prototype=Error();g.prototype.name="JpegError";return g.constructor=g}(),P=function(){function g(g,D){this.message=g;this.g=D}g.prototype=Error();g.prototype.name="DNLMarkerError";return g.constructor=g}();(function(){function g(){this.M= null;this.B=-1}function W(a,d){for(var f=0,e=[],b,B,k=16;0>x&1;z=a[d++];if(255=== z){var c=a[d++];if(c){if(220===c&&g){d+=2;var b=a[d++]<<8|a[d++];if(0>>7}function q(a){for(;;){a=a[n()];if("number"===typeof a)return a;if("object"!==("undefined"===typeof a?"undefined":V(a)))throw new D("invalid huffman sequence");}}function h(a){for(var c=0;0= 1<d;){var h=q(a.o),k=h&15;h>>=4;if(0===k){if(15>h)break;d+=16}else d+=h,a.a[b+J[d]]=c(k),d++}}function w(a,d){var b=q(a.D);b=0===b?0:c(b)<>=4;if(0===f){if(15>e){A=h(e)+(1<a.a[f]? -1:1;switch(E){case 0:e=q(a.o);f=e&15;e>>=4;if(0===f)15>e?(A=h(e)+(1<=y)throw new D("marker was not found"); if(65488<=y&&65495>=y)d+=2;else break}(y=N(a,d))&&y.f&&((0,_util.warn)("decodeScan - unexpected Scan data, current marker is: "+y.f),d=y.offset);return d-v}function Y(a,d){for(var f=d.c,e=d.l,b=new Int16Array(64),B=0;Bh;h+=8){var c=q[l+h];var C=q[l+h+1];var w=q[l+h+2];var p=q[l+h+3];var m=q[l+h+4];var t=q[l+h+5];var g=q[l+h+6];var u=q[l+h+7];c*=n[h];if(0===(C| w|p|m|t|g|u))c=5793*c+512>>10,r[h]=c,r[h+1]=c,r[h+2]=c,r[h+3]=c,r[h+4]=c,r[h+5]=c,r[h+6]=c,r[h+7]=c;else{C*=n[h+1];w*=n[h+2];p*=n[h+3];m*=n[h+4];t*=n[h+5];g*=n[h+6];u*=n[h+7];var v=5793*c+128>>8;var z=5793*m+128>>8;var x=w;var A=g;m=2896*(C-u)+128>>8;u=2896*(C+u)+128>>8;p<<=4;t<<=4;v=v+z+1>>1;z=v-z;c=3784*x+1567*A+128>>8;x=1567*x-3784*A+128>>8;A=c;m=m+t+1>>1;t=m-t;u=u+p+1>>1;p=u-p;v=v+A+1>>1;A=v-A;z=z+x+1>>1;x=z-x;c=2276*m+3406*u+2048>>12;m=3406*m-2276*u+2048>>12;u=c;c=799*p+4017*t+2048>>12;p=4017* p-799*t+2048>>12;t=c;r[h]=v+u;r[h+7]=v-u;r[h+1]=z+t;r[h+6]=z-t;r[h+2]=x+p;r[h+5]=x-p;r[h+3]=A+m;r[h+4]=A-m}}for(n=0;8>n;++n)c=r[n],C=r[n+8],w=r[n+16],p=r[n+24],m=r[n+32],t=r[n+40],g=r[n+48],u=r[n+56],0===(C|w|p|m|t|g|u)?(c=5793*c+8192>>14,c=-2040>c?0:2024<=c?255:c+2056>>4,q[l+n]=c,q[l+n+8]=c,q[l+n+16]=c,q[l+n+24]=c,q[l+n+32]=c,q[l+n+40]=c,q[l+n+48]=c,q[l+n+56]=c):(v=5793*c+2048>>12,z=5793*m+2048>>12,x=w,A=g,m=2896*(C-u)+2048>>12,u=2896*(C+u)+2048>>12,v=(v+z+1>>1)+4112,z=v-z,c=3784*x+1567*A+2048>> 12,x=1567*x-3784*A+2048>>12,A=c,m=m+t+1>>1,t=m-t,u=u+p+1>>1,p=u-p,v=v+A+1>>1,A=v-A,z=z+x+1>>1,x=z-x,c=2276*m+3406*u+2048>>12,m=3406*m-2276*u+2048>>12,u=c,c=799*p+4017*t+2048>>12,p=4017*p-799*t+2048>>12,t=c,c=v+u,u=v-u,C=z+t,g=z-t,w=x+p,t=x-p,p=A+m,m=A-m,c=16>c?0:4080<=c?255:c>>4,C=16>C?0:4080<=C?255:C>>4,w=16>w?0:4080<=w?255:w>>4,p=16>p?0:4080<=p?255:p>>4,m=16>m?0:4080<=m?255:m>>4,t=16>t?0:4080<=t?255:t>>4,g=16>g?0:4080<=g?255:g>>4,u=16>u?0:4080<=u?255:u>>4,q[l+n]=c,q[l+n+8]=C,q[l+n+16]=w,q[l+n+24]= p,q[l+n+32]=m,q[l+n+40]=t,q[l+n+48]=g,q[l+n+56]=u)}return d.a}function N(a,d){var f=2=e)return null;var b=a[d]<<8|a[d+1];if(65472<=b&&65534>=b)return{f:null,F:b,offset:d};for(var B=a[f]<<8|a[f+1];!(65472<=B&&65534>=B);){if(++f>=e)return null;B=a[f]<<8|a[f+1]}return{f:b.toString(16),F:B,offset:f}}var J=new Uint8Array([0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,14,21,28,35,42,49,56, 57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,46,53,60,61,54,47,55,62,63]);g.prototype={parse:function(a){function d(){var d=a[k]<<8|a[k+1];k+=2;return d}function f(){var b=d();b=k+b-2;var c=N(a,b,k);c&&c.f&&((0,_util.warn)("readDataBlock - incorrect length, current marker is: "+c.f),b=c.offset);b=a.subarray(k,b);k+=b.length;return b}function e(a){for(var b=Math.ceil(a.v/8/a.s),c=Math.ceil(a.g/8/a.u),d=0;d>4)for(c=0;64>c;c++)g=J[c],p[g]=a[k++];else if(1===w>>4)for(c=0;64>c;c++)g=J[c],p[g]=d();else throw new D("DQT - invalid table spec");b[w&15]=p}break;case 65472:case 65473:case 65474:if(m)throw new D("Only single frame JPEGs supported");d();var m={};m.X=65473===h;m.S=65474===h;m.precision=a[k++];h=d();m.g= B||h;m.v=d();m.b=[];m.C={};c=a[k++];for(h=p=w=0;h>4;var H=a[k+1]&15;wc;c++,k++)t+=p[c]=a[k];H=new Uint8Array(t);for(c=0;c>4?q:n)[w&15]=W(p,H)}break;case 65501:d();var u=d();break;case 65498:c=1===++r&&!B;d();w=a[k++];g=[];for(h=0;h>4];v.o=n[p&15];g.push(v)}h=a[k++];w=a[k++];p=a[k++];try{var z=X(a,k,m,g,u,h,w,p>>4,p&15,c);k+=z}catch(x){if(x instanceof P)return(0,_util.warn)('Attempting to re-parse JPEG image using "scanLines" parameter found in DNL marker (0xFFDC) segment.'),this.parse(a,{N:x.g});throw x;}break;case 65500:k+=4;break;case 65535:255!==a[k]&&k--;break;default:if(255===a[k-3]&&192<=a[k-2]&&254>=a[k-2])k-=3;else if((c=N(a,k-2))&&c.f)(0,_util.warn)("JpegImage.parse - unexpected data, current marker is: "+ c.f),k=c.offset;else throw new D("unknown marker "+h.toString(16));}h=d()}this.width=m.v;this.height=m.g;this.A=l;this.b=[];for(h=0;h>8)+e[f+1];return r},w:function(){return this.A?!!this.A.W:3===this.i?0===this.B?!1:!0:1===this.B?!0:!1},I:function(a){for(var d,f,e,b=0,g=a.length;b>>3)]; if(bcnt==null) bcnt = img["t325"]; var bytes = new Uint8Array(img.height*(bipl>>>3)), bilen = 0; if(img["t322"]!=null) // tiled { var tw = img["t322"][0], th = img["t323"][0]; var tx = Math.floor((img.width + tw - 1) / tw); var ty = Math.floor((img.height + th - 1) / th); var tbuff = new Uint8Array(Math.ceil(tw*th*bipp/8)|0); for(var y=0; y>>8); } else if(bps==12) for(var i=0; i>>4); tgt[toff++] = ((out[i]<<4)|(out[i+1]>>>8))&255; tgt[toff++] = out[i+1]&255; } else throw new Error("unsupported bit depth "+bps); } else { var parser = new UTIF.JpegDecoder(); parser.parse(buff); var decoded = parser.getData(parser.width, parser.height); for (var i=0; i 1); } if(!isTiled) { if(data[off]==255 && data[off+1]==SOI) return { jpegOffset: off }; if(jpgIchgFmt!=null) { if(data[off+jifoff]==255 && data[off+jifoff+1]==SOI) joff = off+jifoff; else log("JPEGInterchangeFormat does not point to SOI"); if(jpgIchgFmtLen==null) log("JPEGInterchangeFormatLength field is missing"); else if(jifoff >= soff || (jifoff+jiflen) <= soff) log("JPEGInterchangeFormatLength field value is invalid"); if(joff != null) return { jpegOffset: joff }; } } if(ycbcrss!=null) { ssx = ycbcrss[0]; ssy = ycbcrss[1]; } if(jpgIchgFmt!=null) if(jpgIchgFmtLen!=null) if(jiflen >= 2 && (jifoff+jiflen) <= soff) { if(data[off+jifoff+jiflen-2]==255 && data[off+jifoff+jiflen-1]==SOI) tables = new Uint8Array(jiflen-2); else tables = new Uint8Array(jiflen); for(i=0; i offset to first strip or tile"); if(tables == null) { var ooff = 0, out = []; out[ooff++] = 255; out[ooff++] = SOI; var qtables = img["t519"]; if(qtables==null) throw new Error("JPEGQTables tag is missing"); for(i=0; i>> 8); out[ooff++] = nc & 255; out[ooff++] = (i | (k << 4)); for(j=0; j<16; j++) out[ooff++] = data[off+htables[i]+j]; for(j=0; j>> 8) & 255; out[ooff++] = img.height & 255; out[ooff++] = (img.width >>> 8) & 255; out[ooff++] = img.width & 255; out[ooff++] = spp; if(spp==1) { out[ooff++] = 1; out[ooff++] = 17; out[ooff++] = 0; } else for(i=0; i<3; i++) { out[ooff++] = i + 1; out[ooff++] = (i != 0) ? 17 : (((ssx & 15) << 4) | (ssy & 15)); out[ooff++] = i; } if(jpgresint!=null && jpgresint[0]!=0) { out[ooff++] = 255; out[ooff++] = DRI; out[ooff++] = 0; out[ooff++] = 4; out[ooff++] = (jpgresint[0] >>> 8) & 255; out[ooff++] = jpgresint[0] & 255; } tables = new Uint8Array(out); } var sofpos = -1; i = 0; while(i < (tables.length - 1)) { if(tables[i]==255 && tables[i+1]==SOF0) { sofpos = i; break; } i++; } if(sofpos == -1) { var tmptab = new Uint8Array(tables.length + 10 + 3*spp); tmptab.set(tables); var tmpoff = tables.length; sofpos = tables.length; tables = tmptab; tables[tmpoff++] = 255; tables[tmpoff++] = SOF0; tables[tmpoff++] = 0; tables[tmpoff++] = 8 + 3*spp; tables[tmpoff++] = 8; tables[tmpoff++] = (img.height >>> 8) & 255; tables[tmpoff++] = img.height & 255; tables[tmpoff++] = (img.width >>> 8) & 255; tables[tmpoff++] = img.width & 255; tables[tmpoff++] = spp; if(spp==1) { tables[tmpoff++] = 1; tables[tmpoff++] = 17; tables[tmpoff++] = 0; } else for(i=0; i<3; i++) { tables[tmpoff++] = i + 1; tables[tmpoff++] = (i != 0) ? 17 : (((ssx & 15) << 4) | (ssy & 15)); tables[tmpoff++] = i; } } if(data[soff]==255 && data[soff+1]==SOS) { var soslen = (data[soff+2]<<8) | data[soff+3]; sosMarker = new Uint8Array(soslen+2); sosMarker[0] = data[soff]; sosMarker[1] = data[soff+1]; sosMarker[2] = data[soff+2]; sosMarker[3] = data[soff+3]; for(i=0; i<(soslen-2); i++) sosMarker[i+4] = data[soff+i+4]; } else { sosMarker = new Uint8Array(2 + 6 + 2*spp); var sosoff = 0; sosMarker[sosoff++] = 255; sosMarker[sosoff++] = SOS; sosMarker[sosoff++] = 0; sosMarker[sosoff++] = 6 + 2*spp; sosMarker[sosoff++] = spp; if(spp==1) { sosMarker[sosoff++] = 1; sosMarker[sosoff++] = 0; } else for(i=0; i<3; i++) { sosMarker[sosoff++] = i+1; sosMarker[sosoff++] = (i << 4) | i; } sosMarker[sosoff++] = 0; sosMarker[sosoff++] = 63; sosMarker[sosoff++] = 0; } return { jpegOffset: off, tables: tables, sosMarker: sosMarker, sofPosition: sofpos }; } UTIF.decode._decodeOldJPEG = function(img, data, off, len, tgt, toff) { var i, dlen, tlen, buff, buffoff; var jpegData = UTIF.decode._decodeOldJPEGInit(img, data, off, len); if(jpegData.jpegOffset!=null) { dlen = off+len-jpegData.jpegOffset; buff = new Uint8Array(dlen); for(i=0; i>> 8) & 255; buff[jpegData.sofPosition+6] = img.height & 255; buff[jpegData.sofPosition+7] = (img.width >>> 8) & 255; buff[jpegData.sofPosition+8] = img.width & 255; if(data[off]!=255 || data[off+1]!=SOS) { buff.set(jpegData.sosMarker, bufoff); bufoff += sosMarker.length; } for(i=0; i=0 && n<128) for(var i=0; i< n+1; i++) { ta[toff]=sa[off]; toff++; off++; } if(n>=-127 && n<0) { for(var i=0; i<-n+1; i++) { ta[toff]=sa[off]; toff++; } off++; } } } UTIF.decode._decodeThunder = function(data, off, len, tgt, toff) { var d2 = [ 0, 1, 0, -1 ], d3 = [ 0, 1, 2, 3, 0, -3, -2, -1 ]; var lim = off+len, qoff = toff*2, px = 0; while(off>>6), n = (b&63); off++; if(msk==3) { px=(n&15); tgt[qoff>>>1] |= (px<<(4*(1-qoff&1))); qoff++; } if(msk==0) for(var i=0; i>>1] |= (px<<(4*(1-qoff&1))); qoff++; } if(msk==2) for(var i=0; i<2; i++) { var d=(n>>>(3*(1-i)))&7; if(d!=4) { px+=d3[d]; tgt[qoff>>>1] |= (px<<(4*(1-qoff&1))); qoff++; } } if(msk==1) for(var i=0; i<3; i++) { var d=(n>>>(2*(2-i)))&3; if(d!=2) { px+=d2[d]; tgt[qoff>>>1] |= (px<<(4*(1-qoff&1))); qoff++; } } } } UTIF.decode._dmap = { "1":0,"011":1,"000011":2,"0000011":3, "010":-1,"000010":-2,"0000010":-3 }; UTIF.decode._lens = ( function() { var addKeys = function(lens, arr, i0, inc) { for(var i=0; i>>3)>>3]>>>(7-(boff&7)))&1; if(fo==2) bit = (data[boff>>>3]>>>( (boff&7)))&1; boff++; wrd+=bit; if(mode=="H") { if(U._lens[clr][wrd]!=null) { var dl=U._lens[clr][wrd]; wrd=""; len+=dl; if(dl<64) { U._addNtimes(line,len,clr); a0+=len; clr=1-clr; len=0; toRead--; if(toRead==0) mode=""; } } } else { if(wrd=="0001") { wrd=""; U._addNtimes(line,b2-a0,clr); a0=b2; } if(wrd=="001" ) { wrd=""; mode="H"; toRead=2; } if(U._dmap[wrd]!=null) { a1 = b1+U._dmap[wrd]; U._addNtimes(line, a1-a0, clr); a0=a1; wrd=""; clr=1-clr; } } if(line.length==w && mode=="") { U._writeBits(line, tgt, toff*8+y*bipl); clr=0; y++; a0=0; pline=U._makeDiff(line); line=[]; } //if(wrd.length>150) { log(wrd); break; throw "e"; } } } UTIF.decode._findDiff = function(line, x, clr) { for(var i=0; i=x && line[i+1]==clr) return line[i]; } UTIF.decode._makeDiff = function(line) { var out = []; if(line[0]==1) out.push(0,1); for(var i=1; i>>3)>>3]>>>(7-(boff&7)))&1; if(fo==2) bit = (data[boff>>>3]>>>( (boff&7)))&1; boff++; wrd+=bit; if(is1D) { if(U._lens[clr][wrd]!=null) { var dl=U._lens[clr][wrd]; wrd=""; len+=dl; if(dl<64) { U._addNtimes(line,len,clr); clr=1-clr; len=0; } } } else { if(mode=="H") { if(U._lens[clr][wrd]!=null) { var dl=U._lens[clr][wrd]; wrd=""; len+=dl; if(dl<64) { U._addNtimes(line,len,clr); a0+=len; clr=1-clr; len=0; toRead--; if(toRead==0) mode=""; } } } else { if(wrd=="0001") { wrd=""; U._addNtimes(line,b2-a0,clr); a0=b2; } if(wrd=="001" ) { wrd=""; mode="H"; toRead=2; } if(U._dmap[wrd]!=null) { a1 = b1+U._dmap[wrd]; U._addNtimes(line, a1-a0, clr); a0=a1; wrd=""; clr=1-clr; } } } if(wrd.endsWith("000000000001")) // needed for some files { if(y>=0) U._writeBits(line, tgt, toff*8+y*bipl); if(fo==1) is1D = ((data[boff>>>3]>>>(7-(boff&7)))&1)==1; if(fo==2) is1D = ((data[boff>>>3]>>>( (boff&7)))&1)==1; boff++; if(U._decodeG3.allow2D==null) U._decodeG3.allow2D=is1D; if(!U._decodeG3.allow2D) { is1D = true; boff--; } //log("EOL",y, "next 1D:", is1D); wrd=""; clr=0; y++; a0=0; pline=U._makeDiff(line); line=[]; } } if(line.length==w) U._writeBits(line, tgt, toff*8+y*bipl); } UTIF.decode._addNtimes = function(arr, n, val) { for(var i=0; i>>3] |= (bits[i]<<(7-((boff+i)&7))); } UTIF.decode._decodeLZW = function(data, off, tgt, toff) { if(UTIF.decode._lzwTab==null) { var tb=new Uint32Array(0xffff), tn=new Uint16Array(0xffff), chr=new Uint8Array(2e6); for(var i=0; i<256; i++) { chr[i<<2]=i; tb[i]=i<<2; tn[i]=1; } UTIF.decode._lzwTab = [tb,tn,chr]; } var copy = UTIF.decode._copyData; var tab = UTIF.decode._lzwTab[0], tln=UTIF.decode._lzwTab[1], chr=UTIF.decode._lzwTab[2], totl = 258, chrl = 258<<2; var bits = 9, boff = off<<3; // offset in bits var ClearCode = 256, EoiCode = 257; var v = 0, Code = 0, OldCode = 0; while(true) { v = (data[boff>>>3]<<16) | (data[(boff+8)>>>3]<<8) | data[(boff+16)>>>3]; Code = ( v>>(24-(boff&7)-bits) ) & ((1<>>3]<<16) | (data[(boff+8)>>>3]<<8) | data[(boff+16)>>>3]; Code = ( v>>(24-(boff&7)-bits) ) & ((1<=totl) { tab[totl] = chrl; chr[tab[totl]] = cd[0]; tln[totl]=1; chrl=(chrl+1+3)&~0x03; totl++; } else { tab[totl] = chrl; var nit = tab[OldCode], nil = tln[OldCode]; copy(chr,nit,chr,chrl,nil); chr[chrl+nil]=chr[cd]; nil++; tln[totl]=nil; totl++; chrl=(chrl+nil+3)&~0x03; } if(totl+1==(1<=totl) { tab[totl] = chrl; tln[totl]=0; totl++; } else { tab[totl] = chrl; var nit = tab[OldCode], nil = tln[OldCode]; copy(chr,nit,chr,chrl,nil); chr[chrl+nil]=chr[chrl]; nil++; tln[totl]=nil; totl++; copy(chr,chrl,tgt,toff,nil); toff += nil; chrl=(chrl+nil+3)&~0x03; } if(totl+1==(1<>>----------------"); for(var i=0; i4) { bin.writeUint(data, offset, eoff); toff=eoff; } if(type==2) { bin.writeASCII(data, toff, val); } if(type==3) { for(var i=0; i4) { dlen += (dlen&1); eoff += dlen; } offset += 4; } return [offset, eoff]; } UTIF.toRGBA8 = function(out) { var w = out.width, h = out.height, area = w*h, qarea = area*4, data = out.data; var img = new Uint8Array(area*4); // 0: WhiteIsZero, 1: BlackIsZero, 2: RGB, 3: Palette color, 4: Transparency mask, 5: CMYK var intp = out["t262"][0], bps = (out["t258"]?Math.min(32,out["t258"][0]):1), isLE = out.isLE ? 1 : 0; //log("interpretation: ", intp, "bps", bps, out); if(false) {} else if(intp==0) { var bpl = Math.ceil(bps*w/8); for(var y=0; y>3)])>>(7- (i&7)))& 1; img[qi]=img[qi+1]=img[qi+2]=( 1-px)*255; img[qi+3]=255; } if(bps== 4) for(var i=0; i>1)])>>(4-4*(i&1)))&15; img[qi]=img[qi+1]=img[qi+2]=(15-px)* 17; img[qi+3]=255; } if(bps== 8) for(var i=0; i>3)])>>(7- (i&7)))&1; img[qi]=img[qi+1]=img[qi+2]=(px)*255; img[qi+3]=255; } if(bps== 2) for(var i=0; i>2)])>>(6-2*(i&3)))&3; img[qi]=img[qi+1]=img[qi+2]=(px)* 85; img[qi+3]=255; } if(bps== 8) for(var i=0; i0) for(var i=0; i>8); img[qi+1]=(map[256+mi]>>8); img[qi+2]=(map[512+mi]>>8); img[qi+3]=255; } } else if(intp==5) { var smpls = out["t258"]?out["t258"].length : 4; var gotAlpha = smpls>4 ? 1 : 0; for(var i=0; i> 8)&255; buff[p+1] = n&255; }, writeUint : function(buff, p, n) { buff[p] = (n>>24)&255; buff[p+1] = (n>>16)&255; buff[p+2] = (n>>8)&255; buff[p+3] = (n>>0)&255; }, writeASCII : function(buff, p, s) { for(var i = 0; i < s.length; i++) buff[p+i] = s.charCodeAt(i); }, writeDouble: function(buff, p, n) { UTIF._binBE.fl64[0] = n; for (var i = 0; i < 8; i++) buff[p + i] = UTIF._binBE.ui8[7 - i]; } } UTIF._binBE.ui8 = new Uint8Array (8); UTIF._binBE.i16 = new Int16Array (UTIF._binBE.ui8.buffer); UTIF._binBE.i32 = new Int32Array (UTIF._binBE.ui8.buffer); UTIF._binBE.ui32 = new Uint32Array (UTIF._binBE.ui8.buffer); UTIF._binBE.fl32 = new Float32Array(UTIF._binBE.ui8.buffer); UTIF._binBE.fl64 = new Float64Array(UTIF._binBE.ui8.buffer); UTIF._binLE = { nextZero : UTIF._binBE.nextZero, readUshort : function(buff, p) { return (buff[p+1]<< 8) | buff[p]; }, readShort : function(buff, p) { var a=UTIF._binBE.ui8; a[0]=buff[p+0]; a[1]=buff[p+1]; return UTIF._binBE. i16[0]; }, readInt : function(buff, p) { var a=UTIF._binBE.ui8; a[0]=buff[p+0]; a[1]=buff[p+1]; a[2]=buff[p+2]; a[3]=buff[p+3]; return UTIF._binBE. i32[0]; }, readUint : function(buff, p) { var a=UTIF._binBE.ui8; a[0]=buff[p+0]; a[1]=buff[p+1]; a[2]=buff[p+2]; a[3]=buff[p+3]; return UTIF._binBE.ui32[0]; }, readASCII : UTIF._binBE.readASCII, readFloat : function(buff, p) { var a=UTIF._binBE.ui8; for(var i=0;i<4;i++) a[i]=buff[p+ i]; return UTIF._binBE.fl32[0]; }, readDouble : function(buff, p) { var a=UTIF._binBE.ui8; for(var i=0;i<8;i++) a[i]=buff[p+ i]; return UTIF._binBE.fl64[0]; } } UTIF._copyTile = function(tb, tw, th, b, w, h, xoff, yoff) { //log("copyTile", tw, th, w, h, xoff, yoff); var xlim = Math.min(tw, w-xoff); var ylim = Math.min(th, h-yoff); for(var y=0; y 0 ) { timeoutTimer = setTimeout(function(){ if (aborted) return aborted = true//IE9 may still call readystatechange xhr.abort("timeout") var e = new Error("XMLHttpRequest timeout") e.code = "ETIMEDOUT" errorFunc(e) }, options.timeout ) } if (xhr.setRequestHeader) { for(key in headers){ if(headers.hasOwnProperty(key)){ xhr.setRequestHeader(key, headers[key]) } } } else if (options.headers && !isEmpty(options.headers)) { throw new Error("Headers cannot be set on an XDomainRequest object") } if ("responseType" in options) { xhr.responseType = options.responseType } if ("beforeSend" in options && typeof options.beforeSend === "function" ) { options.beforeSend(xhr) } // Microsoft Edge browser sends "undefined" when send is called with undefined value. // XMLHttpRequest spec says to pass null as body to indicate no body // See https://github.com/naugtur/xhr/issues/100. xhr.send(body || null) return xhr } function getXml(xhr) { // xhr.responseXML will throw Exception "InvalidStateError" or "DOMException" // See https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/responseXML. try { if (xhr.responseType === "document") { return xhr.responseXML } var firefoxBugTakenEffect = xhr.responseXML && xhr.responseXML.documentElement.nodeName === "parsererror" if (xhr.responseType === "" && !firefoxBugTakenEffect) { return xhr.responseXML } } catch (e) {} return null } function noop() {} },{"global/window":71,"is-function":78,"parse-headers":106,"xtend":189}],188:[function(require,module,exports){ module.exports = (function xmlparser() { //common browsers if (typeof self.DOMParser !== 'undefined') { return function(str) { var parser = new self.DOMParser() return parser.parseFromString(str, 'application/xml') } } //IE8 fallback if (typeof self.ActiveXObject !== 'undefined' && new self.ActiveXObject('Microsoft.XMLDOM')) { return function(str) { var xmlDoc = new self.ActiveXObject("Microsoft.XMLDOM") xmlDoc.async = "false" xmlDoc.loadXML(str) return xmlDoc } } //last resort fallback return function(str) { var div = document.createElement('div') div.innerHTML = str return div } })() },{}],189:[function(require,module,exports){ module.exports = extend var hasOwnProperty = Object.prototype.hasOwnProperty; function extend() { var target = {} for (var i = 0; i < arguments.length; i++) { var source = arguments[i] for (var key in source) { if (hasOwnProperty.call(source, key)) { target[key] = source[key] } } } return target } },{}],190:[function(require,module,exports){ "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.srcOver = srcOver; exports.dstOver = dstOver; exports.multiply = multiply; exports.add = add; exports.screen = screen; exports.overlay = overlay; exports.darken = darken; exports.lighten = lighten; exports.hardLight = hardLight; exports.difference = difference; exports.exclusion = exclusion; function srcOver(src, dst) { var ops = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 1; src.a *= ops; var a = dst.a + src.a - dst.a * src.a; var r = (src.r * src.a + dst.r * dst.a * (1 - src.a)) / a; var g = (src.g * src.a + dst.g * dst.a * (1 - src.a)) / a; var b = (src.b * src.a + dst.b * dst.a * (1 - src.a)) / a; return { r: r, g: g, b: b, a: a }; } function dstOver(src, dst) { var ops = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 1; src.a *= ops; var a = dst.a + src.a - dst.a * src.a; var r = (dst.r * dst.a + src.r * src.a * (1 - dst.a)) / a; var g = (dst.g * dst.a + src.g * src.a * (1 - dst.a)) / a; var b = (dst.b * dst.a + src.b * src.a * (1 - dst.a)) / a; return { r: r, g: g, b: b, a: a }; } function multiply(src, dst) { var ops = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 1; src.a *= ops; var a = dst.a + src.a - dst.a * src.a; var sra = src.r * src.a; var sga = src.g * src.a; var sba = src.b * src.a; var dra = dst.r * dst.a; var dga = dst.g * dst.a; var dba = dst.b * dst.a; var r = (sra * dra + sra * (1 - dst.a) + dra * (1 - src.a)) / a; var g = (sga * dga + sga * (1 - dst.a) + dga * (1 - src.a)) / a; var b = (sba * dba + sba * (1 - dst.a) + dba * (1 - src.a)) / a; return { r: r, g: g, b: b, a: a }; } function add(src, dst) { var ops = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 1; src.a *= ops; var a = dst.a + src.a - dst.a * src.a; var sra = src.r * src.a; var sga = src.g * src.a; var sba = src.b * src.a; var dra = dst.r * dst.a; var dga = dst.g * dst.a; var dba = dst.b * dst.a; var r = (sra + dra) / a; var g = (sga + dga) / a; var b = (sba + dba) / a; return { r: r, g: g, b: b, a: a }; } function screen(src, dst) { var ops = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 1; src.a *= ops; var a = dst.a + src.a - dst.a * src.a; var sra = src.r * src.a; var sga = src.g * src.a; var sba = src.b * src.a; var dra = dst.r * dst.a; var dga = dst.g * dst.a; var dba = dst.b * dst.a; var r = (sra * dst.a + dra * src.a - sra * dra + sra * (1 - dst.a) + dra * (1 - src.a)) / a; var g = (sga * dst.a + dga * src.a - sga * dga + sga * (1 - dst.a) + dga * (1 - src.a)) / a; var b = (sba * dst.a + dba * src.a - sba * dba + sba * (1 - dst.a) + dba * (1 - src.a)) / a; return { r: r, g: g, b: b, a: a }; } function overlay(src, dst) { var ops = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 1; src.a *= ops; var a = dst.a + src.a - dst.a * src.a; var sra = src.r * src.a; var sga = src.g * src.a; var sba = src.b * src.a; var dra = dst.r * dst.a; var dga = dst.g * dst.a; var dba = dst.b * dst.a; var r = (2 * dra <= dst.a ? 2 * sra * dra + sra * (1 - dst.a) + dra * (1 - src.a) : sra * (1 + dst.a) + dra * (1 + src.a) - 2 * dra * sra - dst.a * src.a) / a; var g = (2 * dga <= dst.a ? 2 * sga * dga + sga * (1 - dst.a) + dga * (1 - src.a) : sga * (1 + dst.a) + dga * (1 + src.a) - 2 * dga * sga - dst.a * src.a) / a; var b = (2 * dba <= dst.a ? 2 * sba * dba + sba * (1 - dst.a) + dba * (1 - src.a) : sba * (1 + dst.a) + dba * (1 + src.a) - 2 * dba * sba - dst.a * src.a) / a; return { r: r, g: g, b: b, a: a }; } function darken(src, dst) { var ops = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 1; src.a *= ops; var a = dst.a + src.a - dst.a * src.a; var sra = src.r * src.a; var sga = src.g * src.a; var sba = src.b * src.a; var dra = dst.r * dst.a; var dga = dst.g * dst.a; var dba = dst.b * dst.a; var r = (Math.min(sra * dst.a, dra * src.a) + sra * (1 - dst.a) + dra * (1 - src.a)) / a; var g = (Math.min(sga * dst.a, dga * src.a) + sga * (1 - dst.a) + dga * (1 - src.a)) / a; var b = (Math.min(sba * dst.a, dba * src.a) + sba * (1 - dst.a) + dba * (1 - src.a)) / a; return { r: r, g: g, b: b, a: a }; } function lighten(src, dst) { var ops = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 1; src.a *= ops; var a = dst.a + src.a - dst.a * src.a; var sra = src.r * src.a; var sga = src.g * src.a; var sba = src.b * src.a; var dra = dst.r * dst.a; var dga = dst.g * dst.a; var dba = dst.b * dst.a; var r = (Math.max(sra * dst.a, dra * src.a) + sra * (1 - dst.a) + dra * (1 - src.a)) / a; var g = (Math.max(sga * dst.a, dga * src.a) + sga * (1 - dst.a) + dga * (1 - src.a)) / a; var b = (Math.max(sba * dst.a, dba * src.a) + sba * (1 - dst.a) + dba * (1 - src.a)) / a; return { r: r, g: g, b: b, a: a }; } function hardLight(src, dst) { var ops = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 1; src.a *= ops; var a = dst.a + src.a - dst.a * src.a; var sra = src.r * src.a; var sga = src.g * src.a; var sba = src.b * src.a; var dra = dst.r * dst.a; var dga = dst.g * dst.a; var dba = dst.b * dst.a; var r = (2 * sra <= src.a ? 2 * sra * dra + sra * (1 - dst.a) + dra * (1 - src.a) : sra * (1 + dst.a) + dra * (1 + src.a) - 2 * dra * sra - dst.a * src.a) / a; var g = (2 * sga <= src.a ? 2 * sga * dga + sga * (1 - dst.a) + dga * (1 - src.a) : sga * (1 + dst.a) + dga * (1 + src.a) - 2 * dga * sga - dst.a * src.a) / a; var b = (2 * sba <= src.a ? 2 * sba * dba + sba * (1 - dst.a) + dba * (1 - src.a) : sba * (1 + dst.a) + dba * (1 + src.a) - 2 * dba * sba - dst.a * src.a) / a; return { r: r, g: g, b: b, a: a }; } function difference(src, dst) { var ops = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 1; src.a *= ops; var a = dst.a + src.a - dst.a * src.a; var sra = src.r * src.a; var sga = src.g * src.a; var sba = src.b * src.a; var dra = dst.r * dst.a; var dga = dst.g * dst.a; var dba = dst.b * dst.a; var r = (sra + dra - 2 * Math.min(sra * dst.a, dra * src.a)) / a; var g = (sga + dga - 2 * Math.min(sga * dst.a, dga * src.a)) / a; var b = (sba + dba - 2 * Math.min(sba * dst.a, dba * src.a)) / a; return { r: r, g: g, b: b, a: a }; } function exclusion(src, dst) { var ops = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 1; src.a *= ops; var a = dst.a + src.a - dst.a * src.a; var sra = src.r * src.a; var sga = src.g * src.a; var sba = src.b * src.a; var dra = dst.r * dst.a; var dga = dst.g * dst.a; var dba = dst.b * dst.a; var r = (sra * dst.a + dra * src.a - 2 * sra * dra + sra * (1 - dst.a) + dra * (1 - src.a)) / a; var g = (sga * dst.a + dga * src.a - 2 * sga * dga + sga * (1 - dst.a) + dga * (1 - src.a)) / a; var b = (sba * dst.a + dba * src.a - 2 * sba * dba + sba * (1 - dst.a) + dba * (1 - src.a)) / a; return { r: r, g: g, b: b, a: a }; } },{}],191:[function(require,module,exports){ "use strict"; var _interopRequireWildcard = require("@babel/runtime/helpers/interopRequireWildcard"); Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = composite; var _utils = require("@jimp/utils"); var constants = _interopRequireWildcard(require("../constants")); var compositeModes = _interopRequireWildcard(require("./composite-modes")); /** * Composites a source image over to this image respecting alpha channels * @param {Jimp} src the source Jimp instance * @param {number} x the x position to blit the image * @param {number} y the y position to blit the image * @param {object} options determine what mode to use * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ function composite(src, x, y) { var options = arguments.length > 3 && arguments[3] !== undefined ? arguments[3] : {}; var cb = arguments.length > 4 ? arguments[4] : undefined; if (typeof options === 'function') { cb = options; options = {}; } if (!(src instanceof this.constructor)) { return _utils.throwError.call(this, 'The source must be a Jimp image', cb); } if (typeof x !== 'number' || typeof y !== 'number') { return _utils.throwError.call(this, 'x and y must be numbers', cb); } var _options = options, mode = _options.mode, opacitySource = _options.opacitySource, opacityDest = _options.opacityDest; if (!mode) { mode = constants.BLEND_SOURCE_OVER; } if (typeof opacitySource !== 'number' || opacitySource < 0 || opacitySource > 1) { opacitySource = 1.0; } if (typeof opacityDest !== 'number' || opacityDest < 0 || opacityDest > 1) { opacityDest = 1.0; } var blendmode = compositeModes[mode]; // round input x = Math.round(x); y = Math.round(y); var baseImage = this; if (opacityDest !== 1.0) { baseImage.opacity(opacityDest); } src.scanQuiet(0, 0, src.bitmap.width, src.bitmap.height, function (sx, sy, idx) { var dstIdx = baseImage.getPixelIndex(x + sx, y + sy, constants.EDGE_CROP); var blended = blendmode({ r: this.bitmap.data[idx + 0] / 255, g: this.bitmap.data[idx + 1] / 255, b: this.bitmap.data[idx + 2] / 255, a: this.bitmap.data[idx + 3] / 255 }, { r: baseImage.bitmap.data[dstIdx + 0] / 255, g: baseImage.bitmap.data[dstIdx + 1] / 255, b: baseImage.bitmap.data[dstIdx + 2] / 255, a: baseImage.bitmap.data[dstIdx + 3] / 255 }, opacitySource); baseImage.bitmap.data[dstIdx + 0] = this.constructor.limit255(blended.r * 255); baseImage.bitmap.data[dstIdx + 1] = this.constructor.limit255(blended.g * 255); baseImage.bitmap.data[dstIdx + 2] = this.constructor.limit255(blended.b * 255); baseImage.bitmap.data[dstIdx + 3] = this.constructor.limit255(blended.a * 255); }); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } module.exports = exports.default; },{"../constants":192,"./composite-modes":190,"@babel/runtime/helpers/interopRequireWildcard":12,"@jimp/utils":235}],192:[function(require,module,exports){ "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.EDGE_CROP = exports.EDGE_WRAP = exports.EDGE_EXTEND = exports.BLEND_EXCLUSION = exports.BLEND_DIFFERENCE = exports.BLEND_HARDLIGHT = exports.BLEND_LIGHTEN = exports.BLEND_DARKEN = exports.BLEND_OVERLAY = exports.BLEND_SCREEN = exports.BLEND_ADD = exports.BLEND_MULTIPLY = exports.BLEND_DESTINATION_OVER = exports.BLEND_SOURCE_OVER = exports.VERTICAL_ALIGN_BOTTOM = exports.VERTICAL_ALIGN_MIDDLE = exports.VERTICAL_ALIGN_TOP = exports.HORIZONTAL_ALIGN_RIGHT = exports.HORIZONTAL_ALIGN_CENTER = exports.HORIZONTAL_ALIGN_LEFT = exports.AUTO = void 0; // used to auto resizing etc. var AUTO = -1; // Align modes for cover, contain, bit masks exports.AUTO = AUTO; var HORIZONTAL_ALIGN_LEFT = 1; exports.HORIZONTAL_ALIGN_LEFT = HORIZONTAL_ALIGN_LEFT; var HORIZONTAL_ALIGN_CENTER = 2; exports.HORIZONTAL_ALIGN_CENTER = HORIZONTAL_ALIGN_CENTER; var HORIZONTAL_ALIGN_RIGHT = 4; exports.HORIZONTAL_ALIGN_RIGHT = HORIZONTAL_ALIGN_RIGHT; var VERTICAL_ALIGN_TOP = 8; exports.VERTICAL_ALIGN_TOP = VERTICAL_ALIGN_TOP; var VERTICAL_ALIGN_MIDDLE = 16; exports.VERTICAL_ALIGN_MIDDLE = VERTICAL_ALIGN_MIDDLE; var VERTICAL_ALIGN_BOTTOM = 32; // blend modes exports.VERTICAL_ALIGN_BOTTOM = VERTICAL_ALIGN_BOTTOM; var BLEND_SOURCE_OVER = 'srcOver'; exports.BLEND_SOURCE_OVER = BLEND_SOURCE_OVER; var BLEND_DESTINATION_OVER = 'dstOver'; exports.BLEND_DESTINATION_OVER = BLEND_DESTINATION_OVER; var BLEND_MULTIPLY = 'multiply'; exports.BLEND_MULTIPLY = BLEND_MULTIPLY; var BLEND_ADD = 'add'; exports.BLEND_ADD = BLEND_ADD; var BLEND_SCREEN = 'screen'; exports.BLEND_SCREEN = BLEND_SCREEN; var BLEND_OVERLAY = 'overlay'; exports.BLEND_OVERLAY = BLEND_OVERLAY; var BLEND_DARKEN = 'darken'; exports.BLEND_DARKEN = BLEND_DARKEN; var BLEND_LIGHTEN = 'lighten'; exports.BLEND_LIGHTEN = BLEND_LIGHTEN; var BLEND_HARDLIGHT = 'hardLight'; exports.BLEND_HARDLIGHT = BLEND_HARDLIGHT; var BLEND_DIFFERENCE = 'difference'; exports.BLEND_DIFFERENCE = BLEND_DIFFERENCE; var BLEND_EXCLUSION = 'exclusion'; // Edge Handling exports.BLEND_EXCLUSION = BLEND_EXCLUSION; var EDGE_EXTEND = 1; exports.EDGE_EXTEND = EDGE_EXTEND; var EDGE_WRAP = 2; exports.EDGE_WRAP = EDGE_WRAP; var EDGE_CROP = 3; exports.EDGE_CROP = EDGE_CROP; },{}],193:[function(require,module,exports){ (function (Buffer){ "use strict"; var _interopRequireWildcard = require("@babel/runtime/helpers/interopRequireWildcard"); var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault"); Object.defineProperty(exports, "__esModule", { value: true }); exports.addConstants = addConstants; exports.addJimpMethods = addJimpMethods; exports.jimpEvMethod = jimpEvMethod; exports.jimpEvChange = jimpEvChange; Object.defineProperty(exports, "addType", { enumerable: true, get: function get() { return MIME.addType; } }); exports["default"] = void 0; var _construct2 = _interopRequireDefault(require("@babel/runtime/helpers/construct")); var _slicedToArray2 = _interopRequireDefault(require("@babel/runtime/helpers/slicedToArray")); var _classCallCheck2 = _interopRequireDefault(require("@babel/runtime/helpers/classCallCheck")); var _createClass2 = _interopRequireDefault(require("@babel/runtime/helpers/createClass")); var _possibleConstructorReturn2 = _interopRequireDefault(require("@babel/runtime/helpers/possibleConstructorReturn")); var _getPrototypeOf2 = _interopRequireDefault(require("@babel/runtime/helpers/getPrototypeOf")); var _assertThisInitialized2 = _interopRequireDefault(require("@babel/runtime/helpers/assertThisInitialized")); var _inherits2 = _interopRequireDefault(require("@babel/runtime/helpers/inherits")); var _defineProperty2 = _interopRequireDefault(require("@babel/runtime/helpers/defineProperty")); var _typeof2 = _interopRequireDefault(require("@babel/runtime/helpers/typeof")); var _fs = _interopRequireDefault(require("fs")); var _path = _interopRequireDefault(require("path")); var _events = _interopRequireDefault(require("events")); var _utils = require("@jimp/utils"); var _anyBase = _interopRequireDefault(require("any-base")); var _mkdirp = _interopRequireDefault(require("mkdirp")); var _pixelmatch = _interopRequireDefault(require("pixelmatch")); var _tinycolor = _interopRequireDefault(require("tinycolor2")); var _phash = _interopRequireDefault(require("./modules/phash")); var _request = _interopRequireDefault(require("./request")); var _composite = _interopRequireDefault(require("./composite")); var _promisify = _interopRequireDefault(require("./utils/promisify")); var MIME = _interopRequireWildcard(require("./utils/mime")); var _imageBitmap = require("./utils/image-bitmap"); var constants = _interopRequireWildcard(require("./constants")); var alphabet = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_'; // an array storing the maximum string length of hashes at various bases // 0 and 1 do not exist as possible hash lengths var maxHashLength = [NaN, NaN]; for (var i = 2; i < 65; i++) { var maxHash = (0, _anyBase["default"])(_anyBase["default"].BIN, alphabet.slice(0, i))(new Array(64 + 1).join('1')); maxHashLength.push(maxHash.length); } // no operation function noop() {} // error checking methods function isArrayBuffer(test) { return Object.prototype.toString.call(test).toLowerCase().indexOf('arraybuffer') > -1; } // Prepare a Buffer object from the arrayBuffer. Necessary in the browser > node conversion, // But this function is not useful when running in node directly function bufferFromArrayBuffer(arrayBuffer) { var buffer = Buffer.alloc(arrayBuffer.byteLength); var view = new Uint8Array(arrayBuffer); for (var _i = 0; _i < buffer.length; ++_i) { buffer[_i] = view[_i]; } return buffer; } function loadFromURL(options, cb) { (0, _request["default"])(options, function (err, response, data) { if (err) { return cb(err); } if ('headers' in response && 'location' in response.headers) { options.url = response.headers.location; return loadFromURL(options, cb); } if ((0, _typeof2["default"])(data) === 'object' && Buffer.isBuffer(data)) { return cb(null, data); } var msg = 'Could not load Buffer from <' + options.url + '> ' + '(HTTP: ' + response.statusCode + ')'; return new Error(msg); }); } function loadBufferFromPath(src, cb) { if (_fs["default"] && typeof _fs["default"].readFile === 'function' && !src.match(/^(http|ftp)s?:\/\/./)) { _fs["default"].readFile(src, cb); } else { loadFromURL({ url: src }, cb); } } function isRawRGBAData(obj) { return obj && (0, _typeof2["default"])(obj) === 'object' && typeof obj.width === 'number' && typeof obj.height === 'number' && (Buffer.isBuffer(obj.data) || obj.data instanceof Uint8Array || typeof Uint8ClampedArray === 'function' && obj.data instanceof Uint8ClampedArray) && (obj.data.length === obj.width * obj.height * 4 || obj.data.length === obj.width * obj.height * 3); } function makeRGBABufferFromRGB(buffer) { if (buffer.length % 3 !== 0) { throw new Error('Buffer length is incorrect'); } var rgbaBuffer = Buffer.allocUnsafe(buffer.length / 3 * 4); var j = 0; for (var _i2 = 0; _i2 < buffer.length; _i2++) { rgbaBuffer[j] = buffer[_i2]; if ((_i2 + 1) % 3 === 0) { rgbaBuffer[++j] = 255; } j++; } return rgbaBuffer; } var emptyBitmap = { data: null, width: null, height: null }; /** * Jimp constructor (from a file) * @param path a path to the image * @param {function(Error, Jimp)} cb (optional) a function to call when the image is parsed to a bitmap */ /** * Jimp constructor (from a url with options) * @param options { url, otherOptions} * @param {function(Error, Jimp)} cb (optional) a function to call when the image is parsed to a bitmap */ /** * Jimp constructor (from another Jimp image or raw image data) * @param image a Jimp image to clone * @param {function(Error, Jimp)} cb a function to call when the image is parsed to a bitmap */ /** * Jimp constructor (from a Buffer) * @param data a Buffer containing the image data * @param {function(Error, Jimp)} cb a function to call when the image is parsed to a bitmap */ /** * Jimp constructor (to generate a new image) * @param w the width of the image * @param h the height of the image * @param {function(Error, Jimp)} cb (optional) a function to call when the image is parsed to a bitmap */ /** * Jimp constructor (to generate a new image) * @param w the width of the image * @param h the height of the image * @param background color to fill the image with * @param {function(Error, Jimp)} cb (optional) a function to call when the image is parsed to a bitmap */ var Jimp = /*#__PURE__*/ function (_EventEmitter) { (0, _inherits2["default"])(Jimp, _EventEmitter); // An object representing a bitmap in memory, comprising: // - data: a buffer of the bitmap data // - width: the width of the image in pixels // - height: the height of the image in pixels // Default colour to use for new pixels // Default MIME is PNG // Exif data for the image // Whether Transparency supporting formats will be exported as RGB or RGBA function Jimp() { var _this; for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) { args[_key] = arguments[_key]; } (0, _classCallCheck2["default"])(this, Jimp); _this = (0, _possibleConstructorReturn2["default"])(this, (0, _getPrototypeOf2["default"])(Jimp).call(this)); (0, _defineProperty2["default"])((0, _assertThisInitialized2["default"])(_this), "bitmap", emptyBitmap); (0, _defineProperty2["default"])((0, _assertThisInitialized2["default"])(_this), "_background", 0x00000000); (0, _defineProperty2["default"])((0, _assertThisInitialized2["default"])(_this), "_originalMime", Jimp.MIME_PNG); (0, _defineProperty2["default"])((0, _assertThisInitialized2["default"])(_this), "_exif", null); (0, _defineProperty2["default"])((0, _assertThisInitialized2["default"])(_this), "_rgba", true); (0, _defineProperty2["default"])((0, _assertThisInitialized2["default"])(_this), "writeAsync", function (path) { return (0, _promisify["default"])(_this.write, (0, _assertThisInitialized2["default"])(_this), path); }); (0, _defineProperty2["default"])((0, _assertThisInitialized2["default"])(_this), "getBase64Async", function (mime) { return (0, _promisify["default"])(_this.getBase64, (0, _assertThisInitialized2["default"])(_this), mime); }); (0, _defineProperty2["default"])((0, _assertThisInitialized2["default"])(_this), "getBuffer", _imageBitmap.getBuffer); (0, _defineProperty2["default"])((0, _assertThisInitialized2["default"])(_this), "getBufferAsync", _imageBitmap.getBufferAsync); (0, _defineProperty2["default"])((0, _assertThisInitialized2["default"])(_this), "getPixelColour", _this.getPixelColor); (0, _defineProperty2["default"])((0, _assertThisInitialized2["default"])(_this), "setPixelColour", _this.setPixelColor); var jimpInstance = (0, _assertThisInitialized2["default"])(_this); var cb = noop; if (isArrayBuffer(args[0])) { args[0] = bufferFromArrayBuffer(args[0]); } function finish() { for (var _len2 = arguments.length, args = new Array(_len2), _key2 = 0; _key2 < _len2; _key2++) { args[_key2] = arguments[_key2]; } var err = args[0]; var evData = err || {}; evData.methodName = 'constructor'; setTimeout(function () { var _cb; // run on next tick. if (err && cb === noop) { jimpInstance.emitError('constructor', err); } else if (!err) { jimpInstance.emitMulti('constructor', 'initialized'); } (_cb = cb).call.apply(_cb, [jimpInstance].concat(args)); }, 1); } if (typeof args[0] === 'number' && typeof args[1] === 'number' || parseInt(args[0], 10) && parseInt(args[1], 10)) { // create a new image var w = parseInt(args[0], 10); var h = parseInt(args[1], 10); cb = args[2]; // with a hex color if (typeof args[2] === 'number') { _this._background = args[2]; cb = args[3]; } // with a css color if (typeof args[2] === 'string') { _this._background = Jimp.cssColorToHex(args[2]); cb = args[3]; } if (typeof cb === 'undefined') { cb = noop; } if (typeof cb !== 'function') { return (0, _possibleConstructorReturn2["default"])(_this, _utils.throwError.call((0, _assertThisInitialized2["default"])(_this), 'cb must be a function', finish)); } _this.bitmap = { data: Buffer.alloc(w * h * 4), width: w, height: h }; for (var _i3 = 0; _i3 < _this.bitmap.data.length; _i3 += 4) { _this.bitmap.data.writeUInt32BE(_this._background, _i3); } finish(null, (0, _assertThisInitialized2["default"])(_this)); } else if ((0, _typeof2["default"])(args[0]) === 'object' && args[0].url) { cb = args[1] || noop; if (typeof cb !== 'function') { return (0, _possibleConstructorReturn2["default"])(_this, _utils.throwError.call((0, _assertThisInitialized2["default"])(_this), 'cb must be a function', finish)); } loadFromURL(args[0], function (err, data) { if (err) { return _utils.throwError.call((0, _assertThisInitialized2["default"])(_this), err, finish); } _this.parseBitmap(data, args[0].url, finish); }); } else if (args[0] instanceof Jimp) { // clone an existing Jimp var original = args[0]; cb = args[1]; if (typeof cb === 'undefined') { cb = noop; } if (typeof cb !== 'function') { return (0, _possibleConstructorReturn2["default"])(_this, _utils.throwError.call((0, _assertThisInitialized2["default"])(_this), 'cb must be a function', finish)); } _this.bitmap = { data: Buffer.from(original.bitmap.data), width: original.bitmap.width, height: original.bitmap.height }; _this._quality = original._quality; _this._deflateLevel = original._deflateLevel; _this._deflateStrategy = original._deflateStrategy; _this._filterType = original._filterType; _this._rgba = original._rgba; _this._background = original._background; _this._originalMime = original._originalMime; finish(null, (0, _assertThisInitialized2["default"])(_this)); } else if (isRawRGBAData(args[0])) { var imageData = args[0]; cb = args[1] || noop; var isRGBA = imageData.width * imageData.height * 4 === imageData.data.length; var buffer = isRGBA ? Buffer.from(imageData.data) : makeRGBABufferFromRGB(imageData.data); _this.bitmap = { data: buffer, width: imageData.width, height: imageData.height }; finish(null, (0, _assertThisInitialized2["default"])(_this)); } else if (typeof args[0] === 'string') { // read from a path var path = args[0]; cb = args[1]; if (typeof cb === 'undefined') { cb = noop; } if (typeof cb !== 'function') { return (0, _possibleConstructorReturn2["default"])(_this, _utils.throwError.call((0, _assertThisInitialized2["default"])(_this), 'cb must be a function', finish)); } loadBufferFromPath(path, function (err, data) { if (err) { return _utils.throwError.call((0, _assertThisInitialized2["default"])(_this), err, finish); } _this.parseBitmap(data, path, finish); }); } else if ((0, _typeof2["default"])(args[0]) === 'object' && Buffer.isBuffer(args[0])) { // read from a buffer var data = args[0]; cb = args[1]; if (typeof cb !== 'function') { return (0, _possibleConstructorReturn2["default"])(_this, _utils.throwError.call((0, _assertThisInitialized2["default"])(_this), 'cb must be a function', finish)); } _this.parseBitmap(data, null, finish); } else { // Allow client libs to add new ways to build a Jimp object. // Extra constructors must be added by `Jimp.appendConstructorOption()` cb = args[args.length - 1]; if (typeof cb !== 'function') { // TODO: try to solve the args after cb problem. cb = args[args.length - 2]; if (typeof cb !== 'function') { cb = noop; } } var extraConstructor = Jimp.__extraConstructors.find(function (c) { return c.test.apply(c, args); }); if (extraConstructor) { new Promise(function (resolve, reject) { var _extraConstructor$run; return (_extraConstructor$run = extraConstructor.run).call.apply(_extraConstructor$run, [(0, _assertThisInitialized2["default"])(_this), resolve, reject].concat(args)); }).then(function () { return finish(null, (0, _assertThisInitialized2["default"])(_this)); })["catch"](finish); } else { return (0, _possibleConstructorReturn2["default"])(_this, _utils.throwError.call((0, _assertThisInitialized2["default"])(_this), 'No matching constructor overloading was found. ' + 'Please see the docs for how to call the Jimp constructor.', finish)); } } return _this; } /** * Parse a bitmap with the loaded image types. * * @param {Buffer} data raw image data * @param {string} path optional path to file * @param {function(Error, Jimp)} finish (optional) a callback for when complete * @memberof Jimp */ (0, _createClass2["default"])(Jimp, [{ key: "parseBitmap", value: function parseBitmap(data, path, finish) { _imageBitmap.parseBitmap.call(this, data, null, finish); } /** * Sets the type of the image (RGB or RGBA) when saving in a format that supports transparency (default is RGBA) * @param {boolean} bool A Boolean, true to use RGBA or false to use RGB * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ }, { key: "rgba", value: function rgba(bool, cb) { if (typeof bool !== 'boolean') { return _utils.throwError.call(this, 'bool must be a boolean, true for RGBA or false for RGB', cb); } this._rgba = bool; if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } /** * Emit for multiple listeners * @param {string} methodName name of the method to emit an error for * @param {string} eventName name of the eventName to emit an error for * @param {object} data to emit */ }, { key: "emitMulti", value: function emitMulti(methodName, eventName) { var data = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : {}; data = Object.assign(data, { methodName: methodName, eventName: eventName }); this.emit('any', data); if (methodName) { this.emit(methodName, data); } this.emit(eventName, data); } }, { key: "emitError", value: function emitError(methodName, err) { this.emitMulti(methodName, 'error', err); } /** * Get the current height of the image * @return {number} height of the image */ }, { key: "getHeight", value: function getHeight() { return this.bitmap.height; } /** * Get the current width of the image * @return {number} width of the image */ }, { key: "getWidth", value: function getWidth() { return this.bitmap.width; } /** * Nicely format Jimp object when sent to the console e.g. console.log(image) * @returns {string} pretty printed */ }, { key: "inspect", value: function inspect() { return ''; } /** * Nicely format Jimp object when converted to a string * @returns {string} pretty printed */ }, { key: "toString", value: function toString() { return '[object Jimp]'; } /** * Returns the original MIME of the image (default: "image/png") * @returns {string} the MIME */ }, { key: "getMIME", value: function getMIME() { var mime = this._originalMime || Jimp.MIME_PNG; return mime; } /** * Returns the appropriate file extension for the original MIME of the image (default: "png") * @returns {string} the file extension */ }, { key: "getExtension", value: function getExtension() { var mime = this.getMIME(); return MIME.getExtension(mime); } /** * Writes the image to a file * @param {string} path a path to the destination file * @param {function(Error, Jimp)} cb (optional) a function to call when the image is saved to disk * @returns {Jimp} this for chaining of methods */ }, { key: "write", value: function write(path, cb) { var _this2 = this; if (!_fs["default"] || !_fs["default"].createWriteStream) { throw new Error('Cant access the filesystem. You can use the getBase64 method.'); } if (typeof path !== 'string') { return _utils.throwError.call(this, 'path must be a string', cb); } if (typeof cb === 'undefined') { cb = noop; } if (typeof cb !== 'function') { return _utils.throwError.call(this, 'cb must be a function', cb); } var mime = MIME.getType(path) || this.getMIME(); var pathObj = _path["default"].parse(path); if (pathObj.dir) { _mkdirp["default"].sync(pathObj.dir); } this.getBuffer(mime, function (err, buffer) { if (err) { return _utils.throwError.call(_this2, err, cb); } var stream = _fs["default"].createWriteStream(path); stream.on('open', function () { stream.write(buffer); stream.end(); }).on('error', function (err) { return _utils.throwError.call(_this2, err, cb); }); stream.on('finish', function () { cb.call(_this2, null, _this2); }); }); return this; } }, { key: "getBase64", /** * Converts the image to a base 64 string * @param {string} mime the mime type of the image data to be created * @param {function(Error, Jimp)} cb a Node-style function to call with the buffer as the second argument * @returns {Jimp} this for chaining of methods */ value: function getBase64(mime, cb) { if (mime === Jimp.AUTO) { // allow auto MIME detection mime = this.getMIME(); } if (typeof mime !== 'string') { return _utils.throwError.call(this, 'mime must be a string', cb); } if (typeof cb !== 'function') { return _utils.throwError.call(this, 'cb must be a function', cb); } this.getBuffer(mime, function (err, data) { if (err) { return _utils.throwError.call(this, err, cb); } var src = 'data:' + mime + ';base64,' + data.toString('base64'); cb.call(this, null, src); }); return this; } }, { key: "hash", /** * Generates a perceptual hash of the image . And pads the string. Can configure base. * @param {number} base (optional) a number between 2 and 64 representing the base for the hash (e.g. 2 is binary, 10 is decimal, 16 is hex, 64 is base 64). Defaults to 64. * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {string} a string representing the hash */ value: function hash(base, cb) { base = base || 64; if (typeof base === 'function') { cb = base; base = 64; } if (typeof base !== 'number') { return _utils.throwError.call(this, 'base must be a number', cb); } if (base < 2 || base > 64) { return _utils.throwError.call(this, 'base must be a number between 2 and 64', cb); } var hash = this.pHash(); hash = (0, _anyBase["default"])(_anyBase["default"].BIN, alphabet.slice(0, base))(hash); while (hash.length < maxHashLength[base]) { hash = '0' + hash; // pad out with leading zeros } if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, hash); } return hash; } /** * Calculates the perceptual hash * @returns {number} the perceptual hash */ }, { key: "pHash", value: function pHash() { var pHash = new _phash["default"](); return pHash.getHash(this); } /** * Calculates the hamming distance of the current image and a hash based on their perceptual hash * @param {hash} compareHash hash to compare to * @returns {number} a number ranging from 0 to 1, 0 means they are believed to be identical */ }, { key: "distanceFromHash", value: function distanceFromHash(compareHash) { var pHash = new _phash["default"](); var currentHash = pHash.getHash(this); return pHash.distance(currentHash, compareHash); } /** * Converts the image to a buffer * @param {string} mime the mime type of the image buffer to be created * @param {function(Error, Jimp)} cb a Node-style function to call with the buffer as the second argument * @returns {Jimp} this for chaining of methods */ }, { key: "getPixelIndex", /** * Returns the offset of a pixel in the bitmap buffer * @param {number} x the x coordinate * @param {number} y the y coordinate * @param {string} edgeHandling (optional) define how to sum pixels from outside the border * @param {number} cb (optional) a callback for when complete * @returns {number} the index of the pixel or -1 if not found */ value: function getPixelIndex(x, y, edgeHandling, cb) { var xi; var yi; if (typeof edgeHandling === 'function' && typeof cb === 'undefined') { cb = edgeHandling; edgeHandling = null; } if (!edgeHandling) { edgeHandling = Jimp.EDGE_EXTEND; } if (typeof x !== 'number' || typeof y !== 'number') { return _utils.throwError.call(this, 'x and y must be numbers', cb); } // round input x = Math.round(x); y = Math.round(y); xi = x; yi = y; if (edgeHandling === Jimp.EDGE_EXTEND) { if (x < 0) xi = 0; if (x >= this.bitmap.width) xi = this.bitmap.width - 1; if (y < 0) yi = 0; if (y >= this.bitmap.height) yi = this.bitmap.height - 1; } if (edgeHandling === Jimp.EDGE_WRAP) { if (x < 0) { xi = this.bitmap.width + x; } if (x >= this.bitmap.width) { xi = x % this.bitmap.width; } if (y < 0) { xi = this.bitmap.height + y; } if (y >= this.bitmap.height) { yi = y % this.bitmap.height; } } var i = this.bitmap.width * yi + xi << 2; // if out of bounds index is -1 if (xi < 0 || xi >= this.bitmap.width) { i = -1; } if (yi < 0 || yi >= this.bitmap.height) { i = -1; } if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, i); } return i; } /** * Returns the hex colour value of a pixel * @param {number} x the x coordinate * @param {number} y the y coordinate * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {number} the color of the pixel */ }, { key: "getPixelColor", value: function getPixelColor(x, y, cb) { if (typeof x !== 'number' || typeof y !== 'number') return _utils.throwError.call(this, 'x and y must be numbers', cb); // round input x = Math.round(x); y = Math.round(y); var idx = this.getPixelIndex(x, y); var hex = this.bitmap.data.readUInt32BE(idx); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, hex); } return hex; } }, { key: "setPixelColor", /** * Returns the hex colour value of a pixel * @param {number} hex color to set * @param {number} x the x coordinate * @param {number} y the y coordinate * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {number} the index of the pixel or -1 if not found */ value: function setPixelColor(hex, x, y, cb) { if (typeof hex !== 'number' || typeof x !== 'number' || typeof y !== 'number') return _utils.throwError.call(this, 'hex, x and y must be numbers', cb); // round input x = Math.round(x); y = Math.round(y); var idx = this.getPixelIndex(x, y); this.bitmap.data.writeUInt32BE(hex, idx); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } }, { key: "hasAlpha", /** * Determine if the image contains opaque pixels. * @return {boolean} hasAlpha whether the image contains opaque pixels */ value: function hasAlpha() { for (var yIndex = 0; yIndex < this.bitmap.height; yIndex++) { for (var xIndex = 0; xIndex < this.bitmap.width; xIndex++) { var idx = this.bitmap.width * yIndex + xIndex << 2; var alpha = this.bitmap.data[idx + 3]; if (alpha !== 0xff) { return true; } } } return false; } /** * Iterate scan through a region of the bitmap * @param {number} x the x coordinate to begin the scan at * @param {number} y the y coordinate to begin the scan at * @param w the width of the scan region * @param h the height of the scan region * @returns {IterableIterator<{x: number, y: number, idx: number, image: Jimp}>} */ }, { key: "scanIterator", value: function scanIterator(x, y, w, h) { if (typeof x !== 'number' || typeof y !== 'number') { return _utils.throwError.call(this, 'x and y must be numbers'); } if (typeof w !== 'number' || typeof h !== 'number') { return _utils.throwError.call(this, 'w and h must be numbers'); } return (0, _utils.scanIterator)(this, x, y, w, h); } }]); return Jimp; }(_events["default"]); function addConstants(constants) { var jimpInstance = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : Jimp; Object.entries(constants).forEach(function (_ref) { var _ref2 = (0, _slicedToArray2["default"])(_ref, 2), name = _ref2[0], value = _ref2[1]; jimpInstance[name] = value; }); } function addJimpMethods(methods) { var jimpInstance = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : Jimp; Object.entries(methods).forEach(function (_ref3) { var _ref4 = (0, _slicedToArray2["default"])(_ref3, 2), name = _ref4[0], value = _ref4[1]; jimpInstance.prototype[name] = value; }); } addConstants(constants); addJimpMethods({ composite: _composite["default"] }); Jimp.__extraConstructors = []; /** * Allow client libs to add new ways to build a Jimp object. * @param {string} name identify the extra constructor. * @param {function} test a function that returns true when it accepts the arguments passed to the main constructor. * @param {function} run where the magic happens. */ Jimp.appendConstructorOption = function (name, test, run) { Jimp.__extraConstructors.push({ name: name, test: test, run: run }); }; /** * Read an image from a file or a Buffer. Takes the same args as the constructor * @returns {Promise} a promise */ Jimp.read = function () { for (var _len3 = arguments.length, args = new Array(_len3), _key3 = 0; _key3 < _len3; _key3++) { args[_key3] = arguments[_key3]; } return new Promise(function (resolve, reject) { (0, _construct2["default"])(Jimp, args.concat([function (err, image) { if (err) reject(err);else resolve(image); }])); }); }; Jimp.create = Jimp.read; /** * A static helper method that converts RGBA values to a single integer value * @param {number} r the red value (0-255) * @param {number} g the green value (0-255) * @param {number} b the blue value (0-255) * @param {number} a the alpha value (0-255) * @param {function(Error, Jimp)} cb (optional) A callback for when complete * @returns {number} an single integer colour value */ Jimp.rgbaToInt = function (r, g, b, a, cb) { if (typeof r !== 'number' || typeof g !== 'number' || typeof b !== 'number' || typeof a !== 'number') { return _utils.throwError.call(this, 'r, g, b and a must be numbers', cb); } if (r < 0 || r > 255) { return _utils.throwError.call(this, 'r must be between 0 and 255', cb); } if (g < 0 || g > 255) { _utils.throwError.call(this, 'g must be between 0 and 255', cb); } if (b < 0 || b > 255) { return _utils.throwError.call(this, 'b must be between 0 and 255', cb); } if (a < 0 || a > 255) { return _utils.throwError.call(this, 'a must be between 0 and 255', cb); } r = Math.round(r); b = Math.round(b); g = Math.round(g); a = Math.round(a); var i = r * Math.pow(256, 3) + g * Math.pow(256, 2) + b * Math.pow(256, 1) + a * Math.pow(256, 0); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, i); } return i; }; /** * A static helper method that converts RGBA values to a single integer value * @param {number} i a single integer value representing an RGBA colour (e.g. 0xFF0000FF for red) * @param {function(Error, Jimp)} cb (optional) A callback for when complete * @returns {object} an object with the properties r, g, b and a representing RGBA values */ Jimp.intToRGBA = function (i, cb) { if (typeof i !== 'number') { return _utils.throwError.call(this, 'i must be a number', cb); } var rgba = {}; rgba.r = Math.floor(i / Math.pow(256, 3)); rgba.g = Math.floor((i - rgba.r * Math.pow(256, 3)) / Math.pow(256, 2)); rgba.b = Math.floor((i - rgba.r * Math.pow(256, 3) - rgba.g * Math.pow(256, 2)) / Math.pow(256, 1)); rgba.a = Math.floor((i - rgba.r * Math.pow(256, 3) - rgba.g * Math.pow(256, 2) - rgba.b * Math.pow(256, 1)) / Math.pow(256, 0)); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, rgba); } return rgba; }; /** * Converts a css color (Hex, 8-digit (RGBA) Hex, RGB, RGBA, HSL, HSLA, HSV, HSVA, Named) to a hex number * @param {string} cssColor a number * @returns {number} a hex number representing a color */ Jimp.cssColorToHex = function (cssColor) { cssColor = cssColor || 0; // 0, null, undefined, NaN if (typeof cssColor === 'number') return Number(cssColor); return parseInt((0, _tinycolor["default"])(cssColor).toHex8(), 16); }; /** * Limits a number to between 0 or 255 * @param {number} n a number * @returns {number} the number limited to between 0 or 255 */ Jimp.limit255 = function (n) { n = Math.max(n, 0); n = Math.min(n, 255); return n; }; /** * Diffs two images and returns * @param {Jimp} img1 a Jimp image to compare * @param {Jimp} img2 a Jimp image to compare * @param {number} threshold (optional) a number, 0 to 1, the smaller the value the more sensitive the comparison (default: 0.1) * @returns {object} an object { percent: percent similar, diff: a Jimp image highlighting differences } */ Jimp.diff = function (img1, img2) { var threshold = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 0.1; if (!(img1 instanceof Jimp) || !(img2 instanceof Jimp)) return _utils.throwError.call(this, 'img1 and img2 must be an Jimp images'); var bmp1 = img1.bitmap; var bmp2 = img2.bitmap; if (bmp1.width !== bmp2.width || bmp1.height !== bmp2.height) { if (bmp1.width * bmp1.height > bmp2.width * bmp2.height) { // img1 is bigger img1 = img1.cloneQuiet().resize(bmp2.width, bmp2.height); } else { // img2 is bigger (or they are the same in area) img2 = img2.cloneQuiet().resize(bmp1.width, bmp1.height); } } if (typeof threshold !== 'number' || threshold < 0 || threshold > 1) { return _utils.throwError.call(this, 'threshold must be a number between 0 and 1'); } var diff = new Jimp(bmp1.width, bmp1.height, 0xffffffff); var numDiffPixels = (0, _pixelmatch["default"])(bmp1.data, bmp2.data, diff.bitmap.data, diff.bitmap.width, diff.bitmap.height, { threshold: threshold }); return { percent: numDiffPixels / (diff.bitmap.width * diff.bitmap.height), image: diff }; }; /** * Calculates the hamming distance of two images based on their perceptual hash * @param {Jimp} img1 a Jimp image to compare * @param {Jimp} img2 a Jimp image to compare * @returns {number} a number ranging from 0 to 1, 0 means they are believed to be identical */ Jimp.distance = function (img1, img2) { var phash = new _phash["default"](); var hash1 = phash.getHash(img1); var hash2 = phash.getHash(img2); return phash.distance(hash1, hash2); }; /** * Calculates the hamming distance of two images based on their perceptual hash * @param {hash} hash1 a pHash * @param {hash} hash2 a pHash * @returns {number} a number ranging from 0 to 1, 0 means they are believed to be identical */ Jimp.compareHashes = function (hash1, hash2) { var phash = new _phash["default"](); return phash.distance(hash1, hash2); }; /** * Compute color difference * 0 means no difference, 1 means maximum difference. * @param {number} rgba1: first color to compare. * @param {number} rgba2: second color to compare. * Both parameters must be an color object {r:val, g:val, b:val, a:val} * Where `a` is optional and `val` is an integer between 0 and 255. * @returns {number} float between 0 and 1. */ Jimp.colorDiff = function (rgba1, rgba2) { var pow = function pow(n) { return Math.pow(n, 2); }; var max = Math.max; var maxVal = 255 * 255 * 3; if (rgba1.a !== 0 && !rgba1.a) { rgba1.a = 255; } if (rgba2.a !== 0 && !rgba2.a) { rgba2.a = 255; } return (max(pow(rgba1.r - rgba2.r), pow(rgba1.r - rgba2.r - rgba1.a + rgba2.a)) + max(pow(rgba1.g - rgba2.g), pow(rgba1.g - rgba2.g - rgba1.a + rgba2.a)) + max(pow(rgba1.b - rgba2.b), pow(rgba1.b - rgba2.b - rgba1.a + rgba2.a))) / maxVal; }; /** * Helper to create Jimp methods that emit events before and after its execution. * @param {string} methodName The name to be appended to Jimp prototype. * @param {string} evName The event name to be called. * It will be prefixed by `before-` and emitted when on method call. * It will be appended by `ed` and emitted after the method run. * @param {function} method A function implementing the method itself. * It will also create a quiet version that will not emit events, to not * mess the user code with many `changed` event calls. You can call with * `methodName + "Quiet"`. * * The emitted event comes with a object parameter to the listener with the * `methodName` as one attribute. */ function jimpEvMethod(methodName, evName, method) { var evNameBefore = 'before-' + evName; var evNameAfter = evName.replace(/e$/, '') + 'ed'; Jimp.prototype[methodName] = function () { var wrappedCb; for (var _len4 = arguments.length, args = new Array(_len4), _key4 = 0; _key4 < _len4; _key4++) { args[_key4] = arguments[_key4]; } var cb = args[method.length - 1]; var jimpInstance = this; if (typeof cb === 'function') { wrappedCb = function wrappedCb() { for (var _len5 = arguments.length, args = new Array(_len5), _key5 = 0; _key5 < _len5; _key5++) { args[_key5] = arguments[_key5]; } var err = args[0], data = args[1]; if (err) { jimpInstance.emitError(methodName, err); } else { jimpInstance.emitMulti(methodName, evNameAfter, (0, _defineProperty2["default"])({}, methodName, data)); } cb.apply(this, args); }; args[args.length - 1] = wrappedCb; } else { wrappedCb = false; } this.emitMulti(methodName, evNameBefore); var result; try { result = method.apply(this, args); if (!wrappedCb) { this.emitMulti(methodName, evNameAfter, (0, _defineProperty2["default"])({}, methodName, result)); } } catch (error) { error.methodName = methodName; this.emitError(methodName, error); } return result; }; Jimp.prototype[methodName + 'Quiet'] = method; } /** * Creates a new image that is a clone of this one. * @param {function(Error, Jimp)} cb (optional) A callback for when complete * @returns the new image */ jimpEvMethod('clone', 'clone', function (cb) { var clone = new Jimp(this); if ((0, _utils.isNodePattern)(cb)) { cb.call(clone, null, clone); } return clone; }); /** * Simplify jimpEvMethod call for the common `change` evName. * @param {string} methodName name of the method * @param {function} method to watch changes for */ function jimpEvChange(methodName, method) { jimpEvMethod(methodName, 'change', method); } /** * Sets the type of the image (RGB or RGBA) when saving as PNG format (default is RGBA) * @param b A Boolean, true to use RGBA or false to use RGB * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ jimpEvChange('background', function (hex, cb) { if (typeof hex !== 'number') { return _utils.throwError.call(this, 'hex must be a hexadecimal rgba value', cb); } this._background = hex; if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; }); /** * Scans through a region of the bitmap, calling a function for each pixel. * @param {number} x the x coordinate to begin the scan at * @param {number} y the y coordinate to begin the scan at * @param w the width of the scan region * @param h the height of the scan region * @param f a function to call on even pixel; the (x, y) position of the pixel * and the index of the pixel in the bitmap buffer are passed to the function * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ jimpEvChange('scan', function (x, y, w, h, f, cb) { if (typeof x !== 'number' || typeof y !== 'number') { return _utils.throwError.call(this, 'x and y must be numbers', cb); } if (typeof w !== 'number' || typeof h !== 'number') { return _utils.throwError.call(this, 'w and h must be numbers', cb); } if (typeof f !== 'function') { return _utils.throwError.call(this, 'f must be a function', cb); } var result = (0, _utils.scan)(this, x, y, w, h, f); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, result); } return result; }); if ("BROWSER" === 'BROWSER') { // For use in a web browser or web worker /* global self */ var gl; if (typeof window !== 'undefined' && (typeof window === "undefined" ? "undefined" : (0, _typeof2["default"])(window)) === 'object') { gl = window; } if (typeof self !== 'undefined' && (typeof self === "undefined" ? "undefined" : (0, _typeof2["default"])(self)) === 'object') { gl = self; } gl.Jimp = Jimp; gl.Buffer = Buffer; } var _default = Jimp; exports["default"] = _default; }).call(this,require("buffer").Buffer) },{"./composite":191,"./constants":192,"./modules/phash":194,"./request":195,"./utils/image-bitmap":196,"./utils/mime":197,"./utils/promisify":198,"@babel/runtime/helpers/assertThisInitialized":3,"@babel/runtime/helpers/classCallCheck":4,"@babel/runtime/helpers/construct":5,"@babel/runtime/helpers/createClass":6,"@babel/runtime/helpers/defineProperty":7,"@babel/runtime/helpers/getPrototypeOf":9,"@babel/runtime/helpers/inherits":10,"@babel/runtime/helpers/interopRequireDefault":11,"@babel/runtime/helpers/interopRequireWildcard":12,"@babel/runtime/helpers/possibleConstructorReturn":17,"@babel/runtime/helpers/slicedToArray":19,"@babel/runtime/helpers/typeof":21,"@jimp/utils":235,"any-base":23,"buffer":48,"events":52,"fs":47,"mkdirp":83,"path":107,"pixelmatch":109,"tinycolor2":178}],194:[function(require,module,exports){ "use strict"; /* Copyright (c) 2011 Elliot Shepherd Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // https://code.google.com/p/ironchef-team21/source/browse/ironchef_team21/src/ImagePHash.java /* * pHash-like image hash. * Author: Elliot Shepherd (elliot@jarofworms.com * Based On: http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html */ function ImagePHash(size, smallerSize) { this.size = this.size || size; this.smallerSize = this.smallerSize || smallerSize; initCoefficients(this.size); } ImagePHash.prototype.size = 32; ImagePHash.prototype.smallerSize = 8; ImagePHash.prototype.distance = function (s1, s2) { var counter = 0; for (var k = 0; k < s1.length; k++) { if (s1[k] !== s2[k]) { counter++; } } return counter / s1.length; }; // Returns a 'binary string' (like. 001010111011100010) which is easy to do a hamming distance on. ImagePHash.prototype.getHash = function (img) { /* 1. Reduce size. * Like Average Hash, pHash starts with a small image. * However, the image is larger than 8x8; 32x32 is a good size. * This is really done to simplify the DCT computation and not * because it is needed to reduce the high frequencies. */ img = img.clone().resize(this.size, this.size); /* 2. Reduce color. * The image is reduced to a grayscale just to further simplify * the number of computations. */ img.grayscale(); var vals = []; for (var x = 0; x < img.bitmap.width; x++) { vals[x] = []; for (var y = 0; y < img.bitmap.height; y++) { vals[x][y] = intToRGBA(img.getPixelColor(x, y)).b; } } /* 3. Compute the DCT. * The DCT separates the image into a collection of frequencies * and scalars. While JPEG uses an 8x8 DCT, this algorithm uses * a 32x32 DCT. */ var dctVals = applyDCT(vals, this.size); /* 4. Reduce the DCT. * This is the magic step. While the DCT is 32x32, just keep the * top-left 8x8. Those represent the lowest frequencies in the * picture. */ /* 5. Compute the average value. * Like the Average Hash, compute the mean DCT value (using only * the 8x8 DCT low-frequency values and excluding the first term * since the DC coefficient can be significantly different from * the other values and will throw off the average). */ var total = 0; for (var _x = 0; _x < this.smallerSize; _x++) { for (var _y = 0; _y < this.smallerSize; _y++) { total += dctVals[_x][_y]; } } var avg = total / (this.smallerSize * this.smallerSize); /* 6. Further reduce the DCT. * This is the magic step. Set the 64 hash bits to 0 or 1 * depending on whether each of the 64 DCT values is above or * below the average value. The result doesn't tell us the * actual low frequencies; it just tells us the very-rough * relative scale of the frequencies to the mean. The result * will not vary as long as the overall structure of the image * remains the same; this can survive gamma and color histogram * adjustments without a problem. */ var hash = ''; for (var _x2 = 0; _x2 < this.smallerSize; _x2++) { for (var _y2 = 0; _y2 < this.smallerSize; _y2++) { hash += dctVals[_x2][_y2] > avg ? '1' : '0'; } } return hash; }; // DCT function stolen from http://stackoverflow.com/questions/4240490/problems-with-dct-and-idct-algorithm-in-java function intToRGBA(i) { var rgba = {}; rgba.r = Math.floor(i / Math.pow(256, 3)); rgba.g = Math.floor((i - rgba.r * Math.pow(256, 3)) / Math.pow(256, 2)); rgba.b = Math.floor((i - rgba.r * Math.pow(256, 3) - rgba.g * Math.pow(256, 2)) / Math.pow(256, 1)); rgba.a = Math.floor((i - rgba.r * Math.pow(256, 3) - rgba.g * Math.pow(256, 2) - rgba.b * Math.pow(256, 1)) / Math.pow(256, 0)); return rgba; } var c = []; function initCoefficients(size) { for (var i = 1; i < size; i++) { c[i] = 1; } c[0] = 1 / Math.sqrt(2.0); } function applyDCT(f, size) { var N = size; var F = []; for (var u = 0; u < N; u++) { F[u] = []; for (var v = 0; v < N; v++) { var sum = 0; for (var i = 0; i < N; i++) { for (var j = 0; j < N; j++) { sum += Math.cos((2 * i + 1) / (2.0 * N) * u * Math.PI) * Math.cos((2 * j + 1) / (2.0 * N) * v * Math.PI) * f[i][j]; } } sum *= c[u] * c[v] / 4; F[u][v] = sum; } } return F; } module.exports = ImagePHash; },{}],195:[function(require,module,exports){ (function (process,Buffer){ "use strict"; var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault"); var _defineProperty2 = _interopRequireDefault(require("@babel/runtime/helpers/defineProperty")); var _extends2 = _interopRequireDefault(require("@babel/runtime/helpers/extends")); function ownKeys(object, enumerableOnly) { var keys = Object.keys(object); if (Object.getOwnPropertySymbols) { var symbols = Object.getOwnPropertySymbols(object); if (enumerableOnly) symbols = symbols.filter(function (sym) { return Object.getOwnPropertyDescriptor(object, sym).enumerable; }); keys.push.apply(keys, symbols); } return keys; } function _objectSpread(target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i] != null ? arguments[i] : {}; if (i % 2) { ownKeys(source, true).forEach(function (key) { (0, _defineProperty2["default"])(target, key, source[key]); }); } else if (Object.getOwnPropertyDescriptors) { Object.defineProperties(target, Object.getOwnPropertyDescriptors(source)); } else { ownKeys(source).forEach(function (key) { Object.defineProperty(target, key, Object.getOwnPropertyDescriptor(source, key)); }); } } return target; } /* global XMLHttpRequest */ if (process.browser || "BROWSER" === 'BROWSER' || typeof process.versions.electron !== 'undefined' && process.type === 'renderer' && typeof XMLHttpRequest === 'function') { // If we run into a browser or the electron renderer process, // use XHR method instead of Request node module. module.exports = function (options, cb) { var xhr = new XMLHttpRequest(); xhr.open('GET', options.url, true); xhr.responseType = 'arraybuffer'; xhr.addEventListener('load', function () { if (xhr.status < 400) { try { var data = Buffer.from(this.response); cb(null, xhr, data); } catch (error) { return cb(new Error('Response is not a buffer for url ' + options.url + '. Error: ' + error.message)); } } else { cb(new Error('HTTP Status ' + xhr.status + ' for url ' + options.url)); } }); xhr.addEventListener('error', function (e) { cb(e); }); xhr.send(); }; } else { module.exports = function (_ref, cb) { var options = (0, _extends2["default"])({}, _ref); var p = require('phin'); p(_objectSpread({ compression: true }, options), function (err, res) { if (err === null) { cb(null, res, res.body); } else { cb(err); } }); }; } }).call(this,require('_process'),require("buffer").Buffer) },{"@babel/runtime/helpers/defineProperty":7,"@babel/runtime/helpers/extends":8,"@babel/runtime/helpers/interopRequireDefault":11,"_process":133,"buffer":48,"phin":108}],196:[function(require,module,exports){ (function (Buffer){ "use strict"; var _interopRequireWildcard = require("@babel/runtime/helpers/interopRequireWildcard"); var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault"); Object.defineProperty(exports, "__esModule", { value: true }); exports.parseBitmap = parseBitmap; exports.getBuffer = getBuffer; exports.getBufferAsync = getBufferAsync; var _slicedToArray2 = _interopRequireDefault(require("@babel/runtime/helpers/slicedToArray")); var _fileType = _interopRequireDefault(require("file-type")); var _exifParser = _interopRequireDefault(require("exif-parser")); var _utils = require("@jimp/utils"); var constants = _interopRequireWildcard(require("../constants")); var MIME = _interopRequireWildcard(require("./mime")); var _promisify = _interopRequireDefault(require("./promisify")); function getMIMEFromBuffer(buffer, path) { var fileTypeFromBuffer = (0, _fileType["default"])(buffer); if (fileTypeFromBuffer) { // If fileType returns something for buffer, then return the mime given return fileTypeFromBuffer.mime; } if (path) { // If a path is supplied, and fileType yields no results, then retry with MIME // Path can be either a file path or a url return MIME.getType(path); } return null; } /* * Obtains image orientation from EXIF metadata. * * @param img {Jimp} a Jimp image object * @returns {number} a number 1-8 representing EXIF orientation, * in particular 1 if orientation tag is missing */ function getExifOrientation(img) { return img._exif && img._exif.tags && img._exif.tags.Orientation || 1; } /** * Returns a function which translates EXIF-rotated coordinates into * non-rotated ones. * * Transformation reference: http://sylvana.net/jpegcrop/exif_orientation.html. * * @param img {Jimp} a Jimp image object * @returns {function} transformation function for transformBitmap(). */ function getExifOrientationTransformation(img) { var w = img.getWidth(); var h = img.getHeight(); switch (getExifOrientation(img)) { case 1: // Horizontal (normal) // does not need to be supported here return null; case 2: // Mirror horizontal return function (x, y) { return [w - x - 1, y]; }; case 3: // Rotate 180 return function (x, y) { return [w - x - 1, h - y - 1]; }; case 4: // Mirror vertical return function (x, y) { return [x, h - y - 1]; }; case 5: // Mirror horizontal and rotate 270 CW return function (x, y) { return [y, x]; }; case 6: // Rotate 90 CW return function (x, y) { return [y, h - x - 1]; }; case 7: // Mirror horizontal and rotate 90 CW return function (x, y) { return [w - y - 1, h - x - 1]; }; case 8: // Rotate 270 CW return function (x, y) { return [w - y - 1, x]; }; default: return null; } } /* * Transforms bitmap in place (moves pixels around) according to given * transformation function. * * @param img {Jimp} a Jimp image object, which bitmap is supposed to * be transformed * @param width {number} bitmap width after the transformation * @param height {number} bitmap height after the transformation * @param transformation {function} transformation function which defines pixel * mapping between new and source bitmap. It takes a pair of coordinates * in the target, and returns a respective pair of coordinates in * the source bitmap, i.e. has following form: * `function(new_x, new_y) { return [src_x, src_y] }`. */ function transformBitmap(img, width, height, transformation) { // Underscore-prefixed values are related to the source bitmap // Their counterparts with no prefix are related to the target bitmap var _data = img.bitmap.data; var _width = img.bitmap.width; var data = Buffer.alloc(_data.length); for (var x = 0; x < width; x++) { for (var y = 0; y < height; y++) { var _transformation = transformation(x, y), _transformation2 = (0, _slicedToArray2["default"])(_transformation, 2), _x = _transformation2[0], _y = _transformation2[1]; var idx = width * y + x << 2; var _idx = _width * _y + _x << 2; var pixel = _data.readUInt32BE(_idx); data.writeUInt32BE(pixel, idx); } } img.bitmap.data = data; img.bitmap.width = width; img.bitmap.height = height; } /* * Automagically rotates an image based on its EXIF data (if present). * @param img {Jimp} a Jimp image object */ function exifRotate(img) { if (getExifOrientation(img) < 2) return; var transformation = getExifOrientationTransformation(img); var swapDimensions = getExifOrientation(img) > 4; var newWidth = swapDimensions ? img.bitmap.height : img.bitmap.width; var newHeight = swapDimensions ? img.bitmap.width : img.bitmap.height; transformBitmap(img, newWidth, newHeight, transformation); } // parses a bitmap from the constructor to the JIMP bitmap property function parseBitmap(data, path, cb) { var mime = getMIMEFromBuffer(data, path); if (typeof mime !== 'string') { return cb(new Error('Could not find MIME for Buffer <' + path + '>')); } this._originalMime = mime.toLowerCase(); try { var _mime = this.getMIME(); if (this.constructor.decoders[_mime]) { this.bitmap = this.constructor.decoders[_mime](data); } else { return _utils.throwError.call(this, 'Unsupported MIME type: ' + _mime, cb); } } catch (error) { return cb.call(this, error, this); } try { this._exif = _exifParser["default"].create(data).parse(); exifRotate(this); // EXIF data } catch (error) { /* meh */ } cb.call(this, null, this); return this; } function compositeBitmapOverBackground(Jimp, image) { return new Jimp(image.bitmap.width, image.bitmap.height, image._background).composite(image, 0, 0).bitmap; } /** * Converts the image to a buffer * @param {string} mime the mime type of the image buffer to be created * @param {function(Error, Jimp)} cb a Node-style function to call with the buffer as the second argument * @returns {Jimp} this for chaining of methods */ function getBuffer(mime, cb) { if (mime === constants.AUTO) { // allow auto MIME detection mime = this.getMIME(); } if (typeof mime !== 'string') { return _utils.throwError.call(this, 'mime must be a string', cb); } if (typeof cb !== 'function') { return _utils.throwError.call(this, 'cb must be a function', cb); } mime = mime.toLowerCase(); if (this._rgba && this.constructor.hasAlpha[mime]) { this.bitmap.data = Buffer.from(this.bitmap.data); } else { // when format doesn't support alpha // composite onto a new image so that the background shows through alpha channels this.bitmap.data = compositeBitmapOverBackground(this.constructor, this).data; } if (this.constructor.encoders[mime]) { var buffer = this.constructor.encoders[mime](this); cb.call(this, null, buffer); } else { cb.call(this, 'Unsupported MIME type: ' + mime); } return this; } function getBufferAsync(mime) { return (0, _promisify["default"])(getBuffer, this, mime); } }).call(this,require("buffer").Buffer) },{"../constants":192,"./mime":197,"./promisify":198,"@babel/runtime/helpers/interopRequireDefault":11,"@babel/runtime/helpers/interopRequireWildcard":12,"@babel/runtime/helpers/slicedToArray":19,"@jimp/utils":235,"buffer":48,"exif-parser":53,"file-type":62}],197:[function(require,module,exports){ "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.getExtension = exports.getType = exports.addType = void 0; var mimeTypes = {}; var findType = function findType(extension) { return Object.entries(mimeTypes).find(function (type) { return type[1].includes(extension); }) || []; }; var addType = function addType(mime, extensions) { mimeTypes[mime] = extensions; }; /** * Lookup a mime type based on extension * @param {string} path path to find extension for * @returns {string} mime found mime type */ exports.addType = addType; var getType = function getType(path) { var pathParts = path.split('/').slice(-1); var extension = pathParts[pathParts.length - 1].split('.').pop(); var type = findType(extension); return type[0]; }; /** * Return file extension associated with a mime type * @param {string} type mime type to look up * @returns {string} extension file extension */ exports.getType = getType; var getExtension = function getExtension(type) { return (mimeTypes[type.toLowerCase()] || [])[0]; }; exports.getExtension = getExtension; },{}],198:[function(require,module,exports){ "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var promisify = function promisify(fun, ctx) { for (var _len = arguments.length, args = new Array(_len > 2 ? _len - 2 : 0), _key = 2; _key < _len; _key++) { args[_key - 2] = arguments[_key]; } return new Promise(function (resolve, reject) { args.push(function (err, data) { if (err) { reject(err); } resolve(data); }); fun.bind(ctx).apply(void 0, args); }); }; var _default = promisify; exports["default"] = _default; module.exports = exports.default; },{}],199:[function(require,module,exports){ "use strict"; var _interopRequireWildcard = require("@babel/runtime/helpers/interopRequireWildcard"); var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault"); Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = configure; var _toConsumableArray2 = _interopRequireDefault(require("@babel/runtime/helpers/toConsumableArray")); var _defineProperty2 = _interopRequireDefault(require("@babel/runtime/helpers/defineProperty")); var _slicedToArray2 = _interopRequireDefault(require("@babel/runtime/helpers/slicedToArray")); var _core = _interopRequireWildcard(require("@jimp/core")); function ownKeys(object, enumerableOnly) { var keys = Object.keys(object); if (Object.getOwnPropertySymbols) { var symbols = Object.getOwnPropertySymbols(object); if (enumerableOnly) symbols = symbols.filter(function (sym) { return Object.getOwnPropertyDescriptor(object, sym).enumerable; }); keys.push.apply(keys, symbols); } return keys; } function _objectSpread(target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i] != null ? arguments[i] : {}; if (i % 2) { ownKeys(source, true).forEach(function (key) { (0, _defineProperty2["default"])(target, key, source[key]); }); } else if (Object.getOwnPropertyDescriptors) { Object.defineProperties(target, Object.getOwnPropertyDescriptors(source)); } else { ownKeys(source).forEach(function (key) { Object.defineProperty(target, key, Object.getOwnPropertyDescriptor(source, key)); }); } } return target; } function configure(configuration) { var jimpInstance = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : _core["default"]; var jimpConfig = { hasAlpha: {}, encoders: {}, decoders: {}, "class": {}, constants: {} }; function addToConfig(newConfig) { Object.entries(newConfig).forEach(function (_ref) { var _ref2 = (0, _slicedToArray2["default"])(_ref, 2), key = _ref2[0], value = _ref2[1]; jimpConfig[key] = _objectSpread({}, jimpConfig[key], {}, value); }); } function addImageType(typeModule) { var type = typeModule(); if (Array.isArray(type.mime)) { _core.addType.apply(void 0, (0, _toConsumableArray2["default"])(type.mime)); } else { Object.entries(type.mime).forEach(function (mimeType) { return _core.addType.apply(void 0, (0, _toConsumableArray2["default"])(mimeType)); }); } delete type.mime; addToConfig(type); } function addPlugin(pluginModule) { var plugin = pluginModule(_core.jimpEvChange) || {}; if (!plugin["class"] && !plugin.constants) { // Default to class function addToConfig({ "class": plugin }); } else { addToConfig(plugin); } } if (configuration.types) { configuration.types.forEach(addImageType); jimpInstance.decoders = _objectSpread({}, jimpInstance.decoders, {}, jimpConfig.decoders); jimpInstance.encoders = _objectSpread({}, jimpInstance.encoders, {}, jimpConfig.encoders); jimpInstance.hasAlpha = _objectSpread({}, jimpInstance.hasAlpha, {}, jimpConfig.hasAlpha); } if (configuration.plugins) { configuration.plugins.forEach(addPlugin); } (0, _core.addJimpMethods)(jimpConfig["class"], jimpInstance); (0, _core.addConstants)(jimpConfig.constants, jimpInstance); return _core["default"]; } module.exports = exports.default; },{"@babel/runtime/helpers/defineProperty":7,"@babel/runtime/helpers/interopRequireDefault":11,"@babel/runtime/helpers/interopRequireWildcard":12,"@babel/runtime/helpers/slicedToArray":19,"@babel/runtime/helpers/toConsumableArray":20,"@jimp/core":193}],200:[function(require,module,exports){ "use strict"; var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault"); Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _custom = _interopRequireDefault(require("@jimp/custom")); var _types = _interopRequireDefault(require("@jimp/types")); var _plugins = _interopRequireDefault(require("@jimp/plugins")); var _default = (0, _custom["default"])({ types: [_types["default"]], plugins: [_plugins["default"]] }); exports["default"] = _default; module.exports = exports.default; },{"@babel/runtime/helpers/interopRequireDefault":11,"@jimp/custom":199,"@jimp/plugins":228,"@jimp/types":234}],201:[function(require,module,exports){ "use strict"; var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault"); Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _typeof2 = _interopRequireDefault(require("@babel/runtime/helpers/typeof")); var _utils = require("@jimp/utils"); var _default = function _default() { return { /** * Blits a source image on to this image * @param {Jimp} src the source Jimp instance * @param {number} x the x position to blit the image * @param {number} y the y position to blit the image * @param {number} srcx (optional) the x position from which to crop the source image * @param {number} srcy (optional) the y position from which to crop the source image * @param {number} srcw (optional) the width to which to crop the source image * @param {number} srch (optional) the height to which to crop the source image * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ blit: function blit(src, x, y, srcx, srcy, srcw, srch, cb) { if (!(src instanceof this.constructor)) { return _utils.throwError.call(this, 'The source must be a Jimp image', cb); } if (typeof x !== 'number' || typeof y !== 'number') { return _utils.throwError.call(this, 'x and y must be numbers', cb); } if (typeof srcx === 'function') { cb = srcx; srcx = 0; srcy = 0; srcw = src.bitmap.width; srch = src.bitmap.height; } else if ((0, _typeof2["default"])(srcx) === (0, _typeof2["default"])(srcy) && (0, _typeof2["default"])(srcy) === (0, _typeof2["default"])(srcw) && (0, _typeof2["default"])(srcw) === (0, _typeof2["default"])(srch)) { srcx = srcx || 0; srcy = srcy || 0; srcw = srcw || src.bitmap.width; srch = srch || src.bitmap.height; } else { return _utils.throwError.call(this, 'srcx, srcy, srcw, srch must be numbers', cb); } // round input x = Math.round(x); y = Math.round(y); // round input srcx = Math.round(srcx); srcy = Math.round(srcy); srcw = Math.round(srcw); srch = Math.round(srch); var maxWidth = this.bitmap.width; var maxHeight = this.bitmap.height; var baseImage = this; src.scanQuiet(srcx, srcy, srcw, srch, function (sx, sy, idx) { var xOffset = x + sx - srcx; var yOffset = y + sy - srcy; if (xOffset >= 0 && yOffset >= 0 && maxWidth - xOffset > 0 && maxHeight - yOffset > 0) { var dstIdx = baseImage.getPixelIndex(xOffset, yOffset); var _src = { r: this.bitmap.data[idx], g: this.bitmap.data[idx + 1], b: this.bitmap.data[idx + 2], a: this.bitmap.data[idx + 3] }; var dst = { r: baseImage.bitmap.data[dstIdx], g: baseImage.bitmap.data[dstIdx + 1], b: baseImage.bitmap.data[dstIdx + 2], a: baseImage.bitmap.data[dstIdx + 3] }; baseImage.bitmap.data[dstIdx] = (_src.a * (_src.r - dst.r) - dst.r + 255 >> 8) + dst.r; baseImage.bitmap.data[dstIdx + 1] = (_src.a * (_src.g - dst.g) - dst.g + 255 >> 8) + dst.g; baseImage.bitmap.data[dstIdx + 2] = (_src.a * (_src.b - dst.b) - dst.b + 255 >> 8) + dst.b; baseImage.bitmap.data[dstIdx + 3] = this.constructor.limit255(dst.a + _src.a); } }); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } }; }; exports["default"] = _default; module.exports = exports.default; },{"@babel/runtime/helpers/interopRequireDefault":11,"@babel/runtime/helpers/typeof":21,"@jimp/utils":235}],202:[function(require,module,exports){ "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.shgTable = exports.mulTable = void 0; var mulTable = [1, 57, 41, 21, 203, 34, 97, 73, 227, 91, 149, 62, 105, 45, 39, 137, 241, 107, 3, 173, 39, 71, 65, 238, 219, 101, 187, 87, 81, 151, 141, 133, 249, 117, 221, 209, 197, 187, 177, 169, 5, 153, 73, 139, 133, 127, 243, 233, 223, 107, 103, 99, 191, 23, 177, 171, 165, 159, 77, 149, 9, 139, 135, 131, 253, 245, 119, 231, 224, 109, 211, 103, 25, 195, 189, 23, 45, 175, 171, 83, 81, 79, 155, 151, 147, 9, 141, 137, 67, 131, 129, 251, 123, 30, 235, 115, 113, 221, 217, 53, 13, 51, 50, 49, 193, 189, 185, 91, 179, 175, 43, 169, 83, 163, 5, 79, 155, 19, 75, 147, 145, 143, 35, 69, 17, 67, 33, 65, 255, 251, 247, 243, 239, 59, 29, 229, 113, 111, 219, 27, 213, 105, 207, 51, 201, 199, 49, 193, 191, 47, 93, 183, 181, 179, 11, 87, 43, 85, 167, 165, 163, 161, 159, 157, 155, 77, 19, 75, 37, 73, 145, 143, 141, 35, 138, 137, 135, 67, 33, 131, 129, 255, 63, 250, 247, 61, 121, 239, 237, 117, 29, 229, 227, 225, 111, 55, 109, 216, 213, 211, 209, 207, 205, 203, 201, 199, 197, 195, 193, 48, 190, 47, 93, 185, 183, 181, 179, 178, 176, 175, 173, 171, 85, 21, 167, 165, 41, 163, 161, 5, 79, 157, 78, 154, 153, 19, 75, 149, 74, 147, 73, 144, 143, 71, 141, 140, 139, 137, 17, 135, 134, 133, 66, 131, 65, 129, 1]; exports.mulTable = mulTable; var shgTable = [0, 9, 10, 10, 14, 12, 14, 14, 16, 15, 16, 15, 16, 15, 15, 17, 18, 17, 12, 18, 16, 17, 17, 19, 19, 18, 19, 18, 18, 19, 19, 19, 20, 19, 20, 20, 20, 20, 20, 20, 15, 20, 19, 20, 20, 20, 21, 21, 21, 20, 20, 20, 21, 18, 21, 21, 21, 21, 20, 21, 17, 21, 21, 21, 22, 22, 21, 22, 22, 21, 22, 21, 19, 22, 22, 19, 20, 22, 22, 21, 21, 21, 22, 22, 22, 18, 22, 22, 21, 22, 22, 23, 22, 20, 23, 22, 22, 23, 23, 21, 19, 21, 21, 21, 23, 23, 23, 22, 23, 23, 21, 23, 22, 23, 18, 22, 23, 20, 22, 23, 23, 23, 21, 22, 20, 22, 21, 22, 24, 24, 24, 24, 24, 22, 21, 24, 23, 23, 24, 21, 24, 23, 24, 22, 24, 24, 22, 24, 24, 22, 23, 24, 24, 24, 20, 23, 22, 23, 24, 24, 24, 24, 24, 24, 24, 23, 21, 23, 22, 23, 24, 24, 24, 22, 24, 24, 24, 23, 22, 24, 24, 25, 23, 25, 25, 23, 24, 25, 25, 24, 22, 25, 25, 25, 24, 23, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 23, 25, 23, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 24, 22, 25, 25, 23, 25, 25, 20, 24, 25, 24, 25, 25, 22, 24, 25, 24, 25, 24, 25, 25, 24, 25, 25, 25, 25, 22, 25, 25, 25, 24, 25, 24, 25, 18]; exports.shgTable = shgTable; },{}],203:[function(require,module,exports){ "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _utils = require("@jimp/utils"); var _blurTables = require("./blur-tables"); /* Superfast Blur (0.5) http://www.quasimondo.com/BoxBlurForCanvas/FastBlur.js Copyright (c) 2011 Mario Klingemann Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ var _default = function _default() { return { /** * A fast blur algorithm that produces similar effect to a Gaussian blur - but MUCH quicker * @param {number} r the pixel radius of the blur * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ blur: function blur(r, cb) { if (typeof r !== 'number') return _utils.throwError.call(this, 'r must be a number', cb); if (r < 1) return _utils.throwError.call(this, 'r must be greater than 0', cb); var rsum; var gsum; var bsum; var asum; var x; var y; var i; var p; var p1; var p2; var yp; var yi; var yw; var pa; var wm = this.bitmap.width - 1; var hm = this.bitmap.height - 1; // const wh = this.bitmap.width * this.bitmap.height; var rad1 = r + 1; var mulSum = _blurTables.mulTable[r]; var shgSum = _blurTables.shgTable[r]; var red = []; var green = []; var blue = []; var alpha = []; var vmin = []; var vmax = []; var iterations = 2; while (iterations-- > 0) { yi = 0; yw = 0; for (y = 0; y < this.bitmap.height; y++) { rsum = this.bitmap.data[yw] * rad1; gsum = this.bitmap.data[yw + 1] * rad1; bsum = this.bitmap.data[yw + 2] * rad1; asum = this.bitmap.data[yw + 3] * rad1; for (i = 1; i <= r; i++) { p = yw + ((i > wm ? wm : i) << 2); rsum += this.bitmap.data[p++]; gsum += this.bitmap.data[p++]; bsum += this.bitmap.data[p++]; asum += this.bitmap.data[p]; } for (x = 0; x < this.bitmap.width; x++) { red[yi] = rsum; green[yi] = gsum; blue[yi] = bsum; alpha[yi] = asum; if (y === 0) { vmin[x] = ((p = x + rad1) < wm ? p : wm) << 2; vmax[x] = (p = x - r) > 0 ? p << 2 : 0; } p1 = yw + vmin[x]; p2 = yw + vmax[x]; rsum += this.bitmap.data[p1++] - this.bitmap.data[p2++]; gsum += this.bitmap.data[p1++] - this.bitmap.data[p2++]; bsum += this.bitmap.data[p1++] - this.bitmap.data[p2++]; asum += this.bitmap.data[p1] - this.bitmap.data[p2]; yi++; } yw += this.bitmap.width << 2; } for (x = 0; x < this.bitmap.width; x++) { yp = x; rsum = red[yp] * rad1; gsum = green[yp] * rad1; bsum = blue[yp] * rad1; asum = alpha[yp] * rad1; for (i = 1; i <= r; i++) { yp += i > hm ? 0 : this.bitmap.width; rsum += red[yp]; gsum += green[yp]; bsum += blue[yp]; asum += alpha[yp]; } yi = x << 2; for (y = 0; y < this.bitmap.height; y++) { pa = asum * mulSum >>> shgSum; this.bitmap.data[yi + 3] = pa; // normalize alpha if (pa > 255) { this.bitmap.data[yi + 3] = 255; } if (pa > 0) { pa = 255 / pa; this.bitmap.data[yi] = (rsum * mulSum >>> shgSum) * pa; this.bitmap.data[yi + 1] = (gsum * mulSum >>> shgSum) * pa; this.bitmap.data[yi + 2] = (bsum * mulSum >>> shgSum) * pa; } else { this.bitmap.data[yi + 2] = 0; this.bitmap.data[yi + 1] = 0; this.bitmap.data[yi] = 0; } if (x === 0) { vmin[y] = ((p = y + rad1) < hm ? p : hm) * this.bitmap.width; vmax[y] = (p = y - r) > 0 ? p * this.bitmap.width : 0; } p1 = x + vmin[y]; p2 = x + vmax[y]; rsum += red[p1] - red[p2]; gsum += green[p1] - green[p2]; bsum += blue[p1] - blue[p2]; asum += alpha[p1] - alpha[p2]; yi += this.bitmap.width << 2; } } } if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } }; }; exports["default"] = _default; module.exports = exports.default; },{"./blur-tables":202,"@jimp/utils":235}],204:[function(require,module,exports){ "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _utils = require("@jimp/utils"); /** * Creates a circle out of an image. * @param {function(Error, Jimp)} options (optional) radius, x, y * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ var _default = function _default() { return { circle: function circle() { var options = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : {}; var cb = arguments.length > 1 ? arguments[1] : undefined; if (typeof options === 'function') { cb = options; options = {}; } var radius = options.radius || (this.bitmap.width > this.bitmap.height ? this.bitmap.height : this.bitmap.width) / 2; var center = { x: typeof options.x === 'number' ? options.x : this.bitmap.width / 2, y: typeof options.y === 'number' ? options.y : this.bitmap.height / 2 }; this.scanQuiet(0, 0, this.bitmap.width, this.bitmap.height, function (x, y, idx) { var curR = Math.sqrt(Math.pow(x - center.x, 2) + Math.pow(y - center.y, 2)); if (radius - curR <= 0.0) { this.bitmap.data[idx + 3] = 0; } else if (radius - curR < 1.0) { this.bitmap.data[idx + 3] = 255 * (radius - curR); } }); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } }; }; exports["default"] = _default; module.exports = exports.default; },{"@jimp/utils":235}],205:[function(require,module,exports){ (function (Buffer){ "use strict"; var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault"); Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _toConsumableArray2 = _interopRequireDefault(require("@babel/runtime/helpers/toConsumableArray")); var _tinycolor = _interopRequireDefault(require("tinycolor2")); var _utils = require("@jimp/utils"); function applyKernel(im, kernel, x, y) { var value = [0, 0, 0]; var size = (kernel.length - 1) / 2; for (var kx = 0; kx < kernel.length; kx += 1) { for (var ky = 0; ky < kernel[kx].length; ky += 1) { var idx = im.getPixelIndex(x + kx - size, y + ky - size); value[0] += im.bitmap.data[idx] * kernel[kx][ky]; value[1] += im.bitmap.data[idx + 1] * kernel[kx][ky]; value[2] += im.bitmap.data[idx + 2] * kernel[kx][ky]; } } return value; } var isDef = function isDef(v) { return typeof v !== 'undefined' && v !== null; }; function greyscale(cb) { this.scanQuiet(0, 0, this.bitmap.width, this.bitmap.height, function (x, y, idx) { var grey = parseInt(0.2126 * this.bitmap.data[idx] + 0.7152 * this.bitmap.data[idx + 1] + 0.0722 * this.bitmap.data[idx + 2], 10); this.bitmap.data[idx] = grey; this.bitmap.data[idx + 1] = grey; this.bitmap.data[idx + 2] = grey; }); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } function mix(clr, clr2) { var p = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 50; return { r: (clr2.r - clr.r) * (p / 100) + clr.r, g: (clr2.g - clr.g) * (p / 100) + clr.g, b: (clr2.b - clr.b) * (p / 100) + clr.b }; } function colorFn(actions, cb) { var _this = this; if (!actions || !Array.isArray(actions)) { return _utils.throwError.call(this, 'actions must be an array', cb); } actions = actions.map(function (action) { if (action.apply === 'xor' || action.apply === 'mix') { action.params[0] = (0, _tinycolor["default"])(action.params[0]).toRgb(); } return action; }); this.scanQuiet(0, 0, this.bitmap.width, this.bitmap.height, function (x, y, idx) { var clr = { r: _this.bitmap.data[idx], g: _this.bitmap.data[idx + 1], b: _this.bitmap.data[idx + 2] }; var colorModifier = function colorModifier(i, amount) { return _this.constructor.limit255(clr[i] + amount); }; actions.forEach(function (action) { if (action.apply === 'mix') { clr = mix(clr, action.params[0], action.params[1]); } else if (action.apply === 'tint') { clr = mix(clr, { r: 255, g: 255, b: 255 }, action.params[0]); } else if (action.apply === 'shade') { clr = mix(clr, { r: 0, g: 0, b: 0 }, action.params[0]); } else if (action.apply === 'xor') { clr = { r: clr.r ^ action.params[0].r, g: clr.g ^ action.params[0].g, b: clr.b ^ action.params[0].b }; } else if (action.apply === 'red') { clr.r = colorModifier('r', action.params[0]); } else if (action.apply === 'green') { clr.g = colorModifier('g', action.params[0]); } else if (action.apply === 'blue') { clr.b = colorModifier('b', action.params[0]); } else { var _clr; if (action.apply === 'hue') { action.apply = 'spin'; } clr = (0, _tinycolor["default"])(clr); if (!clr[action.apply]) { return _utils.throwError.call(_this, 'action ' + action.apply + ' not supported', cb); } clr = (_clr = clr)[action.apply].apply(_clr, (0, _toConsumableArray2["default"])(action.params)).toRgb(); } }); _this.bitmap.data[idx] = clr.r; _this.bitmap.data[idx + 1] = clr.g; _this.bitmap.data[idx + 2] = clr.b; }); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } var _default = function _default() { return { /** * Adjusts the brightness of the image * @param {number} val the amount to adjust the brightness, a number between -1 and +1 * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp }this for chaining of methods */ brightness: function brightness(val, cb) { if (typeof val !== 'number') { return _utils.throwError.call(this, 'val must be numbers', cb); } if (val < -1 || val > +1) { return _utils.throwError.call(this, 'val must be a number between -1 and +1', cb); } this.scanQuiet(0, 0, this.bitmap.width, this.bitmap.height, function (x, y, idx) { if (val < 0.0) { this.bitmap.data[idx] = this.bitmap.data[idx] * (1 + val); this.bitmap.data[idx + 1] = this.bitmap.data[idx + 1] * (1 + val); this.bitmap.data[idx + 2] = this.bitmap.data[idx + 2] * (1 + val); } else { this.bitmap.data[idx] = this.bitmap.data[idx] + (255 - this.bitmap.data[idx]) * val; this.bitmap.data[idx + 1] = this.bitmap.data[idx + 1] + (255 - this.bitmap.data[idx + 1]) * val; this.bitmap.data[idx + 2] = this.bitmap.data[idx + 2] + (255 - this.bitmap.data[idx + 2]) * val; } }); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; }, /** * Adjusts the contrast of the image * @param {number} val the amount to adjust the contrast, a number between -1 and +1 * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp }this for chaining of methods */ contrast: function contrast(val, cb) { if (typeof val !== 'number') { return _utils.throwError.call(this, 'val must be numbers', cb); } if (val < -1 || val > +1) { return _utils.throwError.call(this, 'val must be a number between -1 and +1', cb); } var factor = (val + 1) / (1 - val); function adjust(value) { value = Math.floor(factor * (value - 127) + 127); return value < 0 ? 0 : value > 255 ? 255 : value; } this.scanQuiet(0, 0, this.bitmap.width, this.bitmap.height, function (x, y, idx) { this.bitmap.data[idx] = adjust(this.bitmap.data[idx]); this.bitmap.data[idx + 1] = adjust(this.bitmap.data[idx + 1]); this.bitmap.data[idx + 2] = adjust(this.bitmap.data[idx + 2]); }); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; }, /** * Apply a posterize effect * @param {number} n the amount to adjust the contrast, minimum threshold is two * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp }this for chaining of methods */ posterize: function posterize(n, cb) { if (typeof n !== 'number') { return _utils.throwError.call(this, 'n must be numbers', cb); } if (n < 2) { n = 2; } // minimum of 2 levels this.scanQuiet(0, 0, this.bitmap.width, this.bitmap.height, function (x, y, idx) { this.bitmap.data[idx] = Math.floor(this.bitmap.data[idx] / 255 * (n - 1)) / (n - 1) * 255; this.bitmap.data[idx + 1] = Math.floor(this.bitmap.data[idx + 1] / 255 * (n - 1)) / (n - 1) * 255; this.bitmap.data[idx + 2] = Math.floor(this.bitmap.data[idx + 2] / 255 * (n - 1)) / (n - 1) * 255; }); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; }, /** * Removes colour from the image using ITU Rec 709 luminance values * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp }this for chaining of methods */ greyscale: greyscale, // Alias of greyscale for our American friends grayscale: greyscale, /** * Multiplies the opacity of each pixel by a factor between 0 and 1 * @param {number} f A number, the factor by which to multiply the opacity of each pixel * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp }this for chaining of methods */ opacity: function opacity(f, cb) { if (typeof f !== 'number') return _utils.throwError.call(this, 'f must be a number', cb); if (f < 0 || f > 1) return _utils.throwError.call(this, 'f must be a number from 0 to 1', cb); this.scanQuiet(0, 0, this.bitmap.width, this.bitmap.height, function (x, y, idx) { var v = this.bitmap.data[idx + 3] * f; this.bitmap.data[idx + 3] = v; }); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; }, /** * Applies a sepia tone to the image * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp }this for chaining of methods */ sepia: function sepia(cb) { this.scanQuiet(0, 0, this.bitmap.width, this.bitmap.height, function (x, y, idx) { var red = this.bitmap.data[idx]; var green = this.bitmap.data[idx + 1]; var blue = this.bitmap.data[idx + 2]; red = red * 0.393 + green * 0.769 + blue * 0.189; green = red * 0.349 + green * 0.686 + blue * 0.168; blue = red * 0.272 + green * 0.534 + blue * 0.131; this.bitmap.data[idx] = red < 255 ? red : 255; this.bitmap.data[idx + 1] = green < 255 ? green : 255; this.bitmap.data[idx + 2] = blue < 255 ? blue : 255; }); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; }, /** * Fades each pixel by a factor between 0 and 1 * @param {number} f A number from 0 to 1. 0 will haven no effect. 1 will turn the image completely transparent. * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp }this for chaining of methods */ fade: function fade(f, cb) { if (typeof f !== 'number') { return _utils.throwError.call(this, 'f must be a number', cb); } if (f < 0 || f > 1) { return _utils.throwError.call(this, 'f must be a number from 0 to 1', cb); } // this method is an alternative to opacity (which may be deprecated) this.opacity(1 - f); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; }, /** * Adds each element of the image to its local neighbors, weighted by the kernel * @param {array} kernel a matrix to weight the neighbors sum * @param {string} edgeHandling (optional) define how to sum pixels from outside the border * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp }this for chaining of methods */ convolution: function convolution(kernel, edgeHandling, cb) { if (typeof edgeHandling === 'function' && typeof cb === 'undefined') { cb = edgeHandling; edgeHandling = null; } if (!edgeHandling) { edgeHandling = this.constructor.EDGE_EXTEND; } var newData = Buffer.from(this.bitmap.data); var kRows = kernel.length; var kCols = kernel[0].length; var rowEnd = Math.floor(kRows / 2); var colEnd = Math.floor(kCols / 2); var rowIni = -rowEnd; var colIni = -colEnd; var weight; var rSum; var gSum; var bSum; var ri; var gi; var bi; var xi; var yi; var idxi; this.scanQuiet(0, 0, this.bitmap.width, this.bitmap.height, function (x, y, idx) { bSum = 0; gSum = 0; rSum = 0; for (var row = rowIni; row <= rowEnd; row++) { for (var col = colIni; col <= colEnd; col++) { xi = x + col; yi = y + row; weight = kernel[row + rowEnd][col + colEnd]; idxi = this.getPixelIndex(xi, yi, edgeHandling); if (idxi === -1) { bi = 0; gi = 0; ri = 0; } else { ri = this.bitmap.data[idxi + 0]; gi = this.bitmap.data[idxi + 1]; bi = this.bitmap.data[idxi + 2]; } rSum += weight * ri; gSum += weight * gi; bSum += weight * bi; } } if (rSum < 0) { rSum = 0; } if (gSum < 0) { gSum = 0; } if (bSum < 0) { bSum = 0; } if (rSum > 255) { rSum = 255; } if (gSum > 255) { gSum = 255; } if (bSum > 255) { bSum = 255; } newData[idx + 0] = rSum; newData[idx + 1] = gSum; newData[idx + 2] = bSum; }); this.bitmap.data = newData; if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; }, /** * Set the alpha channel on every pixel to fully opaque * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp }this for chaining of methods */ opaque: function opaque(cb) { this.scanQuiet(0, 0, this.bitmap.width, this.bitmap.height, function (x, y, idx) { this.bitmap.data[idx + 3] = 255; }); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; }, /** * Pixelates the image or a region * @param {number} size the size of the pixels * @param {number} x (optional) the x position of the region to pixelate * @param {number} y (optional) the y position of the region to pixelate * @param {number} w (optional) the width of the region to pixelate * @param {number} h (optional) the height of the region to pixelate * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp }this for chaining of methods */ pixelate: function pixelate(size, x, y, w, h, cb) { if (typeof x === 'function') { cb = x; h = null; w = null; y = null; x = null; } else { if (typeof size !== 'number') { return _utils.throwError.call(this, 'size must be a number', cb); } if (isDef(x) && typeof x !== 'number') { return _utils.throwError.call(this, 'x must be a number', cb); } if (isDef(y) && typeof y !== 'number') { return _utils.throwError.call(this, 'y must be a number', cb); } if (isDef(w) && typeof w !== 'number') { return _utils.throwError.call(this, 'w must be a number', cb); } if (isDef(h) && typeof h !== 'number') { return _utils.throwError.call(this, 'h must be a number', cb); } } var kernel = [[1 / 16, 2 / 16, 1 / 16], [2 / 16, 4 / 16, 2 / 16], [1 / 16, 2 / 16, 1 / 16]]; x = x || 0; y = y || 0; w = isDef(w) ? w : this.bitmap.width - x; h = isDef(h) ? h : this.bitmap.height - y; var source = this.cloneQuiet(); this.scanQuiet(x, y, w, h, function (xx, yx, idx) { xx = size * Math.floor(xx / size); yx = size * Math.floor(yx / size); var value = applyKernel(source, kernel, xx, yx); this.bitmap.data[idx] = value[0]; this.bitmap.data[idx + 1] = value[1]; this.bitmap.data[idx + 2] = value[2]; }); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; }, /** * Applies a convolution kernel to the image or a region * @param {array} kernel the convolution kernel * @param {number} x (optional) the x position of the region to apply convolution to * @param {number} y (optional) the y position of the region to apply convolution to * @param {number} w (optional) the width of the region to apply convolution to * @param {number} h (optional) the height of the region to apply convolution to * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp }this for chaining of methods */ convolute: function convolute(kernel, x, y, w, h, cb) { if (!Array.isArray(kernel)) return _utils.throwError.call(this, 'the kernel must be an array', cb); if (typeof x === 'function') { cb = x; x = null; y = null; w = null; h = null; } else { if (isDef(x) && typeof x !== 'number') { return _utils.throwError.call(this, 'x must be a number', cb); } if (isDef(y) && typeof y !== 'number') { return _utils.throwError.call(this, 'y must be a number', cb); } if (isDef(w) && typeof w !== 'number') { return _utils.throwError.call(this, 'w must be a number', cb); } if (isDef(h) && typeof h !== 'number') { return _utils.throwError.call(this, 'h must be a number', cb); } } var ksize = (kernel.length - 1) / 2; x = isDef(x) ? x : ksize; y = isDef(y) ? y : ksize; w = isDef(w) ? w : this.bitmap.width - x; h = isDef(h) ? h : this.bitmap.height - y; var source = this.cloneQuiet(); this.scanQuiet(x, y, w, h, function (xx, yx, idx) { var value = applyKernel(source, kernel, xx, yx); this.bitmap.data[idx] = this.constructor.limit255(value[0]); this.bitmap.data[idx + 1] = this.constructor.limit255(value[1]); this.bitmap.data[idx + 2] = this.constructor.limit255(value[2]); }); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; }, /** * Apply multiple color modification rules * @param {array} actions list of color modification rules, in following format: { apply: '', params: [ ] } * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp }this for chaining of methods */ color: colorFn, colour: colorFn }; }; exports["default"] = _default; module.exports = exports.default; }).call(this,require("buffer").Buffer) },{"@babel/runtime/helpers/interopRequireDefault":11,"@babel/runtime/helpers/toConsumableArray":20,"@jimp/utils":235,"buffer":48,"tinycolor2":178}],206:[function(require,module,exports){ "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _utils = require("@jimp/utils"); /** * Scale the image to the given width and height keeping the aspect ratio. Some parts of the image may be letter boxed. * @param {number} w the width to resize the image to * @param {number} h the height to resize the image to * @param {number} alignBits (optional) A bitmask for horizontal and vertical alignment * @param {string} mode (optional) a scaling method (e.g. Jimp.RESIZE_BEZIER) * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ var _default = function _default() { return { contain: function contain(w, h, alignBits, mode, cb) { if (typeof w !== 'number' || typeof h !== 'number') { return _utils.throwError.call(this, 'w and h must be numbers', cb); } // permit any sort of optional parameters combination if (typeof alignBits === 'string') { if (typeof mode === 'function' && typeof cb === 'undefined') cb = mode; mode = alignBits; alignBits = null; } if (typeof alignBits === 'function') { if (typeof cb === 'undefined') cb = alignBits; mode = null; alignBits = null; } if (typeof mode === 'function' && typeof cb === 'undefined') { cb = mode; mode = null; } alignBits = alignBits || this.constructor.HORIZONTAL_ALIGN_CENTER | this.constructor.VERTICAL_ALIGN_MIDDLE; var hbits = alignBits & (1 << 3) - 1; var vbits = alignBits >> 3; // check if more flags than one is in the bit sets if (!(hbits !== 0 && !(hbits & hbits - 1) || vbits !== 0 && !(vbits & vbits - 1))) { return _utils.throwError.call(this, 'only use one flag per alignment direction', cb); } var alignH = hbits >> 1; // 0, 1, 2 var alignV = vbits >> 1; // 0, 1, 2 var f = w / h > this.bitmap.width / this.bitmap.height ? h / this.bitmap.height : w / this.bitmap.width; var c = this.cloneQuiet().scale(f, mode); this.resize(w, h, mode); this.scanQuiet(0, 0, this.bitmap.width, this.bitmap.height, function (x, y, idx) { this.bitmap.data.writeUInt32BE(this._background, idx); }); this.blit(c, (this.bitmap.width - c.bitmap.width) / 2 * alignH, (this.bitmap.height - c.bitmap.height) / 2 * alignV); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } }; }; exports["default"] = _default; module.exports = exports.default; },{"@jimp/utils":235}],207:[function(require,module,exports){ "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _utils = require("@jimp/utils"); /** * Scale the image so the given width and height keeping the aspect ratio. Some parts of the image may be clipped. * @param {number} w the width to resize the image to * @param {number} h the height to resize the image to * @param {number} alignBits (optional) A bitmask for horizontal and vertical alignment * @param {string} mode (optional) a scaling method (e.g. Jimp.RESIZE_BEZIER) * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ var _default = function _default() { return { cover: function cover(w, h, alignBits, mode, cb) { if (typeof w !== 'number' || typeof h !== 'number') { return _utils.throwError.call(this, 'w and h must be numbers', cb); } if (alignBits && typeof alignBits === 'function' && typeof cb === 'undefined') { cb = alignBits; alignBits = null; mode = null; } else if (typeof mode === 'function' && typeof cb === 'undefined') { cb = mode; mode = null; } alignBits = alignBits || this.constructor.HORIZONTAL_ALIGN_CENTER | this.constructor.VERTICAL_ALIGN_MIDDLE; var hbits = alignBits & (1 << 3) - 1; var vbits = alignBits >> 3; // check if more flags than one is in the bit sets if (!(hbits !== 0 && !(hbits & hbits - 1) || vbits !== 0 && !(vbits & vbits - 1))) return _utils.throwError.call(this, 'only use one flag per alignment direction', cb); var alignH = hbits >> 1; // 0, 1, 2 var alignV = vbits >> 1; // 0, 1, 2 var f = w / h > this.bitmap.width / this.bitmap.height ? w / this.bitmap.width : h / this.bitmap.height; this.scale(f, mode); this.crop((this.bitmap.width - w) / 2 * alignH, (this.bitmap.height - h) / 2 * alignV, w, h); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } }; }; exports["default"] = _default; module.exports = exports.default; },{"@jimp/utils":235}],208:[function(require,module,exports){ (function (Buffer){ "use strict"; var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault"); Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = pluginCrop; var _typeof2 = _interopRequireDefault(require("@babel/runtime/helpers/typeof")); var _utils = require("@jimp/utils"); /* eslint-disable no-labels */ function pluginCrop(event) { /** * Crops the image at a given point to a give size * @param {number} x the x coordinate to crop form * @param {number} y the y coordinate to crop form * @param w the width of the crop region * @param h the height of the crop region * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ event('crop', function (x, y, w, h, cb) { if (typeof x !== 'number' || typeof y !== 'number') return _utils.throwError.call(this, 'x and y must be numbers', cb); if (typeof w !== 'number' || typeof h !== 'number') return _utils.throwError.call(this, 'w and h must be numbers', cb); // round input x = Math.round(x); y = Math.round(y); w = Math.round(w); h = Math.round(h); if (x === 0 && w === this.bitmap.width) { // shortcut var start = w * y + x << 2; var end = start + h * w << 2; this.bitmap.data = this.bitmap.data.slice(start, end); } else { var bitmap = Buffer.allocUnsafe(w * h * 4); var offset = 0; this.scanQuiet(x, y, w, h, function (x, y, idx) { var data = this.bitmap.data.readUInt32BE(idx, true); bitmap.writeUInt32BE(data, offset, true); offset += 4; }); this.bitmap.data = bitmap; } this.bitmap.width = w; this.bitmap.height = h; if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; }); return { "class": { /** * Autocrop same color borders from this image * @param {number} tolerance (optional): a percent value of tolerance for pixels color difference (default: 0.0002%) * @param {boolean} cropOnlyFrames (optional): flag to crop only real frames: all 4 sides of the image must have some border (default: true) * @param {function(Error, Jimp)} cb (optional): a callback for when complete (default: no callback) * @returns {Jimp} this for chaining of methods */ autocrop: function autocrop() { var w = this.bitmap.width; var h = this.bitmap.height; var minPixelsPerSide = 1; // to avoid cropping completely the image, resulting in an invalid 0 sized image var cb; // callback var leaveBorder = 0; // Amount of pixels in border to leave var tolerance = 0.0002; // percent of color difference tolerance (default value) var cropOnlyFrames = true; // flag to force cropping only if the image has a real "frame" // i.e. all 4 sides have some border (default value) var cropSymmetric = false; // flag to force cropping top be symmetric. // i.e. north and south / east and west are cropped by the same value var ignoreSides = { north: false, south: false, east: false, west: false }; // parse arguments for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) { args[_key] = arguments[_key]; } for (var a = 0, len = args.length; a < len; a++) { if (typeof args[a] === 'number') { // tolerance value passed tolerance = args[a]; } if (typeof args[a] === 'boolean') { // cropOnlyFrames value passed cropOnlyFrames = args[a]; } if (typeof args[a] === 'function') { // callback value passed cb = args[a]; } if ((0, _typeof2["default"])(args[a]) === 'object') { // config object passed var config = args[a]; if (typeof config.tolerance !== 'undefined') { tolerance = config.tolerance; } if (typeof config.cropOnlyFrames !== 'undefined') { cropOnlyFrames = config.cropOnlyFrames; } if (typeof config.cropSymmetric !== 'undefined') { cropSymmetric = config.cropSymmetric; } if (typeof config.leaveBorder !== 'undefined') { leaveBorder = config.leaveBorder; } if (typeof config.ignoreSides !== 'undefined') { ignoreSides = config.ignoreSides; } } } /** * All borders must be of the same color as the top left pixel, to be cropped. * It should be possible to crop borders each with a different color, * but since there are many ways for corners to intersect, it would * introduce unnecessary complexity to the algorithm. */ // scan each side for same color borders var colorTarget = this.getPixelColor(0, 0); // top left pixel color is the target color var rgba1 = this.constructor.intToRGBA(colorTarget); // for north and east sides var northPixelsToCrop = 0; var eastPixelsToCrop = 0; var southPixelsToCrop = 0; var westPixelsToCrop = 0; // north side (scan rows from north to south) colorTarget = this.getPixelColor(0, 0); if (!ignoreSides.north) { north: for (var y = 0; y < h - minPixelsPerSide; y++) { for (var x = 0; x < w; x++) { var colorXY = this.getPixelColor(x, y); var rgba2 = this.constructor.intToRGBA(colorXY); if (this.constructor.colorDiff(rgba1, rgba2) > tolerance) { // this pixel is too distant from the first one: abort this side scan break north; } } // this row contains all pixels with the same color: increment this side pixels to crop northPixelsToCrop++; } } // east side (scan columns from east to west) colorTarget = this.getPixelColor(w, 0); if (!ignoreSides.east) { east: for (var _x = 0; _x < w - minPixelsPerSide; _x++) { for (var _y = 0 + northPixelsToCrop; _y < h; _y++) { var _colorXY = this.getPixelColor(_x, _y); var _rgba = this.constructor.intToRGBA(_colorXY); if (this.constructor.colorDiff(rgba1, _rgba) > tolerance) { // this pixel is too distant from the first one: abort this side scan break east; } } // this column contains all pixels with the same color: increment this side pixels to crop eastPixelsToCrop++; } } // south side (scan rows from south to north) colorTarget = this.getPixelColor(0, h); if (!ignoreSides.south) { south: for (var _y2 = h - 1; _y2 >= northPixelsToCrop + minPixelsPerSide; _y2--) { for (var _x2 = w - eastPixelsToCrop - 1; _x2 >= 0; _x2--) { var _colorXY2 = this.getPixelColor(_x2, _y2); var _rgba2 = this.constructor.intToRGBA(_colorXY2); if (this.constructor.colorDiff(rgba1, _rgba2) > tolerance) { // this pixel is too distant from the first one: abort this side scan break south; } } // this row contains all pixels with the same color: increment this side pixels to crop southPixelsToCrop++; } } // west side (scan columns from west to east) colorTarget = this.getPixelColor(w, h); if (!ignoreSides.west) { west: for (var _x3 = w - 1; _x3 >= 0 + eastPixelsToCrop + minPixelsPerSide; _x3--) { for (var _y3 = h - 1; _y3 >= 0 + northPixelsToCrop; _y3--) { var _colorXY3 = this.getPixelColor(_x3, _y3); var _rgba3 = this.constructor.intToRGBA(_colorXY3); if (this.constructor.colorDiff(rgba1, _rgba3) > tolerance) { // this pixel is too distant from the first one: abort this side scan break west; } } // this column contains all pixels with the same color: increment this side pixels to crop westPixelsToCrop++; } } // decide if a crop is needed var doCrop = false; // apply leaveBorder westPixelsToCrop -= leaveBorder; eastPixelsToCrop -= leaveBorder; northPixelsToCrop -= leaveBorder; southPixelsToCrop -= leaveBorder; if (cropSymmetric) { var horizontal = Math.min(eastPixelsToCrop, westPixelsToCrop); var vertical = Math.min(northPixelsToCrop, southPixelsToCrop); westPixelsToCrop = horizontal; eastPixelsToCrop = horizontal; northPixelsToCrop = vertical; southPixelsToCrop = vertical; } // make sure that crops are >= 0 westPixelsToCrop = westPixelsToCrop >= 0 ? westPixelsToCrop : 0; eastPixelsToCrop = eastPixelsToCrop >= 0 ? eastPixelsToCrop : 0; northPixelsToCrop = northPixelsToCrop >= 0 ? northPixelsToCrop : 0; southPixelsToCrop = southPixelsToCrop >= 0 ? southPixelsToCrop : 0; // safety checks var widthOfRemainingPixels = w - (westPixelsToCrop + eastPixelsToCrop); var heightOfRemainingPixels = h - (southPixelsToCrop + northPixelsToCrop); if (cropOnlyFrames) { // crop image if all sides should be cropped doCrop = eastPixelsToCrop !== 0 && northPixelsToCrop !== 0 && westPixelsToCrop !== 0 && southPixelsToCrop !== 0; } else { // crop image if at least one side should be cropped doCrop = eastPixelsToCrop !== 0 || northPixelsToCrop !== 0 || westPixelsToCrop !== 0 || southPixelsToCrop !== 0; } if (doCrop) { // do the real crop this.crop(eastPixelsToCrop, northPixelsToCrop, widthOfRemainingPixels, heightOfRemainingPixels); } if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } } }; } module.exports = exports.default; }).call(this,require("buffer").Buffer) },{"@babel/runtime/helpers/interopRequireDefault":11,"@babel/runtime/helpers/typeof":21,"@jimp/utils":235,"buffer":48}],209:[function(require,module,exports){ "use strict"; var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault"); Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _typeof2 = _interopRequireDefault(require("@babel/runtime/helpers/typeof")); var _utils = require("@jimp/utils"); /** * Displaces the image based on the provided displacement map * @param {object} map the source Jimp instance * @param {number} offset the maximum displacement value * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ var _default = function _default() { return { displace: function displace(map, offset, cb) { if ((0, _typeof2["default"])(map) !== 'object' || map.constructor !== this.constructor) { return _utils.throwError.call(this, 'The source must be a Jimp image', cb); } if (typeof offset !== 'number') { return _utils.throwError.call(this, 'factor must be a number', cb); } var source = this.cloneQuiet(); this.scanQuiet(0, 0, this.bitmap.width, this.bitmap.height, function (x, y, idx) { var displacement = map.bitmap.data[idx] / 256 * offset; displacement = Math.round(displacement); var ids = this.getPixelIndex(x + displacement, y); this.bitmap.data[ids] = source.bitmap.data[idx]; this.bitmap.data[ids + 1] = source.bitmap.data[idx + 1]; this.bitmap.data[ids + 2] = source.bitmap.data[idx + 2]; }); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } }; }; exports["default"] = _default; module.exports = exports.default; },{"@babel/runtime/helpers/interopRequireDefault":11,"@babel/runtime/helpers/typeof":21,"@jimp/utils":235}],210:[function(require,module,exports){ "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _utils = require("@jimp/utils"); /** * Apply a ordered dithering effect * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ function dither(cb) { var rgb565Matrix = [1, 9, 3, 11, 13, 5, 15, 7, 4, 12, 2, 10, 16, 8, 14, 6]; this.scanQuiet(0, 0, this.bitmap.width, this.bitmap.height, function (x, y, idx) { var thresholdId = ((y & 3) << 2) + x % 4; var dither = rgb565Matrix[thresholdId]; this.bitmap.data[idx] = Math.min(this.bitmap.data[idx] + dither, 0xff); this.bitmap.data[idx + 1] = Math.min(this.bitmap.data[idx + 1] + dither, 0xff); this.bitmap.data[idx + 2] = Math.min(this.bitmap.data[idx + 2] + dither, 0xff); }); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } var _default = function _default() { return { dither565: dither, dither16: dither }; }; exports["default"] = _default; module.exports = exports.default; },{"@jimp/utils":235}],211:[function(require,module,exports){ "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _utils = require("@jimp/utils"); /** * Creates a circle out of an image. * @param {object} options (optional) r: radius of effect * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ var _default = function _default() { return { fisheye: function fisheye() { var _this = this; var options = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : { r: 2.5 }; var cb = arguments.length > 1 ? arguments[1] : undefined; if (typeof options === 'function') { cb = options; options = { r: 2.5 }; } var source = this.cloneQuiet(); var _source$bitmap = source.bitmap, width = _source$bitmap.width, height = _source$bitmap.height; source.scanQuiet(0, 0, width, height, function (x, y) { var hx = x / width; var hy = y / height; var r = Math.sqrt(Math.pow(hx - 0.5, 2) + Math.pow(hy - 0.5, 2)); var rn = 2 * Math.pow(r, options.r); var cosA = (hx - 0.5) / r; var sinA = (hy - 0.5) / r; var newX = Math.round((rn * cosA + 0.5) * width); var newY = Math.round((rn * sinA + 0.5) * height); var color = source.getPixelColor(newX, newY); _this.setPixelColor(color, x, y); }); /* Set center pixel color, otherwise it will be transparent */ this.setPixelColor(source.getPixelColor(width / 2, height / 2), width / 2, height / 2); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } }; }; exports["default"] = _default; module.exports = exports.default; },{"@jimp/utils":235}],212:[function(require,module,exports){ (function (Buffer){ "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _utils = require("@jimp/utils"); /** * Flip the image horizontally * @param {boolean} horizontal a Boolean, if true the image will be flipped horizontally * @param {boolean} vertical a Boolean, if true the image will be flipped vertically * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ function flipFn(horizontal, vertical, cb) { if (typeof horizontal !== 'boolean' || typeof vertical !== 'boolean') return _utils.throwError.call(this, 'horizontal and vertical must be Booleans', cb); var bitmap = Buffer.alloc(this.bitmap.data.length); this.scanQuiet(0, 0, this.bitmap.width, this.bitmap.height, function (x, y, idx) { var _x = horizontal ? this.bitmap.width - 1 - x : x; var _y = vertical ? this.bitmap.height - 1 - y : y; var _idx = this.bitmap.width * _y + _x << 2; var data = this.bitmap.data.readUInt32BE(idx); bitmap.writeUInt32BE(data, _idx); }); this.bitmap.data = Buffer.from(bitmap); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } var _default = function _default() { return { flip: flipFn, mirror: flipFn }; }; exports["default"] = _default; module.exports = exports.default; }).call(this,require("buffer").Buffer) },{"@jimp/utils":235,"buffer":48}],213:[function(require,module,exports){ "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _utils = require("@jimp/utils"); /** * Applies a true Gaussian blur to the image (warning: this is VERY slow) * @param {number} r the pixel radius of the blur * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ var _default = function _default() { return { gaussian: function gaussian(r, cb) { // http://blog.ivank.net/fastest-gaussian-blur.html if (typeof r !== 'number') { return _utils.throwError.call(this, 'r must be a number', cb); } if (r < 1) { return _utils.throwError.call(this, 'r must be greater than 0', cb); } var rs = Math.ceil(r * 2.57); // significant radius var range = rs * 2 + 1; var rr2 = r * r * 2; var rr2pi = rr2 * Math.PI; var weights = []; for (var y = 0; y < range; y++) { weights[y] = []; for (var x = 0; x < range; x++) { var dsq = Math.pow(x - rs, 2) + Math.pow(y - rs, 2); weights[y][x] = Math.exp(-dsq / rr2) / rr2pi; } } for (var _y = 0; _y < this.bitmap.height; _y++) { for (var _x = 0; _x < this.bitmap.width; _x++) { var red = 0; var green = 0; var blue = 0; var alpha = 0; var wsum = 0; for (var iy = 0; iy < range; iy++) { for (var ix = 0; ix < range; ix++) { var x1 = Math.min(this.bitmap.width - 1, Math.max(0, ix + _x - rs)); var y1 = Math.min(this.bitmap.height - 1, Math.max(0, iy + _y - rs)); var weight = weights[iy][ix]; var _idx = y1 * this.bitmap.width + x1 << 2; red += this.bitmap.data[_idx] * weight; green += this.bitmap.data[_idx + 1] * weight; blue += this.bitmap.data[_idx + 2] * weight; alpha += this.bitmap.data[_idx + 3] * weight; wsum += weight; } var idx = _y * this.bitmap.width + _x << 2; this.bitmap.data[idx] = Math.round(red / wsum); this.bitmap.data[idx + 1] = Math.round(green / wsum); this.bitmap.data[idx + 2] = Math.round(blue / wsum); this.bitmap.data[idx + 3] = Math.round(alpha / wsum); } } } if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } }; }; exports["default"] = _default; module.exports = exports.default; },{"@jimp/utils":235}],214:[function(require,module,exports){ "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _utils = require("@jimp/utils"); /** * Inverts the image * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ var _default = function _default() { return { invert: function invert(cb) { this.scanQuiet(0, 0, this.bitmap.width, this.bitmap.height, function (x, y, idx) { this.bitmap.data[idx] = 255 - this.bitmap.data[idx]; this.bitmap.data[idx + 1] = 255 - this.bitmap.data[idx + 1]; this.bitmap.data[idx + 2] = 255 - this.bitmap.data[idx + 2]; }); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } }; }; exports["default"] = _default; module.exports = exports.default; },{"@jimp/utils":235}],215:[function(require,module,exports){ "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _utils = require("@jimp/utils"); /** * Masks a source image on to this image using average pixel colour. A completely black pixel on the mask will turn a pixel in the image completely transparent. * @param {Jimp} src the source Jimp instance * @param {number} x the horizontal position to blit the image * @param {number} y the vertical position to blit the image * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ var _default = function _default() { return { mask: function mask(src) { var x = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : 0; var y = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : 0; var cb = arguments.length > 3 ? arguments[3] : undefined; if (!(src instanceof this.constructor)) { return _utils.throwError.call(this, 'The source must be a Jimp image', cb); } if (typeof x !== 'number' || typeof y !== 'number') { return _utils.throwError.call(this, 'x and y must be numbers', cb); } // round input x = Math.round(x); y = Math.round(y); var w = this.bitmap.width; var h = this.bitmap.height; var baseImage = this; src.scanQuiet(0, 0, src.bitmap.width, src.bitmap.height, function (sx, sy, idx) { var destX = x + sx; var destY = y + sy; if (destX >= 0 && destY >= 0 && destX < w && destY < h) { var dstIdx = baseImage.getPixelIndex(destX, destY); var data = this.bitmap.data; var avg = (data[idx + 0] + data[idx + 1] + data[idx + 2]) / 3; baseImage.bitmap.data[dstIdx + 3] *= avg / 255; } }); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } }; }; exports["default"] = _default; module.exports = exports.default; },{"@jimp/utils":235}],216:[function(require,module,exports){ "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _utils = require("@jimp/utils"); /** * Get an image's histogram * @return {object} An object with an array of color occurrence counts for each channel (r,g,b) */ function histogram() { var histogram = { r: new Array(256).fill(0), g: new Array(256).fill(0), b: new Array(256).fill(0) }; this.scanQuiet(0, 0, this.bitmap.width, this.bitmap.height, function (x, y, index) { histogram.r[this.bitmap.data[index + 0]]++; histogram.g[this.bitmap.data[index + 1]]++; histogram.b[this.bitmap.data[index + 2]]++; }); return histogram; } /** * Normalize values * @param {integer} value Pixel channel value. * @param {integer} min Minimum value for channel * @param {integer} max Maximum value for channel * @return {integer} normalized values */ var _normalize = function normalize(value, min, max) { return (value - min) * 255 / (max - min); }; var getBounds = function getBounds(histogramChannel) { return [histogramChannel.findIndex(function (value) { return value > 0; }), 255 - histogramChannel.slice().reverse().findIndex(function (value) { return value > 0; })]; }; /** * Normalizes the image * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ var _default = function _default() { return { normalize: function normalize(cb) { var h = histogram.call(this); // store bounds (minimum and maximum values) var bounds = { r: getBounds(h.r), g: getBounds(h.g), b: getBounds(h.b) }; // apply value transformations this.scanQuiet(0, 0, this.bitmap.width, this.bitmap.height, function (x, y, idx) { var r = this.bitmap.data[idx + 0]; var g = this.bitmap.data[idx + 1]; var b = this.bitmap.data[idx + 2]; this.bitmap.data[idx + 0] = _normalize(r, bounds.r[0], bounds.r[1]); this.bitmap.data[idx + 1] = _normalize(g, bounds.g[0], bounds.g[1]); this.bitmap.data[idx + 2] = _normalize(b, bounds.b[0], bounds.b[1]); }); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } }; }; exports["default"] = _default; module.exports = exports.default; },{"@jimp/utils":235}],217:[function(require,module,exports){ (function (__dirname){ "use strict"; var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault"); Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _typeof2 = _interopRequireDefault(require("@babel/runtime/helpers/typeof")); var _toConsumableArray2 = _interopRequireDefault(require("@babel/runtime/helpers/toConsumableArray")); var _path = _interopRequireDefault(require("path")); var _loadBmfont = _interopRequireDefault(require("load-bmfont")); var _utils = require("@jimp/utils"); var _measureText = require("./measure-text"); function xOffsetBasedOnAlignment(constants, font, line, maxWidth, alignment) { if (alignment === constants.HORIZONTAL_ALIGN_LEFT) { return 0; } if (alignment === constants.HORIZONTAL_ALIGN_CENTER) { return (maxWidth - (0, _measureText.measureText)(font, line)) / 2; } return maxWidth - (0, _measureText.measureText)(font, line); } function drawCharacter(image, font, x, y, _char) { if (_char.width > 0 && _char.height > 0) { var characterPage = font.pages[_char.page]; image.blit(characterPage, x + _char.xoffset, y + _char.yoffset, _char.x, _char.y, _char.width, _char.height); } return image; } function printText(font, x, y, text, defaultCharWidth) { for (var i = 0; i < text.length; i++) { var _char2 = void 0; if (font.chars[text[i]]) { _char2 = text[i]; } else if (/\s/.test(text[i])) { _char2 = ''; } else { _char2 = '?'; } var fontChar = font.chars[_char2] || {}; var fontKerning = font.kernings[_char2]; drawCharacter(this, font, x, y, fontChar || {}); var kerning = fontKerning && fontKerning[text[i + 1]] ? fontKerning[text[i + 1]] : 0; x += kerning + (fontChar.xadvance || defaultCharWidth); } } function splitLines(font, text, maxWidth) { var words = text.split(' '); var lines = []; var currentLine = []; var longestLine = 0; words.forEach(function (word) { var line = [].concat((0, _toConsumableArray2["default"])(currentLine), [word]).join(' '); var length = (0, _measureText.measureText)(font, line); if (length <= maxWidth) { if (length > longestLine) { longestLine = length; } currentLine.push(word); } else { lines.push(currentLine); currentLine = [word]; } }); lines.push(currentLine); return { lines: lines, longestLine: longestLine }; } function loadPages(Jimp, dir, pages) { var newPages = pages.map(function (page) { return Jimp.read(dir + '/' + page); }); return Promise.all(newPages); } var dir = "browser/lib/" || "".concat(__dirname, "/../"); var _default = function _default() { return { constants: { measureText: _measureText.measureText, measureTextHeight: _measureText.measureTextHeight, FONT_SANS_8_BLACK: _path["default"].join(dir, 'fonts/open-sans/open-sans-8-black/open-sans-8-black.fnt'), FONT_SANS_10_BLACK: _path["default"].join(dir, 'fonts/open-sans/open-sans-10-black/open-sans-10-black.fnt'), FONT_SANS_12_BLACK: _path["default"].join(dir, 'fonts/open-sans/open-sans-12-black/open-sans-12-black.fnt'), FONT_SANS_14_BLACK: _path["default"].join(dir, 'fonts/open-sans/open-sans-14-black/open-sans-14-black.fnt'), FONT_SANS_16_BLACK: _path["default"].join(dir, 'fonts/open-sans/open-sans-16-black/open-sans-16-black.fnt'), FONT_SANS_32_BLACK: _path["default"].join(dir, 'fonts/open-sans/open-sans-32-black/open-sans-32-black.fnt'), FONT_SANS_64_BLACK: _path["default"].join(dir, 'fonts/open-sans/open-sans-64-black/open-sans-64-black.fnt'), FONT_SANS_128_BLACK: _path["default"].join(dir, 'fonts/open-sans/open-sans-128-black/open-sans-128-black.fnt'), FONT_SANS_8_WHITE: _path["default"].join(dir, 'fonts/open-sans/open-sans-8-white/open-sans-8-white.fnt'), FONT_SANS_16_WHITE: _path["default"].join(dir, 'fonts/open-sans/open-sans-16-white/open-sans-16-white.fnt'), FONT_SANS_32_WHITE: _path["default"].join(dir, 'fonts/open-sans/open-sans-32-white/open-sans-32-white.fnt'), FONT_SANS_64_WHITE: _path["default"].join(dir, 'fonts/open-sans/open-sans-64-white/open-sans-64-white.fnt'), FONT_SANS_128_WHITE: _path["default"].join(dir, 'fonts/open-sans/open-sans-128-white/open-sans-128-white.fnt'), /** * Loads a bitmap font from a file * @param {string} file the file path of a .fnt file * @param {function(Error, Jimp)} cb (optional) a function to call when the font is loaded * @returns {Promise} a promise */ loadFont: function loadFont(file, cb) { var _this = this; if (typeof file !== 'string') return _utils.throwError.call(this, 'file must be a string', cb); return new Promise(function (resolve, reject) { cb = cb || function (err, font) { if (err) reject(err);else resolve(font); }; (0, _loadBmfont["default"])(file, function (err, font) { var chars = {}; var kernings = {}; if (err) { return _utils.throwError.call(_this, err, cb); } for (var i = 0; i < font.chars.length; i++) { chars[String.fromCharCode(font.chars[i].id)] = font.chars[i]; } for (var _i = 0; _i < font.kernings.length; _i++) { var firstString = String.fromCharCode(font.kernings[_i].first); kernings[firstString] = kernings[firstString] || {}; kernings[firstString][String.fromCharCode(font.kernings[_i].second)] = font.kernings[_i].amount; } loadPages(_this, _path["default"].dirname(file), font.pages).then(function (pages) { cb(null, { chars: chars, kernings: kernings, pages: pages, common: font.common, info: font.info }); }); }); }); } }, "class": { /** * Draws a text on a image on a given boundary * @param {Jimp} font a bitmap font loaded from `Jimp.loadFont` command * @param {number} x the x position to start drawing the text * @param {number} y the y position to start drawing the text * @param {any} text the text to draw (string or object with `text`, `alignmentX`, and/or `alignmentY`) * @param {number} maxWidth (optional) the boundary width to draw in * @param {number} maxHeight (optional) the boundary height to draw in * @param {function(Error, Jimp)} cb (optional) a function to call when the text is written * @returns {Jimp} this for chaining of methods */ print: function print(font, x, y, text, maxWidth, maxHeight, cb) { var _this2 = this; if (typeof maxWidth === 'function' && typeof cb === 'undefined') { cb = maxWidth; maxWidth = Infinity; } if (typeof maxWidth === 'undefined') { maxWidth = Infinity; } if (typeof maxHeight === 'function' && typeof cb === 'undefined') { cb = maxHeight; maxHeight = Infinity; } if (typeof maxHeight === 'undefined') { maxHeight = Infinity; } if ((0, _typeof2["default"])(font) !== 'object') { return _utils.throwError.call(this, 'font must be a Jimp loadFont', cb); } if (typeof x !== 'number' || typeof y !== 'number' || typeof maxWidth !== 'number') { return _utils.throwError.call(this, 'x, y and maxWidth must be numbers', cb); } if (typeof maxWidth !== 'number') { return _utils.throwError.call(this, 'maxWidth must be a number', cb); } if (typeof maxHeight !== 'number') { return _utils.throwError.call(this, 'maxHeight must be a number', cb); } var alignmentX; var alignmentY; if ((0, _typeof2["default"])(text) === 'object' && text.text !== null && text.text !== undefined) { alignmentX = text.alignmentX || this.constructor.HORIZONTAL_ALIGN_LEFT; alignmentY = text.alignmentY || this.constructor.VERTICAL_ALIGN_TOP; var _text = text; text = _text.text; } else { alignmentX = this.constructor.HORIZONTAL_ALIGN_LEFT; alignmentY = this.constructor.VERTICAL_ALIGN_TOP; text = text.toString(); } if (maxHeight !== Infinity && alignmentY === this.constructor.VERTICAL_ALIGN_BOTTOM) { y += maxHeight - (0, _measureText.measureTextHeight)(font, text, maxWidth); } else if (maxHeight !== Infinity && alignmentY === this.constructor.VERTICAL_ALIGN_MIDDLE) { y += maxHeight / 2 - (0, _measureText.measureTextHeight)(font, text, maxWidth) / 2; } var defaultCharWidth = Object.entries(font.chars)[0][1].xadvance; var _splitLines = splitLines(font, text, maxWidth), lines = _splitLines.lines, longestLine = _splitLines.longestLine; lines.forEach(function (line) { var lineString = line.join(' '); var alignmentWidth = xOffsetBasedOnAlignment(_this2.constructor, font, lineString, maxWidth, alignmentX); printText.call(_this2, font, x + alignmentWidth, y, lineString, defaultCharWidth); y += font.common.lineHeight; }); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this, { x: x + longestLine, y: y }); } return this; } } }; }; exports["default"] = _default; module.exports = exports.default; }).call(this,"/../../node_modules/@jimp/plugin-print/dist") },{"./measure-text":218,"@babel/runtime/helpers/interopRequireDefault":11,"@babel/runtime/helpers/toConsumableArray":20,"@babel/runtime/helpers/typeof":21,"@jimp/utils":235,"load-bmfont":219,"path":107}],218:[function(require,module,exports){ "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.measureText = measureText; exports.measureTextHeight = measureTextHeight; function measureText(font, text) { var x = 0; for (var i = 0; i < text.length; i++) { if (font.chars[text[i]]) { var kerning = font.kernings[text[i]] && font.kernings[text[i]][text[i + 1]] ? font.kernings[text[i]][text[i + 1]] : 0; x += (font.chars[text[i]].xadvance || 0) + kerning; } } return x; } function measureTextHeight(font, text, maxWidth) { var words = text.split(' '); var line = ''; var textTotalHeight = font.common.lineHeight; for (var n = 0; n < words.length; n++) { var testLine = line + words[n] + ' '; var testWidth = measureText(font, testLine); if (testWidth > maxWidth && n > 0) { textTotalHeight += font.common.lineHeight; line = words[n] + ' '; } else { line = testLine; } } return textTotalHeight; } },{}],219:[function(require,module,exports){ (function (Buffer){ var xhr = require('xhr') var noop = function(){} var parseASCII = require('parse-bmfont-ascii') var parseXML = require('parse-bmfont-xml') var readBinary = require('parse-bmfont-binary') var isBinaryFormat = require('./lib/is-binary') var xtend = require('xtend') var xml2 = (function hasXML2() { return self.XMLHttpRequest && "withCredentials" in new XMLHttpRequest })() module.exports = function(opt, cb) { cb = typeof cb === 'function' ? cb : noop if (typeof opt === 'string') opt = { uri: opt } else if (!opt) opt = {} var expectBinary = opt.binary if (expectBinary) opt = getBinaryOpts(opt) xhr(opt, function(err, res, body) { if (err) return cb(err) if (!/^2/.test(res.statusCode)) return cb(new Error('http status code: '+res.statusCode)) if (!body) return cb(new Error('no body result')) var binary = false //if the response type is an array buffer, //we need to convert it into a regular Buffer object if (isArrayBuffer(body)) { var array = new Uint8Array(body) body = new Buffer(array, 'binary') } //now check the string/Buffer response //and see if it has a binary BMF header if (isBinaryFormat(body)) { binary = true //if we have a string, turn it into a Buffer if (typeof body === 'string') body = new Buffer(body, 'binary') } //we are not parsing a binary format, just ASCII/XML/etc if (!binary) { //might still be a buffer if responseType is 'arraybuffer' if (Buffer.isBuffer(body)) body = body.toString(opt.encoding) body = body.trim() } var result try { var type = res.headers['content-type'] if (binary) result = readBinary(body) else if (/json/.test(type) || body.charAt(0) === '{') result = JSON.parse(body) else if (/xml/.test(type) || body.charAt(0) === '<') result = parseXML(body) else result = parseASCII(body) } catch (e) { cb(new Error('error parsing font '+e.message)) cb = noop } cb(null, result) }) } function isArrayBuffer(arr) { var str = Object.prototype.toString return str.call(arr) === '[object ArrayBuffer]' } function getBinaryOpts(opt) { //IE10+ and other modern browsers support array buffers if (xml2) return xtend(opt, { responseType: 'arraybuffer' }) if (typeof self.XMLHttpRequest === 'undefined') throw new Error('your browser does not support XHR loading') //IE9 and XML1 browsers could still use an override var req = new self.XMLHttpRequest() req.overrideMimeType('text/plain; charset=x-user-defined') return xtend({ xhr: req }, opt) } }).call(this,require("buffer").Buffer) },{"./lib/is-binary":220,"buffer":48,"parse-bmfont-ascii":102,"parse-bmfont-binary":103,"parse-bmfont-xml":104,"xhr":187,"xtend":189}],220:[function(require,module,exports){ (function (Buffer){ var equal = require('buffer-equal') var HEADER = new Buffer([66, 77, 70, 3]) module.exports = function(buf) { if (typeof buf === 'string') return buf.substring(0, 3) === 'BMF' return buf.length > 4 && equal(buf.slice(0, 4), HEADER) } }).call(this,require("buffer").Buffer) },{"buffer":48,"buffer-equal":49}],221:[function(require,module,exports){ (function (Buffer){ "use strict"; var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault"); Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _utils = require("@jimp/utils"); var _resize = _interopRequireDefault(require("./modules/resize")); var _resize2 = _interopRequireDefault(require("./modules/resize2")); var _default = function _default() { return { constants: { RESIZE_NEAREST_NEIGHBOR: 'nearestNeighbor', RESIZE_BILINEAR: 'bilinearInterpolation', RESIZE_BICUBIC: 'bicubicInterpolation', RESIZE_HERMITE: 'hermiteInterpolation', RESIZE_BEZIER: 'bezierInterpolation' }, "class": { /** * Resizes the image to a set width and height using a 2-pass bilinear algorithm * @param {number} w the width to resize the image to (or Jimp.AUTO) * @param {number} h the height to resize the image to (or Jimp.AUTO) * @param {string} mode (optional) a scaling method (e.g. Jimp.RESIZE_BEZIER) * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ resize: function resize(w, h, mode, cb) { if (typeof w !== 'number' || typeof h !== 'number') { return _utils.throwError.call(this, 'w and h must be numbers', cb); } if (typeof mode === 'function' && typeof cb === 'undefined') { cb = mode; mode = null; } if (w === this.constructor.AUTO && h === this.constructor.AUTO) { return _utils.throwError.call(this, 'w and h cannot both be set to auto', cb); } if (w === this.constructor.AUTO) { w = this.bitmap.width * (h / this.bitmap.height); } if (h === this.constructor.AUTO) { h = this.bitmap.height * (w / this.bitmap.width); } if (w < 0 || h < 0) { return _utils.throwError.call(this, 'w and h must be positive numbers', cb); } // round inputs w = Math.round(w); h = Math.round(h); if (typeof _resize2["default"][mode] === 'function') { var dst = { data: Buffer.alloc(w * h * 4), width: w, height: h }; _resize2["default"][mode](this.bitmap, dst); this.bitmap = dst; } else { var image = this; var resize = new _resize["default"](this.bitmap.width, this.bitmap.height, w, h, true, true, function (buffer) { image.bitmap.data = Buffer.from(buffer); image.bitmap.width = w; image.bitmap.height = h; }); resize.resize(this.bitmap.data); } if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } } }; }; exports["default"] = _default; module.exports = exports.default; }).call(this,require("buffer").Buffer) },{"./modules/resize":222,"./modules/resize2":223,"@babel/runtime/helpers/interopRequireDefault":11,"@jimp/utils":235,"buffer":48}],222:[function(require,module,exports){ "use strict"; // JavaScript Image Resizer (c) 2012 - Grant Galitz // Released to public domain 29 July 2013: https://github.com/grantgalitz/JS-Image-Resizer/issues/4 function Resize(widthOriginal, heightOriginal, targetWidth, targetHeight, blendAlpha, interpolationPass, resizeCallback) { this.widthOriginal = Math.abs(Math.floor(widthOriginal) || 0); this.heightOriginal = Math.abs(Math.floor(heightOriginal) || 0); this.targetWidth = Math.abs(Math.floor(targetWidth) || 0); this.targetHeight = Math.abs(Math.floor(targetHeight) || 0); this.colorChannels = blendAlpha ? 4 : 3; this.interpolationPass = Boolean(interpolationPass); this.resizeCallback = typeof resizeCallback === 'function' ? resizeCallback : function () {}; this.targetWidthMultipliedByChannels = this.targetWidth * this.colorChannels; this.originalWidthMultipliedByChannels = this.widthOriginal * this.colorChannels; this.originalHeightMultipliedByChannels = this.heightOriginal * this.colorChannels; this.widthPassResultSize = this.targetWidthMultipliedByChannels * this.heightOriginal; this.finalResultSize = this.targetWidthMultipliedByChannels * this.targetHeight; this.initialize(); } Resize.prototype.initialize = function () { // Perform some checks: if (this.widthOriginal > 0 && this.heightOriginal > 0 && this.targetWidth > 0 && this.targetHeight > 0) { this.configurePasses(); } else { throw new Error('Invalid settings specified for the resizer.'); } }; Resize.prototype.configurePasses = function () { if (this.widthOriginal === this.targetWidth) { // Bypass the width resizer pass: this.resizeWidth = this.bypassResizer; } else { // Setup the width resizer pass: this.ratioWeightWidthPass = this.widthOriginal / this.targetWidth; if (this.ratioWeightWidthPass < 1 && this.interpolationPass) { this.initializeFirstPassBuffers(true); this.resizeWidth = this.colorChannels === 4 ? this.resizeWidthInterpolatedRGBA : this.resizeWidthInterpolatedRGB; } else { this.initializeFirstPassBuffers(false); this.resizeWidth = this.colorChannels === 4 ? this.resizeWidthRGBA : this.resizeWidthRGB; } } if (this.heightOriginal === this.targetHeight) { // Bypass the height resizer pass: this.resizeHeight = this.bypassResizer; } else { // Setup the height resizer pass: this.ratioWeightHeightPass = this.heightOriginal / this.targetHeight; if (this.ratioWeightHeightPass < 1 && this.interpolationPass) { this.initializeSecondPassBuffers(true); this.resizeHeight = this.resizeHeightInterpolated; } else { this.initializeSecondPassBuffers(false); this.resizeHeight = this.colorChannels === 4 ? this.resizeHeightRGBA : this.resizeHeightRGB; } } }; Resize.prototype._resizeWidthInterpolatedRGBChannels = function (buffer, fourthChannel) { var channelsNum = fourthChannel ? 4 : 3; var ratioWeight = this.ratioWeightWidthPass; var outputBuffer = this.widthBuffer; var weight = 0; var finalOffset = 0; var pixelOffset = 0; var firstWeight = 0; var secondWeight = 0; var targetPosition; // Handle for only one interpolation input being valid for start calculation: for (targetPosition = 0; weight < 1 / 3; targetPosition += channelsNum, weight += ratioWeight) { for (finalOffset = targetPosition, pixelOffset = 0; finalOffset < this.widthPassResultSize; pixelOffset += this.originalWidthMultipliedByChannels, finalOffset += this.targetWidthMultipliedByChannels) { outputBuffer[finalOffset] = buffer[pixelOffset]; outputBuffer[finalOffset + 1] = buffer[pixelOffset + 1]; outputBuffer[finalOffset + 2] = buffer[pixelOffset + 2]; if (fourthChannel) outputBuffer[finalOffset + 3] = buffer[pixelOffset + 3]; } } // Adjust for overshoot of the last pass's counter: weight -= 1 / 3; var interpolationWidthSourceReadStop; for (interpolationWidthSourceReadStop = this.widthOriginal - 1; weight < interpolationWidthSourceReadStop; targetPosition += channelsNum, weight += ratioWeight) { // Calculate weightings: secondWeight = weight % 1; firstWeight = 1 - secondWeight; // Interpolate: for (finalOffset = targetPosition, pixelOffset = Math.floor(weight) * channelsNum; finalOffset < this.widthPassResultSize; pixelOffset += this.originalWidthMultipliedByChannels, finalOffset += this.targetWidthMultipliedByChannels) { outputBuffer[finalOffset + 0] = buffer[pixelOffset + 0] * firstWeight + buffer[pixelOffset + channelsNum + 0] * secondWeight; outputBuffer[finalOffset + 1] = buffer[pixelOffset + 1] * firstWeight + buffer[pixelOffset + channelsNum + 1] * secondWeight; outputBuffer[finalOffset + 2] = buffer[pixelOffset + 2] * firstWeight + buffer[pixelOffset + channelsNum + 2] * secondWeight; if (fourthChannel) outputBuffer[finalOffset + 3] = buffer[pixelOffset + 3] * firstWeight + buffer[pixelOffset + channelsNum + 3] * secondWeight; } } // Handle for only one interpolation input being valid for end calculation: for (interpolationWidthSourceReadStop = this.originalWidthMultipliedByChannels - channelsNum; targetPosition < this.targetWidthMultipliedByChannels; targetPosition += channelsNum) { for (finalOffset = targetPosition, pixelOffset = interpolationWidthSourceReadStop; finalOffset < this.widthPassResultSize; pixelOffset += this.originalWidthMultipliedByChannels, finalOffset += this.targetWidthMultipliedByChannels) { outputBuffer[finalOffset] = buffer[pixelOffset]; outputBuffer[finalOffset + 1] = buffer[pixelOffset + 1]; outputBuffer[finalOffset + 2] = buffer[pixelOffset + 2]; if (fourthChannel) outputBuffer[finalOffset + 3] = buffer[pixelOffset + 3]; } } return outputBuffer; }; Resize.prototype._resizeWidthRGBChannels = function (buffer, fourthChannel) { var channelsNum = fourthChannel ? 4 : 3; var ratioWeight = this.ratioWeightWidthPass; var ratioWeightDivisor = 1 / ratioWeight; var nextLineOffsetOriginalWidth = this.originalWidthMultipliedByChannels - channelsNum + 1; var nextLineOffsetTargetWidth = this.targetWidthMultipliedByChannels - channelsNum + 1; var output = this.outputWidthWorkBench; var outputBuffer = this.widthBuffer; var trustworthyColorsCount = this.outputWidthWorkBenchOpaquePixelsCount; var weight = 0; var amountToNext = 0; var actualPosition = 0; var currentPosition = 0; var line = 0; var pixelOffset = 0; var outputOffset = 0; var multiplier = 1; var r = 0; var g = 0; var b = 0; var a = 0; do { for (line = 0; line < this.originalHeightMultipliedByChannels;) { output[line++] = 0; output[line++] = 0; output[line++] = 0; if (fourthChannel) { output[line++] = 0; trustworthyColorsCount[line / channelsNum - 1] = 0; } } weight = ratioWeight; do { amountToNext = 1 + actualPosition - currentPosition; multiplier = Math.min(weight, amountToNext); for (line = 0, pixelOffset = actualPosition; line < this.originalHeightMultipliedByChannels; pixelOffset += nextLineOffsetOriginalWidth) { r = buffer[pixelOffset]; g = buffer[++pixelOffset]; b = buffer[++pixelOffset]; a = fourthChannel ? buffer[++pixelOffset] : 255; // Ignore RGB values if pixel is completely transparent output[line++] += (a ? r : 0) * multiplier; output[line++] += (a ? g : 0) * multiplier; output[line++] += (a ? b : 0) * multiplier; if (fourthChannel) { output[line++] += a * multiplier; trustworthyColorsCount[line / channelsNum - 1] += a ? multiplier : 0; } } if (weight >= amountToNext) { actualPosition += channelsNum; currentPosition = actualPosition; weight -= amountToNext; } else { currentPosition += weight; break; } } while (weight > 0 && actualPosition < this.originalWidthMultipliedByChannels); for (line = 0, pixelOffset = outputOffset; line < this.originalHeightMultipliedByChannels; pixelOffset += nextLineOffsetTargetWidth) { weight = fourthChannel ? trustworthyColorsCount[line / channelsNum] : 1; multiplier = fourthChannel ? weight ? 1 / weight : 0 : ratioWeightDivisor; outputBuffer[pixelOffset] = output[line++] * multiplier; outputBuffer[++pixelOffset] = output[line++] * multiplier; outputBuffer[++pixelOffset] = output[line++] * multiplier; if (fourthChannel) outputBuffer[++pixelOffset] = output[line++] * ratioWeightDivisor; } outputOffset += channelsNum; } while (outputOffset < this.targetWidthMultipliedByChannels); return outputBuffer; }; Resize.prototype._resizeHeightRGBChannels = function (buffer, fourthChannel) { var ratioWeight = this.ratioWeightHeightPass; var ratioWeightDivisor = 1 / ratioWeight; var output = this.outputHeightWorkBench; var outputBuffer = this.heightBuffer; var trustworthyColorsCount = this.outputHeightWorkBenchOpaquePixelsCount; var weight = 0; var amountToNext = 0; var actualPosition = 0; var currentPosition = 0; var pixelOffset = 0; var outputOffset = 0; var caret = 0; var multiplier = 1; var r = 0; var g = 0; var b = 0; var a = 0; do { for (pixelOffset = 0; pixelOffset < this.targetWidthMultipliedByChannels;) { output[pixelOffset++] = 0; output[pixelOffset++] = 0; output[pixelOffset++] = 0; if (fourthChannel) { output[pixelOffset++] = 0; trustworthyColorsCount[pixelOffset / 4 - 1] = 0; } } weight = ratioWeight; do { amountToNext = 1 + actualPosition - currentPosition; multiplier = Math.min(weight, amountToNext); caret = actualPosition; for (pixelOffset = 0; pixelOffset < this.targetWidthMultipliedByChannels;) { r = buffer[caret++]; g = buffer[caret++]; b = buffer[caret++]; a = fourthChannel ? buffer[caret++] : 255; // Ignore RGB values if pixel is completely transparent output[pixelOffset++] += (a ? r : 0) * multiplier; output[pixelOffset++] += (a ? g : 0) * multiplier; output[pixelOffset++] += (a ? b : 0) * multiplier; if (fourthChannel) { output[pixelOffset++] += a * multiplier; trustworthyColorsCount[pixelOffset / 4 - 1] += a ? multiplier : 0; } } if (weight >= amountToNext) { actualPosition = caret; currentPosition = actualPosition; weight -= amountToNext; } else { currentPosition += weight; break; } } while (weight > 0 && actualPosition < this.widthPassResultSize); for (pixelOffset = 0; pixelOffset < this.targetWidthMultipliedByChannels;) { weight = fourthChannel ? trustworthyColorsCount[pixelOffset / 4] : 1; multiplier = fourthChannel ? weight ? 1 / weight : 0 : ratioWeightDivisor; outputBuffer[outputOffset++] = Math.round(output[pixelOffset++] * multiplier); outputBuffer[outputOffset++] = Math.round(output[pixelOffset++] * multiplier); outputBuffer[outputOffset++] = Math.round(output[pixelOffset++] * multiplier); if (fourthChannel) { outputBuffer[outputOffset++] = Math.round(output[pixelOffset++] * ratioWeightDivisor); } } } while (outputOffset < this.finalResultSize); return outputBuffer; }; Resize.prototype.resizeWidthInterpolatedRGB = function (buffer) { return this._resizeWidthInterpolatedRGBChannels(buffer, false); }; Resize.prototype.resizeWidthInterpolatedRGBA = function (buffer) { return this._resizeWidthInterpolatedRGBChannels(buffer, true); }; Resize.prototype.resizeWidthRGB = function (buffer) { return this._resizeWidthRGBChannels(buffer, false); }; Resize.prototype.resizeWidthRGBA = function (buffer) { return this._resizeWidthRGBChannels(buffer, true); }; Resize.prototype.resizeHeightInterpolated = function (buffer) { var ratioWeight = this.ratioWeightHeightPass; var outputBuffer = this.heightBuffer; var weight = 0; var finalOffset = 0; var pixelOffset = 0; var pixelOffsetAccumulated = 0; var pixelOffsetAccumulated2 = 0; var firstWeight = 0; var secondWeight = 0; var interpolationHeightSourceReadStop; // Handle for only one interpolation input being valid for start calculation: for (; weight < 1 / 3; weight += ratioWeight) { for (pixelOffset = 0; pixelOffset < this.targetWidthMultipliedByChannels;) { outputBuffer[finalOffset++] = Math.round(buffer[pixelOffset++]); } } // Adjust for overshoot of the last pass's counter: weight -= 1 / 3; for (interpolationHeightSourceReadStop = this.heightOriginal - 1; weight < interpolationHeightSourceReadStop; weight += ratioWeight) { // Calculate weightings: secondWeight = weight % 1; firstWeight = 1 - secondWeight; // Interpolate: pixelOffsetAccumulated = Math.floor(weight) * this.targetWidthMultipliedByChannels; pixelOffsetAccumulated2 = pixelOffsetAccumulated + this.targetWidthMultipliedByChannels; for (pixelOffset = 0; pixelOffset < this.targetWidthMultipliedByChannels; ++pixelOffset) { outputBuffer[finalOffset++] = Math.round(buffer[pixelOffsetAccumulated++] * firstWeight + buffer[pixelOffsetAccumulated2++] * secondWeight); } } // Handle for only one interpolation input being valid for end calculation: while (finalOffset < this.finalResultSize) { for (pixelOffset = 0, pixelOffsetAccumulated = interpolationHeightSourceReadStop * this.targetWidthMultipliedByChannels; pixelOffset < this.targetWidthMultipliedByChannels; ++pixelOffset) { outputBuffer[finalOffset++] = Math.round(buffer[pixelOffsetAccumulated++]); } } return outputBuffer; }; Resize.prototype.resizeHeightRGB = function (buffer) { return this._resizeHeightRGBChannels(buffer, false); }; Resize.prototype.resizeHeightRGBA = function (buffer) { return this._resizeHeightRGBChannels(buffer, true); }; Resize.prototype.resize = function (buffer) { this.resizeCallback(this.resizeHeight(this.resizeWidth(buffer))); }; Resize.prototype.bypassResizer = function (buffer) { // Just return the buffer passed: return buffer; }; Resize.prototype.initializeFirstPassBuffers = function (BILINEARAlgo) { // Initialize the internal width pass buffers: this.widthBuffer = this.generateFloatBuffer(this.widthPassResultSize); if (!BILINEARAlgo) { this.outputWidthWorkBench = this.generateFloatBuffer(this.originalHeightMultipliedByChannels); if (this.colorChannels > 3) { this.outputWidthWorkBenchOpaquePixelsCount = this.generateFloat64Buffer(this.heightOriginal); } } }; Resize.prototype.initializeSecondPassBuffers = function (BILINEARAlgo) { // Initialize the internal height pass buffers: this.heightBuffer = this.generateUint8Buffer(this.finalResultSize); if (!BILINEARAlgo) { this.outputHeightWorkBench = this.generateFloatBuffer(this.targetWidthMultipliedByChannels); if (this.colorChannels > 3) { this.outputHeightWorkBenchOpaquePixelsCount = this.generateFloat64Buffer(this.targetWidth); } } }; Resize.prototype.generateFloatBuffer = function (bufferLength) { // Generate a float32 typed array buffer: try { return new Float32Array(bufferLength); } catch (error) { return []; } }; Resize.prototype.generateFloat64Buffer = function (bufferLength) { // Generate a float64 typed array buffer: try { return new Float64Array(bufferLength); } catch (error) { return []; } }; Resize.prototype.generateUint8Buffer = function (bufferLength) { // Generate a uint8 typed array buffer: try { return new Uint8Array(bufferLength); } catch (error) { return []; } }; module.exports = Resize; },{}],223:[function(require,module,exports){ (function (Buffer){ "use strict"; /** * Copyright (c) 2015 Guyon Roche * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions:

* * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ module.exports = { nearestNeighbor: function nearestNeighbor(src, dst) { var wSrc = src.width; var hSrc = src.height; var wDst = dst.width; var hDst = dst.height; var bufSrc = src.data; var bufDst = dst.data; for (var i = 0; i < hDst; i++) { for (var j = 0; j < wDst; j++) { var posDst = (i * wDst + j) * 4; var iSrc = Math.floor(i * hSrc / hDst); var jSrc = Math.floor(j * wSrc / wDst); var posSrc = (iSrc * wSrc + jSrc) * 4; bufDst[posDst++] = bufSrc[posSrc++]; bufDst[posDst++] = bufSrc[posSrc++]; bufDst[posDst++] = bufSrc[posSrc++]; bufDst[posDst++] = bufSrc[posSrc++]; } } }, bilinearInterpolation: function bilinearInterpolation(src, dst) { var wSrc = src.width; var hSrc = src.height; var wDst = dst.width; var hDst = dst.height; var bufSrc = src.data; var bufDst = dst.data; var interpolate = function interpolate(k, kMin, vMin, kMax, vMax) { // special case - k is integer if (kMin === kMax) { return vMin; } return Math.round((k - kMin) * vMax + (kMax - k) * vMin); }; var assign = function assign(pos, offset, x, xMin, xMax, y, yMin, yMax) { var posMin = (yMin * wSrc + xMin) * 4 + offset; var posMax = (yMin * wSrc + xMax) * 4 + offset; var vMin = interpolate(x, xMin, bufSrc[posMin], xMax, bufSrc[posMax]); // special case, y is integer if (yMax === yMin) { bufDst[pos + offset] = vMin; } else { posMin = (yMax * wSrc + xMin) * 4 + offset; posMax = (yMax * wSrc + xMax) * 4 + offset; var vMax = interpolate(x, xMin, bufSrc[posMin], xMax, bufSrc[posMax]); bufDst[pos + offset] = interpolate(y, yMin, vMin, yMax, vMax); } }; for (var i = 0; i < hDst; i++) { for (var j = 0; j < wDst; j++) { var posDst = (i * wDst + j) * 4; // x & y in src coordinates var x = j * wSrc / wDst; var xMin = Math.floor(x); var xMax = Math.min(Math.ceil(x), wSrc - 1); var y = i * hSrc / hDst; var yMin = Math.floor(y); var yMax = Math.min(Math.ceil(y), hSrc - 1); assign(posDst, 0, x, xMin, xMax, y, yMin, yMax); assign(posDst, 1, x, xMin, xMax, y, yMin, yMax); assign(posDst, 2, x, xMin, xMax, y, yMin, yMax); assign(posDst, 3, x, xMin, xMax, y, yMin, yMax); } } }, _interpolate2D: function _interpolate2D(src, dst, options, interpolate) { var bufSrc = src.data; var bufDst = dst.data; var wSrc = src.width; var hSrc = src.height; var wDst = dst.width; var hDst = dst.height; // when dst smaller than src/2, interpolate first to a multiple between 0.5 and 1.0 src, then sum squares var wM = Math.max(1, Math.floor(wSrc / wDst)); var wDst2 = wDst * wM; var hM = Math.max(1, Math.floor(hSrc / hDst)); var hDst2 = hDst * hM; // =========================================================== // Pass 1 - interpolate rows // buf1 has width of dst2 and height of src var buf1 = Buffer.alloc(wDst2 * hSrc * 4); for (var i = 0; i < hSrc; i++) { for (var j = 0; j < wDst2; j++) { // i in src coords, j in dst coords // calculate x in src coords // this interpolation requires 4 sample points and the two inner ones must be real // the outer points can be fudged for the edges. // therefore (wSrc-1)/wDst2 var x = j * (wSrc - 1) / wDst2; var xPos = Math.floor(x); var t = x - xPos; var srcPos = (i * wSrc + xPos) * 4; var buf1Pos = (i * wDst2 + j) * 4; for (var k = 0; k < 4; k++) { var kPos = srcPos + k; var x0 = xPos > 0 ? bufSrc[kPos - 4] : 2 * bufSrc[kPos] - bufSrc[kPos + 4]; var x1 = bufSrc[kPos]; var x2 = bufSrc[kPos + 4]; var x3 = xPos < wSrc - 2 ? bufSrc[kPos + 8] : 2 * bufSrc[kPos + 4] - bufSrc[kPos]; buf1[buf1Pos + k] = interpolate(x0, x1, x2, x3, t); } } } // this._writeFile(wDst2, hSrc, buf1, "out/buf1.jpg"); // =========================================================== // Pass 2 - interpolate columns // buf2 has width and height of dst2 var buf2 = Buffer.alloc(wDst2 * hDst2 * 4); for (var _i = 0; _i < hDst2; _i++) { for (var _j = 0; _j < wDst2; _j++) { // i&j in dst2 coords // calculate y in buf1 coords // this interpolation requires 4 sample points and the two inner ones must be real // the outer points can be fudged for the edges. // therefore (hSrc-1)/hDst2 var y = _i * (hSrc - 1) / hDst2; var yPos = Math.floor(y); var _t = y - yPos; var _buf1Pos = (yPos * wDst2 + _j) * 4; var buf2Pos = (_i * wDst2 + _j) * 4; for (var _k = 0; _k < 4; _k++) { var _kPos = _buf1Pos + _k; var y0 = yPos > 0 ? buf1[_kPos - wDst2 * 4] : 2 * buf1[_kPos] - buf1[_kPos + wDst2 * 4]; var y1 = buf1[_kPos]; var y2 = buf1[_kPos + wDst2 * 4]; var y3 = yPos < hSrc - 2 ? buf1[_kPos + wDst2 * 8] : 2 * buf1[_kPos + wDst2 * 4] - buf1[_kPos]; buf2[buf2Pos + _k] = interpolate(y0, y1, y2, y3, _t); } } } // this._writeFile(wDst2, hDst2, buf2, "out/buf2.jpg"); // =========================================================== // Pass 3 - scale to dst var m = wM * hM; if (m > 1) { for (var _i2 = 0; _i2 < hDst; _i2++) { for (var _j2 = 0; _j2 < wDst; _j2++) { // i&j in dst bounded coords var r = 0; var g = 0; var b = 0; var a = 0; var realColors = 0; for (var _y = 0; _y < hM; _y++) { var _yPos = _i2 * hM + _y; for (var _x = 0; _x < wM; _x++) { var _xPos = _j2 * wM + _x; var xyPos = (_yPos * wDst2 + _xPos) * 4; var pixelAlpha = buf2[xyPos + 3]; if (pixelAlpha) { r += buf2[xyPos]; g += buf2[xyPos + 1]; b += buf2[xyPos + 2]; realColors++; } a += pixelAlpha; } } var pos = (_i2 * wDst + _j2) * 4; bufDst[pos] = realColors ? Math.round(r / realColors) : 0; bufDst[pos + 1] = realColors ? Math.round(g / realColors) : 0; bufDst[pos + 2] = realColors ? Math.round(b / realColors) : 0; bufDst[pos + 3] = Math.round(a / m); } } } else { // replace dst buffer with buf2 dst.data = buf2; } }, bicubicInterpolation: function bicubicInterpolation(src, dst, options) { var interpolateCubic = function interpolateCubic(x0, x1, x2, x3, t) { var a0 = x3 - x2 - x0 + x1; var a1 = x0 - x1 - a0; var a2 = x2 - x0; var a3 = x1; return Math.max(0, Math.min(255, a0 * (t * t * t) + a1 * (t * t) + a2 * t + a3)); }; return this._interpolate2D(src, dst, options, interpolateCubic); }, hermiteInterpolation: function hermiteInterpolation(src, dst, options) { var interpolateHermite = function interpolateHermite(x0, x1, x2, x3, t) { var c0 = x1; var c1 = 0.5 * (x2 - x0); var c2 = x0 - 2.5 * x1 + 2 * x2 - 0.5 * x3; var c3 = 0.5 * (x3 - x0) + 1.5 * (x1 - x2); return Math.max(0, Math.min(255, Math.round(((c3 * t + c2) * t + c1) * t + c0))); }; return this._interpolate2D(src, dst, options, interpolateHermite); }, bezierInterpolation: function bezierInterpolation(src, dst, options) { // between 2 points y(n), y(n+1), use next points out, y(n-1), y(n+2) // to predict control points (a & b) to be placed at n+0.5 // ya(n) = y(n) + (y(n+1)-y(n-1))/4 // yb(n) = y(n+1) - (y(n+2)-y(n))/4 // then use std bezier to interpolate [n,n+1) // y(n+t) = y(n)*(1-t)^3 + 3 * ya(n)*(1-t)^2*t + 3 * yb(n)*(1-t)*t^2 + y(n+1)*t^3 // note the 3* factor for the two control points // for edge cases, can choose: // y(-1) = y(0) - 2*(y(1)-y(0)) // y(w) = y(w-1) + 2*(y(w-1)-y(w-2)) // but can go with y(-1) = y(0) and y(w) = y(w-1) var interpolateBezier = function interpolateBezier(x0, x1, x2, x3, t) { // x1, x2 are the knots, use x0 and x3 to calculate control points var cp1 = x1 + (x2 - x0) / 4; var cp2 = x2 - (x3 - x1) / 4; var nt = 1 - t; var c0 = x1 * nt * nt * nt; var c1 = 3 * cp1 * nt * nt * t; var c2 = 3 * cp2 * nt * t * t; var c3 = x2 * t * t * t; return Math.max(0, Math.min(255, Math.round(c0 + c1 + c2 + c3))); }; return this._interpolate2D(src, dst, options, interpolateBezier); } }; }).call(this,require("buffer").Buffer) },{"buffer":48}],224:[function(require,module,exports){ (function (Buffer){ "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _utils = require("@jimp/utils"); /** * Rotates an image clockwise by an arbitrary number of degrees. NB: 'this' must be a Jimp object. * @param {number} deg the number of degrees to rotate the image by * @param {string|boolean} mode (optional) resize mode or a boolean, if false then the width and height of the image will not be changed */ function advancedRotate(deg, mode) { deg %= 360; var rad = deg * Math.PI / 180; var cosine = Math.cos(rad); var sine = Math.sin(rad); // the final width and height will change if resize == true var w = this.bitmap.width; var h = this.bitmap.height; if (mode === true || typeof mode === 'string') { // resize the image to it maximum dimension and blit the existing image // onto the center so that when it is rotated the image is kept in bounds // http://stackoverflow.com/questions/3231176/how-to-get-size-of-a-rotated-rectangle // Plus 1 border pixel to ensure to show all rotated result for some cases. w = Math.ceil(Math.abs(this.bitmap.width * cosine) + Math.abs(this.bitmap.height * sine)) + 1; h = Math.ceil(Math.abs(this.bitmap.width * sine) + Math.abs(this.bitmap.height * cosine)) + 1; // Ensure destination to have even size to a better result. if (w % 2 !== 0) { w++; } if (h % 2 !== 0) { h++; } var c = this.cloneQuiet(); this.scanQuiet(0, 0, this.bitmap.width, this.bitmap.height, function (x, y, idx) { this.bitmap.data.writeUInt32BE(this._background, idx); }); var max = Math.max(w, h, this.bitmap.width, this.bitmap.height); this.resize(max, max, mode); this.blit(c, this.bitmap.width / 2 - c.bitmap.width / 2, this.bitmap.height / 2 - c.bitmap.height / 2); } var bW = this.bitmap.width; var bH = this.bitmap.height; var dstBuffer = Buffer.alloc(this.bitmap.data.length); function createTranslationFunction(deltaX, deltaY) { return function (x, y) { return { x: x + deltaX, y: y + deltaY }; }; } var translate2Cartesian = createTranslationFunction(-(bW / 2), -(bH / 2)); var translate2Screen = createTranslationFunction(bW / 2 + 0.5, bH / 2 + 0.5); for (var y = 1; y <= bH; y++) { for (var x = 1; x <= bW; x++) { var cartesian = translate2Cartesian(x, y); var source = translate2Screen(cosine * cartesian.x - sine * cartesian.y, cosine * cartesian.y + sine * cartesian.x); var dstIdx = bW * (y - 1) + x - 1 << 2; if (source.x >= 0 && source.x < bW && source.y >= 0 && source.y < bH) { var srcIdx = (bW * (source.y | 0) + source.x | 0) << 2; var pixelRGBA = this.bitmap.data.readUInt32BE(srcIdx); dstBuffer.writeUInt32BE(pixelRGBA, dstIdx); } else { // reset off-image pixels dstBuffer.writeUInt32BE(this._background, dstIdx); } } } this.bitmap.data = dstBuffer; if (mode === true || typeof mode === 'string') { // now crop the image to the final size var _x = bW / 2 - w / 2; var _y = bH / 2 - h / 2; this.crop(_x, _y, w, h); } } var _default = function _default() { return { /** * Rotates the image clockwise by a number of degrees. By default the width and height of the image will be resized appropriately. * @param {number} deg the number of degrees to rotate the image by * @param {string|boolean} mode (optional) resize mode or a boolean, if false then the width and height of the image will not be changed * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ rotate: function rotate(deg, mode, cb) { // enable overloading if (typeof mode === 'undefined' || mode === null) { // e.g. image.resize(120); // e.g. image.resize(120, null, cb); // e.g. image.resize(120, undefined, cb); mode = true; } if (typeof mode === 'function' && typeof cb === 'undefined') { // e.g. image.resize(120, cb); cb = mode; mode = true; } if (typeof deg !== 'number') { return _utils.throwError.call(this, 'deg must be a number', cb); } if (typeof mode !== 'boolean' && typeof mode !== 'string') { return _utils.throwError.call(this, 'mode must be a boolean or a string', cb); } advancedRotate.call(this, deg, mode, cb); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } }; }; exports["default"] = _default; module.exports = exports.default; }).call(this,require("buffer").Buffer) },{"@jimp/utils":235,"buffer":48}],225:[function(require,module,exports){ "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _utils = require("@jimp/utils"); var _default = function _default() { return { /** * Uniformly scales the image by a factor. * @param {number} f the factor to scale the image by * @param {string} mode (optional) a scaling method (e.g. Jimp.RESIZE_BEZIER) * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ scale: function scale(f, mode, cb) { if (typeof f !== 'number') { return _utils.throwError.call(this, 'f must be a number', cb); } if (f < 0) { return _utils.throwError.call(this, 'f must be a positive number', cb); } if (typeof mode === 'function' && typeof cb === 'undefined') { cb = mode; mode = null; } var w = this.bitmap.width * f; var h = this.bitmap.height * f; this.resize(w, h, mode); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; }, /** * Scale the image to the largest size that fits inside the rectangle that has the given width and height. * @param {number} w the width to resize the image to * @param {number} h the height to resize the image to * @param {string} mode (optional) a scaling method (e.g. Jimp.RESIZE_BEZIER) * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ scaleToFit: function scaleToFit(w, h, mode, cb) { if (typeof w !== 'number' || typeof h !== 'number') { return _utils.throwError.call(this, 'w and h must be numbers', cb); } if (typeof mode === 'function' && typeof cb === 'undefined') { cb = mode; mode = null; } var f = w / h > this.bitmap.width / this.bitmap.height ? h / this.bitmap.height : w / this.bitmap.width; this.scale(f, mode); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } }; }; exports["default"] = _default; module.exports = exports.default; },{"@jimp/utils":235}],226:[function(require,module,exports){ "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _utils = require("@jimp/utils"); /** * Creates a circle out of an image. * @param {function(Error, Jimp)} options (optional) * opacity - opacity of the shadow between 0 and 1 * size,- of the shadow * blur - how blurry the shadow is * x- x position of shadow * y - y position of shadow * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ var _default = function _default() { return { shadow: function shadow() { var _this = this; var options = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : {}; var cb = arguments.length > 1 ? arguments[1] : undefined; if (typeof options === 'function') { cb = options; options = {}; } var _options = options, _options$opacity = _options.opacity, opacity = _options$opacity === void 0 ? 0.7 : _options$opacity, _options$size = _options.size, size = _options$size === void 0 ? 1.1 : _options$size, _options$x = _options.x, x = _options$x === void 0 ? -25 : _options$x, _options$y = _options.y, y = _options$y === void 0 ? 25 : _options$y, _options$blur = _options.blur, blur = _options$blur === void 0 ? 5 : _options$blur; // clone the image var orig = this.clone(); var shadow = this.clone(); // turn all it's pixels black shadow.scan(0, 0, shadow.bitmap.width, shadow.bitmap.height, function (x, y, idx) { shadow.bitmap.data[idx] = 0x00; shadow.bitmap.data[idx + 1] = 0x00; shadow.bitmap.data[idx + 2] = 0x00; // up the opacity a little, shadow.bitmap.data[idx + 3] = shadow.constructor.limit255(shadow.bitmap.data[idx + 3] * opacity); _this.bitmap.data[idx] = 0x00; _this.bitmap.data[idx + 1] = 0x00; _this.bitmap.data[idx + 2] = 0x00; _this.bitmap.data[idx + 3] = 0x00; }); // enlarge it. This creates a "shadow". shadow.resize(shadow.bitmap.width * size, shadow.bitmap.height * size).blur(blur); // Then blit the "shadow" onto the background and the image on top of that. this.composite(shadow, x, y); this.composite(orig, 0, 0); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } }; }; exports["default"] = _default; module.exports = exports.default; },{"@jimp/utils":235}],227:[function(require,module,exports){ "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _utils = require("@jimp/utils"); /** * Applies a minimum color threshold to a greyscale image. Converts image to greyscale by default * @param {number} options object * max: A number auto limited between 0 - 255 * replace: (optional) A number auto limited between 0 - 255 (default 255) * autoGreyscale: (optional) A boolean whether to apply greyscale beforehand (default true) * @param {number} cb (optional) a callback for when complete * @return {this} this for chaining of methods */ var _default = function _default() { return { threshold: function threshold(_ref, cb) { var _this = this; var max = _ref.max, _ref$replace = _ref.replace, replace = _ref$replace === void 0 ? 255 : _ref$replace, _ref$autoGreyscale = _ref.autoGreyscale, autoGreyscale = _ref$autoGreyscale === void 0 ? true : _ref$autoGreyscale; if (typeof max !== 'number') { return _utils.throwError.call(this, 'max must be a number', cb); } if (typeof replace !== 'number') { return _utils.throwError.call(this, 'replace must be a number', cb); } if (typeof autoGreyscale !== 'boolean') { return _utils.throwError.call(this, 'autoGreyscale must be a boolean', cb); } max = this.constructor.limit255(max); replace = this.constructor.limit255(replace); if (autoGreyscale) { this.greyscale(); } this.scanQuiet(0, 0, this.bitmap.width, this.bitmap.height, function (x, y, idx) { var grey = _this.bitmap.data[idx] < max ? _this.bitmap.data[idx] : replace; _this.bitmap.data[idx] = grey; _this.bitmap.data[idx + 1] = grey; _this.bitmap.data[idx + 2] = grey; }); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } }; }; exports["default"] = _default; module.exports = exports.default; },{"@jimp/utils":235}],228:[function(require,module,exports){ "use strict"; var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault"); Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _toConsumableArray2 = _interopRequireDefault(require("@babel/runtime/helpers/toConsumableArray")); var _timm = require("timm"); var _pluginBlit = _interopRequireDefault(require("@jimp/plugin-blit")); var _pluginBlur = _interopRequireDefault(require("@jimp/plugin-blur")); var _pluginCircle = _interopRequireDefault(require("@jimp/plugin-circle")); var _pluginColor = _interopRequireDefault(require("@jimp/plugin-color")); var _pluginContain = _interopRequireDefault(require("@jimp/plugin-contain")); var _pluginCover = _interopRequireDefault(require("@jimp/plugin-cover")); var _pluginCrop = _interopRequireDefault(require("@jimp/plugin-crop")); var _pluginDisplace = _interopRequireDefault(require("@jimp/plugin-displace")); var _pluginDither = _interopRequireDefault(require("@jimp/plugin-dither")); var _pluginFisheye = _interopRequireDefault(require("@jimp/plugin-fisheye")); var _pluginFlip = _interopRequireDefault(require("@jimp/plugin-flip")); var _pluginGaussian = _interopRequireDefault(require("@jimp/plugin-gaussian")); var _pluginInvert = _interopRequireDefault(require("@jimp/plugin-invert")); var _pluginMask = _interopRequireDefault(require("@jimp/plugin-mask")); var _pluginNormalize = _interopRequireDefault(require("@jimp/plugin-normalize")); var _pluginPrint = _interopRequireDefault(require("@jimp/plugin-print")); var _pluginResize = _interopRequireDefault(require("@jimp/plugin-resize")); var _pluginRotate = _interopRequireDefault(require("@jimp/plugin-rotate")); var _pluginScale = _interopRequireDefault(require("@jimp/plugin-scale")); var _pluginShadow = _interopRequireDefault(require("@jimp/plugin-shadow")); var _pluginThreshold = _interopRequireDefault(require("@jimp/plugin-threshold")); var plugins = [_pluginBlit["default"], _pluginBlur["default"], _pluginCircle["default"], _pluginColor["default"], _pluginContain["default"], _pluginCover["default"], _pluginCrop["default"], _pluginDisplace["default"], _pluginDither["default"], _pluginFisheye["default"], _pluginFlip["default"], _pluginGaussian["default"], _pluginInvert["default"], _pluginMask["default"], _pluginNormalize["default"], _pluginPrint["default"], _pluginResize["default"], _pluginRotate["default"], _pluginScale["default"], _pluginShadow["default"], _pluginThreshold["default"]]; var _default = function _default(jimpEvChange) { var initializedPlugins = plugins.map(function (pluginModule) { var plugin = pluginModule(jimpEvChange) || {}; if (!plugin["class"] && !plugin.constants) { // Default to class function plugin = { "class": plugin }; } return plugin; }); return _timm.mergeDeep.apply(void 0, (0, _toConsumableArray2["default"])(initializedPlugins)); }; exports["default"] = _default; module.exports = exports.default; },{"@babel/runtime/helpers/interopRequireDefault":11,"@babel/runtime/helpers/toConsumableArray":20,"@jimp/plugin-blit":201,"@jimp/plugin-blur":203,"@jimp/plugin-circle":204,"@jimp/plugin-color":205,"@jimp/plugin-contain":206,"@jimp/plugin-cover":207,"@jimp/plugin-crop":208,"@jimp/plugin-displace":209,"@jimp/plugin-dither":210,"@jimp/plugin-fisheye":211,"@jimp/plugin-flip":212,"@jimp/plugin-gaussian":213,"@jimp/plugin-invert":214,"@jimp/plugin-mask":215,"@jimp/plugin-normalize":216,"@jimp/plugin-print":217,"@jimp/plugin-resize":221,"@jimp/plugin-rotate":224,"@jimp/plugin-scale":225,"@jimp/plugin-shadow":226,"@jimp/plugin-threshold":227,"timm":177}],229:[function(require,module,exports){ "use strict"; var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault"); Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _defineProperty2 = _interopRequireDefault(require("@babel/runtime/helpers/defineProperty")); var _bmpJs = _interopRequireDefault(require("bmp-js")); var _utils = require("@jimp/utils"); var MIME_TYPE = 'image/bmp'; var MIME_TYPE_SECOND = 'image/x-ms-bmp'; function toAGBR(image) { return (0, _utils.scan)(image, 0, 0, image.bitmap.width, image.bitmap.height, function (x, y, index) { var red = this.bitmap.data[index + 0]; var green = this.bitmap.data[index + 1]; var blue = this.bitmap.data[index + 2]; var alpha = this.bitmap.data[index + 3]; this.bitmap.data[index + 0] = alpha; this.bitmap.data[index + 1] = blue; this.bitmap.data[index + 2] = green; this.bitmap.data[index + 3] = red; }).bitmap; } function fromAGBR(bitmap) { return (0, _utils.scan)({ bitmap: bitmap }, 0, 0, bitmap.width, bitmap.height, function (x, y, index) { var alpha = this.bitmap.data[index + 0]; var blue = this.bitmap.data[index + 1]; var green = this.bitmap.data[index + 2]; var red = this.bitmap.data[index + 3]; this.bitmap.data[index + 0] = red; this.bitmap.data[index + 1] = green; this.bitmap.data[index + 2] = blue; this.bitmap.data[index + 3] = bitmap.is_with_alpha ? alpha : 0xff; }).bitmap; } var decode = function decode(data) { return fromAGBR(_bmpJs["default"].decode(data)); }; var encode = function encode(image) { return _bmpJs["default"].encode(toAGBR(image)).data; }; var _default = function _default() { var _decoders, _encoders; return { mime: (0, _defineProperty2["default"])({}, MIME_TYPE, ['bmp']), constants: { MIME_BMP: MIME_TYPE, MIME_X_MS_BMP: MIME_TYPE_SECOND }, decoders: (_decoders = {}, (0, _defineProperty2["default"])(_decoders, MIME_TYPE, decode), (0, _defineProperty2["default"])(_decoders, MIME_TYPE_SECOND, decode), _decoders), encoders: (_encoders = {}, (0, _defineProperty2["default"])(_encoders, MIME_TYPE, encode), (0, _defineProperty2["default"])(_encoders, MIME_TYPE_SECOND, encode), _encoders) }; }; exports["default"] = _default; module.exports = exports.default; },{"@babel/runtime/helpers/defineProperty":7,"@babel/runtime/helpers/interopRequireDefault":11,"@jimp/utils":235,"bmp-js":30}],230:[function(require,module,exports){ (function (Buffer){ "use strict"; var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault"); Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _defineProperty2 = _interopRequireDefault(require("@babel/runtime/helpers/defineProperty")); var _omggif = _interopRequireDefault(require("omggif")); var _gifwrap = require("gifwrap"); var MIME_TYPE = 'image/gif'; var _default = function _default() { return { mime: (0, _defineProperty2["default"])({}, MIME_TYPE, ['gif']), constants: { MIME_GIF: MIME_TYPE }, decoders: (0, _defineProperty2["default"])({}, MIME_TYPE, function (data) { var gifObj = new _omggif["default"].GifReader(data); var gifData = Buffer.alloc(gifObj.width * gifObj.height * 4); gifObj.decodeAndBlitFrameRGBA(0, gifData); return { data: gifData, width: gifObj.width, height: gifObj.height }; }), encoders: (0, _defineProperty2["default"])({}, MIME_TYPE, function (data) { var bitmap = new _gifwrap.BitmapImage(data.bitmap); _gifwrap.GifUtil.quantizeDekker(bitmap, 256); var newFrame = new _gifwrap.GifFrame(bitmap); var gifCodec = new _gifwrap.GifCodec(); return gifCodec.encodeGif([newFrame], {}).then(function (newGif) { return newGif.buffer; }); }) }; }; exports["default"] = _default; module.exports = exports.default; }).call(this,require("buffer").Buffer) },{"@babel/runtime/helpers/defineProperty":7,"@babel/runtime/helpers/interopRequireDefault":11,"buffer":48,"gifwrap":70,"omggif":85}],231:[function(require,module,exports){ "use strict"; var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault"); Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _defineProperty2 = _interopRequireDefault(require("@babel/runtime/helpers/defineProperty")); var _jpegJs = _interopRequireDefault(require("jpeg-js")); var _utils = require("@jimp/utils"); var MIME_TYPE = 'image/jpeg'; var _default = function _default() { return { mime: (0, _defineProperty2["default"])({}, MIME_TYPE, ['jpeg', 'jpg', 'jpe']), constants: { MIME_JPEG: MIME_TYPE }, decoders: (0, _defineProperty2["default"])({}, MIME_TYPE, _jpegJs["default"].decode), encoders: (0, _defineProperty2["default"])({}, MIME_TYPE, function (image) { return _jpegJs["default"].encode(image.bitmap, image._quality).data; }), "class": { // The quality to be used when saving JPEG images _quality: 100, /** * Sets the quality of the image when saving as JPEG format (default is 100) * @param {number} n The quality to use 0-100 * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ quality: function quality(n, cb) { if (typeof n !== 'number') { return _utils.throwError.call(this, 'n must be a number', cb); } if (n < 0 || n > 100) { return _utils.throwError.call(this, 'n must be a number 0 - 100', cb); } this._quality = Math.round(n); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } } }; }; exports["default"] = _default; module.exports = exports.default; },{"@babel/runtime/helpers/defineProperty":7,"@babel/runtime/helpers/interopRequireDefault":11,"@jimp/utils":235,"jpeg-js":80}],232:[function(require,module,exports){ "use strict"; var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault"); Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _defineProperty2 = _interopRequireDefault(require("@babel/runtime/helpers/defineProperty")); var _pngjs = require("pngjs"); var _utils = require("@jimp/utils"); var MIME_TYPE = 'image/png'; // PNG filter types var PNG_FILTER_AUTO = -1; var PNG_FILTER_NONE = 0; var PNG_FILTER_SUB = 1; var PNG_FILTER_UP = 2; var PNG_FILTER_AVERAGE = 3; var PNG_FILTER_PATH = 4; var _default = function _default() { return { mime: (0, _defineProperty2["default"])({}, MIME_TYPE, ['png']), constants: { MIME_PNG: MIME_TYPE, PNG_FILTER_AUTO: PNG_FILTER_AUTO, PNG_FILTER_NONE: PNG_FILTER_NONE, PNG_FILTER_SUB: PNG_FILTER_SUB, PNG_FILTER_UP: PNG_FILTER_UP, PNG_FILTER_AVERAGE: PNG_FILTER_AVERAGE, PNG_FILTER_PATH: PNG_FILTER_PATH }, hasAlpha: (0, _defineProperty2["default"])({}, MIME_TYPE, true), decoders: (0, _defineProperty2["default"])({}, MIME_TYPE, _pngjs.PNG.sync.read), encoders: (0, _defineProperty2["default"])({}, MIME_TYPE, function (data) { var png = new _pngjs.PNG({ width: data.bitmap.width, height: data.bitmap.height }); png.data = data.bitmap.data; return _pngjs.PNG.sync.write(png, { width: data.bitmap.width, height: data.bitmap.height, deflateLevel: data._deflateLevel, deflateStrategy: data._deflateStrategy, filterType: data._filterType, colorType: typeof data._colorType === 'number' ? data._colorType : data._rgba ? 6 : 2, inputHasAlpha: data._rgba }); }), "class": { _deflateLevel: 9, _deflateStrategy: 3, _filterType: PNG_FILTER_AUTO, _colorType: null, /** * Sets the deflate level used when saving as PNG format (default is 9) * @param {number} l Deflate level to use 0-9. 0 is no compression. 9 (default) is maximum compression. * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ deflateLevel: function deflateLevel(l, cb) { if (typeof l !== 'number') { return _utils.throwError.call(this, 'l must be a number', cb); } if (l < 0 || l > 9) { return _utils.throwError.call(this, 'l must be a number 0 - 9', cb); } this._deflateLevel = Math.round(l); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; }, /** * Sets the deflate strategy used when saving as PNG format (default is 3) * @param {number} s Deflate strategy to use 0-3. * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ deflateStrategy: function deflateStrategy(s, cb) { if (typeof s !== 'number') { return _utils.throwError.call(this, 's must be a number', cb); } if (s < 0 || s > 3) { return _utils.throwError.call(this, 's must be a number 0 - 3', cb); } this._deflateStrategy = Math.round(s); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; }, /** * Sets the filter type used when saving as PNG format (default is automatic filters) * @param {number} f The quality to use -1-4. * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ filterType: function filterType(f, cb) { if (typeof f !== 'number') { return _utils.throwError.call(this, 'n must be a number', cb); } if (f < -1 || f > 4) { return _utils.throwError.call(this, 'n must be -1 (auto) or a number 0 - 4', cb); } this._filterType = Math.round(f); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; }, /** * Sets the color type used when saving as PNG format * @param {number} s color type to use 0, 2, 4, 6. * @param {function(Error, Jimp)} cb (optional) a callback for when complete * @returns {Jimp} this for chaining of methods */ colorType: function colorType(s, cb) { if (typeof s !== 'number') { return _utils.throwError.call(this, 's must be a number', cb); } if (s !== 0 && s !== 2 && s !== 4 && s !== 6) { return _utils.throwError.call(this, 's must be a number 0, 2, 4, 6.', cb); } this._colorType = Math.round(s); if ((0, _utils.isNodePattern)(cb)) { cb.call(this, null, this); } return this; } } }; }; exports["default"] = _default; module.exports = exports.default; },{"@babel/runtime/helpers/defineProperty":7,"@babel/runtime/helpers/interopRequireDefault":11,"@jimp/utils":235,"pngjs":129}],233:[function(require,module,exports){ (function (Buffer){ "use strict"; var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault"); Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _defineProperty2 = _interopRequireDefault(require("@babel/runtime/helpers/defineProperty")); var _utif = _interopRequireDefault(require("utif")); var MIME_TYPE = 'image/tiff'; var _default = function _default() { return { mime: (0, _defineProperty2["default"])({}, MIME_TYPE, ['tiff', 'tif']), constants: { MIME_TIFF: MIME_TYPE }, decoders: (0, _defineProperty2["default"])({}, MIME_TYPE, function (data) { var ifds = _utif["default"].decode(data); var page = ifds[0]; _utif["default"].decodeImages(data, ifds); var rgba = _utif["default"].toRGBA8(page); return { data: Buffer.from(rgba), width: page.t256[0], height: page.t257[0] }; }), encoders: (0, _defineProperty2["default"])({}, MIME_TYPE, function (image) { var tiff = _utif["default"].encodeImage(image.bitmap.data, image.bitmap.width, image.bitmap.height); return Buffer.from(tiff); }) }; }; exports["default"] = _default; module.exports = exports.default; }).call(this,require("buffer").Buffer) },{"@babel/runtime/helpers/defineProperty":7,"@babel/runtime/helpers/interopRequireDefault":11,"buffer":48,"utif":182}],234:[function(require,module,exports){ "use strict"; var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault"); Object.defineProperty(exports, "__esModule", { value: true }); exports["default"] = void 0; var _timm = require("timm"); var _jpeg = _interopRequireDefault(require("@jimp/jpeg")); var _png = _interopRequireDefault(require("@jimp/png")); var _bmp = _interopRequireDefault(require("@jimp/bmp")); var _tiff = _interopRequireDefault(require("@jimp/tiff")); var _gif = _interopRequireDefault(require("@jimp/gif")); var _default = function _default() { return (0, _timm.mergeDeep)((0, _jpeg["default"])(), (0, _png["default"])(), (0, _bmp["default"])(), (0, _tiff["default"])(), (0, _gif["default"])()); }; exports["default"] = _default; module.exports = exports.default; },{"@babel/runtime/helpers/interopRequireDefault":11,"@jimp/bmp":229,"@jimp/gif":230,"@jimp/jpeg":231,"@jimp/png":232,"@jimp/tiff":233,"timm":177}],235:[function(require,module,exports){ "use strict"; var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault"); Object.defineProperty(exports, "__esModule", { value: true }); exports.isNodePattern = isNodePattern; exports.throwError = throwError; exports.scan = scan; exports.scanIterator = scanIterator; var _regenerator = _interopRequireDefault(require("@babel/runtime/regenerator")); var _marked = /*#__PURE__*/ _regenerator["default"].mark(scanIterator); function isNodePattern(cb) { if (typeof cb === 'undefined') { return false; } if (typeof cb !== 'function') { throw new TypeError('Callback must be a function'); } return true; } function throwError(error, cb) { if (typeof error === 'string') { error = new Error(error); } if (typeof cb === 'function') { return cb.call(this, error); } throw error; } function scan(image, x, y, w, h, f) { // round input x = Math.round(x); y = Math.round(y); w = Math.round(w); h = Math.round(h); for (var _y = y; _y < y + h; _y++) { for (var _x = x; _x < x + w; _x++) { var idx = image.bitmap.width * _y + _x << 2; f.call(image, _x, _y, idx); } } return image; } function scanIterator(image, x, y, w, h) { var _y, _x, idx; return _regenerator["default"].wrap(function scanIterator$(_context) { while (1) { switch (_context.prev = _context.next) { case 0: // round input x = Math.round(x); y = Math.round(y); w = Math.round(w); h = Math.round(h); _y = y; case 5: if (!(_y < y + h)) { _context.next = 17; break; } _x = x; case 7: if (!(_x < x + w)) { _context.next = 14; break; } idx = image.bitmap.width * _y + _x << 2; _context.next = 11; return { x: _x, y: _y, idx: idx, image: image }; case 11: _x++; _context.next = 7; break; case 14: _y++; _context.next = 5; break; case 17: case "end": return _context.stop(); } } }, _marked); } },{"@babel/runtime/helpers/interopRequireDefault":11,"@babel/runtime/regenerator":22}]},{},[200])(200) });